
Hadi and Barjas Iraqi journal of science,Vol.52,No.3,2011,PP.362-369

 ٣٦٢

DESIGN AND IMPLEMENT A TRANSPARENT INTERNET PROTOCOL

PACKETS COMPRESSION SYSTEM

Suha M. Hadi ,*Firas R. Barjas
Departement of Information and Communication Engineering , College of Al-Khawarizmi Engineering, University of Baghdad .baghdad -Iraq

Asiacell communication company, Sulaymani –Iraq *

Abstract

 The data compression process is an important aspect that should be given a good

attention when dealing with slow computer networks. This paper introduces the design

and implementation of a transparent compression system that can be utilized by

Microsoft Windows to compress data exchanged among the computers through a Local

Area Network (LAN). On each machine, this system transparently intercepts outgoing IP

packets and compresses them. As well as it will transparently intercept incoming

compressed IP packets and decompresses them.

� ��������	
���
� ����� ����� ���� �������������� ����

 � !�" !�#� �$% *'(�)�%� '��*
 �������� ��	�
�	��
���� ��� � �	�������
������
�
������
�	�� � .����� !�����

*�����
��#$� �����%�
���	�
��� � !�����

+�,-��

 ���� &
	�	�� ��	��� '	 ()�*�� +',-
.�)��� /0���1�� -����# 2	 3$	���� �	��4 ���� 5����, 6)�&� 7'89 :0/�;� .
 '�� (
����(�	�� -��������)<�;*� -�=�������	 ->=���� ?	���(��&� -@�AB# -)�* ��C� (!��)�� ;��	�� D1��� �>� $�����

E�
1	�� ����#�� $%� '	 ������	����)LAN .(B# $�#�� ��C��� ��K� D�1 '	 (
������ 8 ����� L���4�� @�
��&)�7*8 �M '	� ���� $� . L;��(� ���� N� '	 O������
)��*	�� ;�;�:��� :L���4(�� P���
�� '	 ��K�� Q�	�

��)�* R�=.
1.Introduction
 It is very clear that computer networks have

become an essential part of every day life.

However, despite the fact that very fast networks

do exist, many people still use slow networks [1].

For such networks that suffer from limited

bandwidth, compression is very important. It

reduces the redundant information being

transferred and leads to much better network

utilization. The compression of network traffic has

other advantages. Since it reduces the amount of

data being transferred over the network, it is

useful for networks that use noisy channels. The

probability of receiving damaged frames due to

noise may be decreased by using the compression

process. Moreover, compression can reduce the

cost of data transmission in the networks, in which

the cost of data transmission depends on the

amount of data transferred. A compression

algorithm takes an input X and generates a

representation XC that hopefully requires fewer

bits. There is a reconstruction algorithm that

operates on the compressed representation XC to

Hadi and Barjas Iraqi journal of science,Vol.52,No.3,2011,PP.362-369

 ٣٦٣

generate the reconstructed presentation Y. Based

on the requirements of reconstruction, data

compression schemes can be divided into two

broad classes [2]:

1- Lossless algorithms, which can reconstruct the

original message exactly from the compressed

message. As an examples of this class include

Huffman coding, LZW, and ZIP.

2- Lossy algorithms, which can only reconstruct

an approximation of the original message. As

an examples of this class the vector

quantization, predictive coding, and fractal

compression.

 The Lossless algorithms are typically used for

text, while the lossy algorithm is used for images

and sound where a little bit of loss in resolution is

often undetectable, or at least acceptable. It is used

in an abstract sense; however, that does not mean

random lost pixels, but instead means loss of a

quantity such as a frequency component, or

perhaps loss of noise [3]. The data that will be

compressed by the proposed compression system

must be exactly and perfectly reproduced after

decompression at its destination; therefore a

lossless compression algorithm must be used here.

So, the ZIP compression algorithm was selected in

this paper because of its efficiency and for the

availability of its source code.

2.The system specifications

 The following points shed the light on the most

important specifications of the proposed system:

1- The system must automatically compress the

payloads of outbound Internet Protocol (IP)

packets and decompress the payloads of

inbound IP packets.

2- The processing of the system (compression

and decompression) must be transparent to all

networking applications. In other words, there

is no need to change software on the computer

that uses the compression system.

3- The system has been designed to process the

packets in a way that will not conflict with the

work of routers, which may exist in the path

of the packets during their transit. For this

reason, the compression system must not

compress the IP headers of processed IP

packets. It must as well update the total length

field of the IP header of each processed IP

packet to reflect the new size of the packet

after compression. Updating the total length

field of the IP header requires of course

recalculation of the IP header Checksum field.

4- The system should provide a friendly

Graphical User Interface (GUI), by which the

network administrator can control and monitor

the operation of the system.

5- The system works under Microsoft Windows

2000 operating system and later versions.

6- The compression system is aimed to work on

Fast Ethernet networks.

