
Abdullah and Younis Iraqi journal of science ,Vol.52, No.3,PP.370-375.

 ٣٧٠

A NEW IMPLEMENTATION TECHNIQUE FOR BUDDY SYSTEM

Nada A.Z. Abdullah, * Manal F. Younis

Department of Computer Science, College of Science, University of Baghdad. Baghdad-Iraq
Department of computer Engineering , College of Engineering, University of Baghdad. Baghdad-Iraq*

Abstract

 Buddy system algorithm is dynamic memory control which is usually embedded in

the memory management unit, which is a part of the most widely use modern operating

systems. Dynamic memory management is an important and essential part of computer

systems design. Efficient memory allocation, garbage collection and compaction are

becoming increasingly more critical in parallel, distributed and real-time applications

using object-oriented languages like C++ and Java. In this paper we present a technique

that uses a Binary tree for the list of available memory blocks and show how this method

can manage memory more efficiently and facilitate easy implementation of well known

garbage collection techniques.

������� �	
� �
���� ��
�� �
���

 � �� ��� ������ ��� ���*���
 ��	� �	��

������ �	�
 ��
��
��� ���� ��� ������ ���
� .����� � ������

*�
��
��� ����� ��� � �	�
 ������� ������ ���
� .����� � ������

�� !��

	�
�	� ��
� �	!�"� �#	�$ %� ������ �	�&���' %() ��
� �� ����� ���� *� +&� *�
"
� ��
� %"��� �	

�,	���� -	�."�� �!� �!�� . ��(�
��� �(�!�� �	�(/" %) 0���1� ��� +&� %� �	
	��	���� ��
� �� ����� .

 %() �(������ �	���(1�� ���2� *� 3�/�
�$�1� ��	�/�� +�&�2� 4�� � ��
� �� +�5
�� 6	/'"��

�"��� �	&��"��� ��!�2� ��� -,� �	�
	
�� ������� �
�� ���'"�
� �#	#��� ��!�2� �
#	�$"� �	�	&C++ �Java

 . ���'"�� �	�#" <��"�� �" =���� � � %)(binary tree) �
(�&���' <��"�� �"� ��
� �� *� �G�
5�� +�&�H�

*�

��� -�
�"�� (binary tree) 	5�"��� ���'"�2� %) �+
5
 �,
�.

1. Introduction
 In recent years there is a noticeable rapid

growth of interest in the operating systems field.

The most plausible reason for this trend seems to

be the rising number of operating systems types

being accessible for a wide mass of people. The

second reason might come from the growing

interest in the embedded and real time operating

systems. Although very efficient hardware

memory management algorithms have been

developing, it is still profitable to deal with their

software counterparts, as an alternative method of

systems performance improvement. All these

factors encourage system architects and designers

to seek for more efficient and flexible solutions of

the software memory management [1].

Dynamic memory allocation is a classic problem

in computer systems. Typically we start with a

large block of memory (sometimes called a heap).

Abdullah and Younis Iraqi journal of science ,Vol.52, No.3,PP.370-375.

 ٣٧١

When a user process needs memory, the request is

granted by carving a piece out of the large block

of memory. The user process may free some of the

allocated memory explicitly, or the system will

reclaim the memory when the process terminates.

At any time the large memory block is split into

smaller blocks (or chunks), some of which are

allocated to a process (live memory), some are

freed (available for future allocations), and some

are no-longer used by the process but are not

available for allocation (garbage). A memory

management system must keep track of these

three types of memory blocks and attempt to

efficiently satisfy as many of the process’s

requests for memory as possible [2].

The buddy system is one of the most popular

memory managing systems use in the memory

management systems. The basic reason of its

functionality lies in dividing linear memory into

memory areas, so called chunks or simply blocks.

Each chunk represents a certain size of linear,

continuous memory pool, which has a size equal

to 2 to power of n. In most cases the size of blocks

varies between 2n and 2m, where: n >=3 due to

the need of reservation of some administrative

data in a chunk, and m <=31 assuming that 232-1

is the greatest address which might be accessed on

the given hardware architecture [1].

Having split the whole managed linear memory

area into the fixed sized chunks; it is easy to issue

memory pools requested by operating system.

Unfortunately, such an approach has its

drawbacks.

The (binary) buddy system much faster than other

heuristics for dynamic memory allocation, such as

first-fit and best-fit. Its only disadvantage being

that blocks must be powers of two in size, the

buddy system is used in many modern operating

systems; in particular most versions of

UNIX/Linux, for small block sizes. Various

implementations have their own particular twists.