To achieve the required transparency, the system

utilizes the NDIS (Network Driver Interface

Specifications) Intermediate Miniport (IM) driver

to implement compression and decompression of

IP packets. This driver is located between the

Logical Link Control (LLC) and the Medium

Access Control (MAC) sub layers of the data link

layer [4]. The NDIS IM driver is well

documented, and because of its location in

Windows machine network architecture, no

outbound or inbound packet bypasses it. Thus, it

best suits the system in question. (Figure 1).

shows NDIS driver location in Windows network

architecture.

3.The proposed system architecture
 The system will be consists of four main

modules:

1- The Compressor module.

2- The De-compressor module.

3- The Interface module.

The Admin-Panel module -٤

 2). will illustrate these four modules and (Figure

the interaction between them (The system

modules are shown in the bold color).

 The first module that is the Compressor

module will compresses the outbound packet

payloads using the ZIP compression algorithm. If

the data carried in a packet payload is highly pre-

compressed (it could belong to a highly

compressed file being transferred), this data will

have very low redundancy. If such data is

compressed by the compressor module, its size

may increase. This will negatively affect the

overall compression ratio. In addition, if such data

is being sent inside a large packet, there will be a

possibility that the size of the packet after

compression be more than the Maximum

Transmission Unit (MTU) size (MTU of Ethernet

is 1500 bytes) [5]. Packets larger than the MTU

Hadi and Barjas Iraqi journal of science,Vol.52,No.3,2011,PP.362-369

 ٣٦٤

are not sent by NICs. To solve this problem, there

are two solutions:

A-After the payload of each IP packet is

compressed, its size is checked. If the resulting IP

packet has a size larger than the MTU, will be

fragmented to a number of fragments each of

which has a size less or equal to the MTU size,

thus preventing the NIC from dropping them. This

solution will not be used, because it does not

resolve the negative impact on the overall

compression ratio. Many file extensions whose

data are already compressed using lossy or

lossless compression algorithms may be

exchanged among computers in a network (ex.,

*.jpg, *.gif, *.zip, *.rar, …etc), and that

compression of packets holding such data will

frequently increases their sizes[7], and thus

negatively affects the compression ratio.

Moreover, this solution apparently increases the

number of packets being transferred (and

eventually processed by intermediate routers if

any), along with the overhead introduced by their

IP and Ethernet headers

B-The other solution will involves checking the IP

packet size resulting after compression. If the

resulting size is larger than the original size, the

compression process will be useless, and so the

packet is sent without compression. This approach

requires to include a one-byte flag (from now on

will be called compression flag), which indicates

to the receiving compression system whether the

packet is compressed or not. The overhead

implied by the inclusion of this one byte flag in all

outbound packets is much less than that implied

by the first solution. This was tested practically.

The compression flag is inserted directly after the

IP header. It is worthy mentioning that this

solution requires setting the MTU of each NIC in

a host that uses this compression system to 1499

bytes instead of the default MTU value (1500

bytes). This is necessary, because a highly pre-

compressed outbound IP packet will have a size 1

byte more than its original size after being

processed by the compression system at the worst

case. If such a packet has a size equal to 1500
bytes, its size will be 1501 bytes after being processed

by the compression system. Hence, such a packet size

will cause the NIC to drop the packet, because it will

be larger than the MTU size supported by the Ethernet

NICs. The task of setting the MTU of each NIC to

1499 bytes is performed by the Admin-Panel Module,

as will be shown later.

Figure 1:The NDIS Driver Location [6]

Hadi and Barjas Iraqi journal of science,Vol.52,No.3,2011,PP.362-369

 ٣٦٥

 Figure 2: The probosed Compression System
Architecture

 The compressor module intercepts each

outbound packet transmitted by the upper

transport protocols, and processes it according to

the flow chart shown in(Figure 3).While the De-

compression module intercepts incoming IP

packets and decompresses their payloads if they

are compressed. When the De-compressor

module receives a packet from an underlying

miniport, it processes the packet as specified by

the flow chart show in (Figure 4).

The third module which is the Interface module

will exports the interface functions that can be

called by the Admin-Panel module to control the

start or stop of compression and to get some

compression related statistics. These statistics

consist of the accumulated number of compressed

and decompressed bytes that have been sent or

received. The Interface module works within the

used NDIS intermediate driver. To enable user

mode applications to access the Interface module,

the NDIS intermediate driver registers a device

object for itself when it is loaded into the memory.

The fourth Module which is The Admin-Panel

module is a Win32 application, through which the

administrator can start or stop compression and

can view the statistical information provided by

the Interface module. The Admin-Panel calculates

and displays the average compression ratio as

well. The compression ratio is calculated using the

following formula:

Compression Ratio = (U - C) / U * 100 %
 Where,

U: Is the accumulated number of uncompressed

payloads bytes

C: Is the accumulated size of compressed

payloads bytes

The Admin-Panel communicates with the

Interface module periodically to get updated

statistics using the Device-Io-Control API. The

Device-Io-Control API sends a control code

directly to a specified device driver, causing the

corresponding device to perform the

corresponding operation [7].