For example, most versions of Linux try to avoid

the potential amortizedO(log n) cost of allocating

and deallocating small blocks, by keeping

deallocated small blocks on lists. While usually

quite effective, this practice can lead to the

inability to allocate a large block even when all of

memory is free. Because our work is based on the

standard buddy system, we review the basic ideas

now. At any point in time, the memory consists of

a collection of blocks of consecutive memory,

each of which is a power of two in size. Each

block is marked either occupied or free, depending

on whether it is allocated to the user. For each

block we also know its size (or the logarithm of its

size). The system provides two operations for

supporting dynamic memory allocation [3]:
1. Allocate (2k): Finds a free block of size 2k,

marks it as occupied, and returns a pointer to it.

2. Deallocate (B): Marks the previously allocated

block B as free and may merge it with others to

form a larger free block.

2. Disadvantages of the buddy system
 The major and the most harmful feature of this

memory system in its plain form is the internal

fragmentation problem. Let's examine a memory

request of 515 bytes. The system, after rounding

the requested size up, will seek for the one with

the size of 1024 bytes, as it is the first area which

fulfills the program expectations regarding the

size. In consequence, such an approach gives a

waste of 509 bytes. The technique adopted by

Linux to solve the external fragmentation problem

is based on the well-known buddy system

algorithm. All free page frames are grouped into

10 lists of blocks that contain groups of 1, 2, 4, 8,

16, 32, 64, 128, 256, and 512 contiguous page

frames, respectively. The physical address of the

first page frame of a block is a multiple of the

group size—for example, the initial address of a

16-page frame block is a multiple of 16 x 2
12

 (2
12

= 4,096, which is the regular page size) [4].

Another feature of the system which is worth

investigating is its performance. Splitting and

merging adjacent areas is a recurrent operation

and thus very unpredictable an inefficient [1]. In

this paper an improvement is proposed to solve

performance problem using more efficient data

structure (binary tree).

3. Related work
 Several other buddy systems have been

proposed, which are briefly survey now. Knuth [5]

proposed the use of Fibonacci numbers as block

sizes instead of powers of two, resulting in the

Fibonacci buddy system. This idea was detailed

by Hirschberg [6], and was optimized by Hinds

[7] and Cranston and Thomas [8] to locate buddies

in time similar to the binary buddy system. Both

the binary and Fibonacci buddy systems are

special cases of a generalization proposed by

Burton [9]. Shen and Peterson [10] proposed the

Abdullah and Younis Iraqi journal of science ,Vol.52, No.3,PP.370-375.

 ٣٧٢

weighted buddy system which allows blocks of

sizes 2
k
 and 3·2

k
 for all k. All of the above

schemes are special cases of the generalization

proposed by Peterson and Norman [11] and a

further generalization proposed by Russell [12].

Page and Hagins [13] proposed an improvement

to the weighted buddy system, called the dual

buddy system, which reduces the amount of

fragmentation to nearly that of the binary buddy

system. Seeger B. and Kriegel H. proposed a new

multidimensional access method, called the

buddy-tree, to support point as well as spatial data

in a dynamic environment. The buddy-tree can be

seen as a compromise of the R-tree and the grid

file, but it is fundamentally different from each of

them. Because grid files loose performance for

highly correlated data, the buddy-tree is designed

to organize such data very efficiently, partitioning

only such parts of the data space which contain

data and not partitioning empty data space [14].

Brodal G. S., Erik D. D., Munro J.I.were proposed

several modifications to the binary buddy system

for managing dynamic allocation of memory

blocks whose sizes are powers of two. The

standard buddy system allocates and deallocates

blocks in Θ(logn) time in the worst case (and on

an amortized basis), where n is the size of the

memory. We present three schemes that improve

the running time to O(1) time, where the time

bound for deallocation is amortized for the first

two schemes. The first scheme uses just one more

word of memory than the standard buddy system,

but may result in greater fragmentation than

necessary. The second and third schemes have

essentially the same fragmentation as the standard

buddy system, and use O(2(1+√logn)loglogn) bits

of auxiliary storage, which is ω(log
k
 n) but o(n

ε
)

for all k ≥ 1 and ε > 0. The rest of this paper is

organized as follows; section 4 contains Buddy

System Data Structure. Section 5 the proposed

data structure. Section 6 Complexity analysis.

Section 7 simulation. Finally conclusions are

listed in section 8.

4. Buddy System Data Structure
 The buddy system maintains a list of the free

blocks of each size (called a free list), so that it is

easy to find a block of the desired size, if one is

available [3].(Figure 1). illustrates the use of the

data structures introduced by the buddy system

algorithm. The array zone_mem_map contains

nine free page frames grouped in one block of one

(a single page frame) at the top and two blocks of

four further down. The double arrows denote

doubly linked circular lists implemented by the

free_list field. Notice that the bitmaps are not

drawn to scale [4].

Figure 1: Data structures used by the buddy

system [4]

5. The proposed data structure
 As have been seen in section 2 the buddy

algorithm has a low performance due to the type

of data structure used (queue or linked lists). An

improvement of the algorithm to use an efficient

data structure. Efficient data structure means

faster than linked list in searching or traversing.

The binary tree is proposed in this paper to be

used in the buddy system. In (figure 2). the new

data structure is shown. In our approach every free

block will be defined as node_struct of type struct

in C language:

Typedef Struct node_struct {

Int size;

Int block_no;

node_struct *left;

node_struct *right;

node_struct *LLptr};

Figure 2: Structure of tree node

Abdullah and Younis Iraqi journal of science ,Vol.52, No.3,PP.370-375.

 ٣٧٣

Figure 3: Data structure of the binary buddy

system

 All nodes of the same size are linked in a

linklist of its size and the array of size [11] store

10 pointers every pointer points to a linklist, the

definition of this array is as follow:

On the other side every node linked with a binary

tree, at beginning every 512 size free block is the

root of binary tree which can be divided into two

nodes of size 256. Therefore every node must has

left and right pointers to represents the binary tree,

and has side pointer to link the node with a link

list of its size. Another array has been defined to

store all the roots pointers. The array root-arr of

size (N) where N represents number of blocks of

size 512 in the memory.

 Any allocation will be start from the size_arr,

while every deallocation will be start from

root_arr.

5.1. Allocation

 The proposed allocation is the same allocation

as classic buddy system (first-fit), with additional

work due to the new data structure used (binary

tree). The allocation algorithm is shown below.

5.2. Deallocation
 The reverse operation to allocation, releasing

blocks of page frames, gives rise to the name of

this algorithm. In classic buddy system the kernel

attempts to merge together pairs of free buddy

blocks of size b into a single block of size 2b. Two

blocks are considered buddy if:

• Both blocks have the same size, say b.

• They are located in contiguous physical

addresses.

• The physical address of the first page

frame of the block is a multiple of 2 X b

X 212.

The algorithm is iterative, if it succeeds in

merging released blocks; it doubles b and tries

again so as to create even bigger blocks. The

deallocation in buddy system needs searching the

links list to create larger free chunk.

In proposed deallocation algorithm according to

the address of free chunk, the search begins from

the root of the binary tree of the chunk to find the

appropriate place or merge this chunk with its

neighbor.

Arr_size * node_struct [10];

Figure 4: Definition of array

Tree1 *aa[10];

Tree1 *root_arr[sizeof (aa[10]);

Figure 5. Definition of the root node

Allocation algorithm (Allocate a free node to

a process and release it from the

free_blocks list)

• If a request to free block of size R

continuous page frame.

The algorithm check first whether a free

block of size R exists, by checking the

link list of this size which arr_size

[log2(R)] points to

If found Then

1) Remove the head of the link list

of size R.

2) Mainpulate the binary tree.

Else

Looks for the next large block

If found

1- Allocate block of size R to the request

2- Dividing the remaining into blocks of

size 2 to power X where X € [1,2,…..,8]

3- Insert the divided blocked at the head of

the link list of its size.

4- Link every free block to its appropriate

place in its binary tree.

Abdullah and Younis Iraqi journal of science ,Vol.52, No.3,PP.370-375.

 ٣٧٤

6. Complexity analysis
 Deallocation algorithm proposed which search

the binary tree to find a appropriate place for the

free chunk. Deallocation algorithm is very similar

to binary tree traversal and the execution time

complexity depends on the number of levels (L) in

the tree, hence, the complexity of deallocation is

O(L).

 In allocation algorithm the search for free chunk

is the same as the traditional buddy system (this

search is very fast) since the free chunks are

arranged in 10 linked list sorted by size and the

allocation used first algorithm to determine the

needed free chunk. After find the first-fit free

chunk the tree must be modified. This

modification requires changes to at least two

pointers, and delete this chunk from tree.

Allocation requests are satisfied using traditional

binary search algorithms with a complexity of

O(1). In our case, the search is speeded up by the

Max_Left and Max_Rigth that guide the search to

the appropriate sub-tree. When a node is deleted

we consider the following cases.

a. If the deleted node has a right child, the right

child will replace the deleted node. The left

child of the deleted node (if one exists)

becomes the left child of the new node.

Otherwise, if the replacing node (the right

child of the deleted node) has a left sub-tree,

we traverse the left sub-tree and the leftmost

child of the replacing node becomes the

parent of the left child of the deleted node.

b. If the deleted node has no right child then

the left child replaces the deleted node.

Since the case "a" above may involove traversing

down the tree (from the right child of the deleted

node), the worst case complexity is O(1).

7. Simulation
 In order to evaluate the benefits of our

approach to memory management, we developed

simulators that accept requests for memory

allocation and deallocation. In all

implementations, we included deallocation objects

whenever possible.

8. Conclusion
 The buddy system is one of the most popular

memory managing systems used in the memory

management system. Its simple structure,

flexibility, cohesion, ability to cooperate easily

with paging system and further extensions, it plays

a major role in a significant number of

contemporary operating systems. Moreover, it is

still being worked upon.

In this paper we described the use of Binary Trees

for maintaining the available chunks of memory.

The Binary Tree is based on the starting address

Deallocation algorithm (insert new free

memory chunk of size N and the address D)

1- Find the chunk's tree (D/512 * page size)

Gives the block number

Root_arr [block number/10][block number

%10] points to the root of chunk's tree.

2- If not found

2.1. This chunk will be the root

2.2. Set left and right pointers to null

2.3. According to its size insert this free

 chunk as a head of link – list of its size.

3. If found

3.1. Compare the size of root with new

chunk

 3.1.1. If equals then

 Combined root with the new free block to

 create new block of size (2N)

 3.1.2. If (New free chunk>root) Then

 New chunk will be the root and link the

 root to left pointer of the new root.

 3.1.3. If (New chunk < root)

 Then found the appropriate place

3.1.3.1. Set the root as the current node

3.1.3.2. Check if the current node has left or

right pointers

 Then Check the size of the child of the

 current node

a- If equals then combined the new free

block with the child block to create 2N free

block.

b- If (child > new free block) Then

 The new free block will be the parent of

the left or right child

c- If (left or right child <new free block)

Then

 Set the child as the current node

 Goto step 3.1.3.2

3.2. According to the size of the new free

chunk created insert this free chunk as a

head of the link-list of its size.

Abdullah and Younis Iraqi journal of science ,Vol.52, No.3,PP.370-375.

 ٣٧٥

of memory chunks. In addition this information is

used during allocation to find a suitable chunk of

memory. The Binary Tree implementation permits

immediate merging of newly freed memory with

other free chunks of memory. Binary Tree

naturally improves the search for appropriate size

blocks of memory over Linear Linked lists. Buddy

system arrange the free chunk as queues and the

complexity of queues and the complexity of queue

search has O(n).

References
1. Serewa S. 2006. The improvement of the

buddy system. Theoretical and Applied

Informatics ISSN 1896-5334, 18(2), pp.

133-134.

2. Rezaei M.and Kavi, K.M. 2000. A New

Implementation Technique for Memory

Management. Proceedings of the

SoutheastCon, Nashville, TN, pp.1-2

3. Brodal, G. S., Erik D. D.and Munro,

J.I.1999. Fast Allocation and Deallocation

with an Improved Buddy System.

Proceedings of the 19th Conference on the

Foundations of Software Technology and

Theoretical Computer Science p.2

4. Bovet, D. P. and Cesati M.

2002.Understanding the Linux Kernel, 2
nd

Edition, O'Reilly: ISBN : 0-596-00213-0,

pp. 257-259.

5. Donald E. K. 1968. Dynamic storage

allocation. In The Art of Computer

Programming, Addison-Wesley1(2.5):

435–455.

6. Hirschberg,D.S. 1973. A class of

dynamic memory allocation algorithms.

Communications of the ACM,

16(10):615–618, Oct.

7. Hinds,J.A. 1975. Algorithm for locating

adjacent storage blocks in the buddy

system. Communications of the ACM.

18(4):221–222, Apr.

8. Cranston B. and Thomas, R. 1975. A

simplified recombination scheme for the

Fibonacci buddy system. Communications

of the ACM, 18(6):331–332, June.

9. Burton,W. 1976. A buddy system

variation for disk storage allocation.

Communications of the ACM, 19(7):416–

417, July.

10. Kenneth, K. S. and James, L. P. 1975. A

weighted buddy method for dynamic

storage allocation. Communications of the

ACM, 17(10):558–562, Oct.

11. James, L. P. and Theodore, A. N. 1977.

Buddy systems. Communications of the

ACM, 20(6):421–431, June.

12. Russell,D.L. 1977. Internal fragmentation

in a class of buddy systems. SIAM Journal

on Computing, 6(4):607–621, Dec.

13. Ivor, P. and Hagins, J. 1986. Improving

the performance of buddy systems. IEEE

Transactions on Computers, C-35(5):441–

447, May.

14. Seeger, B. and Kriegel, H. 1990. The

Buddy-Tree: An Efficient and Robust

Access Method for Spatial Data Base

Systems. Praktische Informatik,

University of BFtEMEN, D-2800

BREMEN 33, WEST GERMANY,

Proceedings of the 16th VLDB

Conference Brisbane, Australia.