4-The System Implementation

 The NDIS intermediate driver, which

encompasses the Compressor, De-compressor and

Interface modules, was written in C Language

using NDIS support routines. The driver was built

Hadi and Barjas Iraqi journal of science,Vol.52,No.3,2011,PP.362-369

 ٣٦٦

using Microsoft Driver Development Kit 2000

(DDK2000).

The Admin Panel was built using Microsoft

Visual C++ 6. Simply, it consists of one window

that can be used as a panel to control and monitor

the work of the compression system. The snapshot

of the Admin Panel single window is shown in

(Figure 5).

5.Performance results

 The compression system was installed on 3

machines, which were connected as 100 BaseTX

Fast Ethernet by using Linksys 10/100 dual speed

16-port stackable switch. The specifications of

each machine were as follows:

• Processor: Intel Pentium III, 866 MHz

• Physical Memory: 256 Mbytes

• Hard Disk: Western Digital Caviar, 20

Gbytes

• LAN Card: Realtek RTL8139(A)

• Operating System: Windows XP Service

Pack 2

Four tests were performed on two machines (from

now on, they will be called A and B):

Compression ratio test, processor usage test,

memory usage test and operability with routers

test.

Figure 3: Outbound Packets Processing by the

Compressor Module

Hadi and Barjas Iraqi journal of science,Vol.52,No.3,2011,PP.362-369

 ٣٦٧

Figure 4: Inbound Packets Processing by the De-

compressor Module

6. The compression ratio tests
 In the beginning, a collection of files was

located in A, while B was used to get all the files

from A. The collection of files was (577) Mbytes,

and it including many file formats with different

degrees of redundancy (bitmap images, Microsoft

Office files, executable files, compressed RAR

archives, compressed ZIP archives, and real media

- .rm - movies). During the transfer of this

collection of files, the average compression ratio

was measured using the Admin Panel module, and

it was (14.374%).

The same test was repeated again but with a 1(88)

MByte collection of bitmap images. The

compression ratio was (64.545%). As can be

noticed, the compression ratio this time is larger

than the compression ratio of the first test, because

bitmap images have a high degree of redundancy.

On the end, the compression ratio was measured

again during issuing the following command from

machine B to continuously ping machine A with

ICMP (Internet Control Message Protocol)

messages, which have 1450 bytes in their ICMP

payloads : Ping A_IP_ADDRESS – l 1450 - t

Where (A_IP_ADDRESS) is the IP Address of

machine A. In this test, the compression ratio was

measured to be (96.365%). Since the transferred

ICMP messages hold sequenced alphabetical

characters that are repeated many times, they have

very high redundancy. Thus, compression of such

messages will result in a high compression ratio as

can apparently be noticed.

 The three tests show the importance of the

developed compression system. Suppose that

machines A and B are connected by a slow

network link (such as a dial-up line). Let's say it

can support up to (56) Kbytes/sec. Suppose also

that the two machines do not use the compression

system. If the (188) MByte collection of bitmap

images is transferred from A to B, the time

required for this transfer will approximately be

calculated according to this equation (ignoring the

overhead imposed by the headers required to

transfer the files, i.e. IP, TCP …etc):

Time = 188 * 1024 / 56 = 3437.714 seconds

 (i.e. approximately 57 minutes)

If machines A and B are using the compression

system, and the same collection of bitmap images

is transferred using the same slow link, the

compression ratio will approximately equal the

Hadi and Barjas Iraqi journal of science,Vol.52,No.3,2011,PP.362-369

 ٣٦٨

compression ratio measured above (i.e. 64.545%)

as the compression ratio is affected only by the

used compression algorithm and the nature of the

data being compressed. The amount of

compressed transferred bytes will be

approximately:

C = 188 - 0.64545 * 188 = 66.6554 Mbytes
The time required to transfer this amount of data

would roughly be (ignoring the overhead imposed

by the headers required to transfer the files, i.e. IP,

TCP …etc):

Time = 66.6554 * 1024 / 56 = 1218.8416 seconds

(i.e. approximately 20 minutes).
As shown by the previous example, the

advantages of the developed compression system

by providing better network utilization and by

reducing the time required to transfer data using

slow networks are clearly explained

Figure 5: the GUI of the Admin Panel Module

7.Conclusions
 Throughout the design and implementation of

the compression system, a number of points that

can be useful for the development of similar

systems were concluded. They may be

summarized by the following points:

1- Compression is an important aspect that

should be given a good attention when using

computer networks that use slow links. It can

significantly reduce the time required for

transferring data among the computers of a

network that uses slow links. Moreover,

compression increases network utilization by

reducing the redundancy inherent in the

transferred data.

2- The best way to provide compression for

transferred data is by compressing outbound

data and decompressing inbound data

transparently (i.e. in a way transparent to end

users). This saves much labor and let users

continue to use their usual network

applications without any change. Windows

network drivers can be used to provide

transparency for applications like compression

and encryption. Specially, NDIS IM driver

which is the best and the most efficient

Windows network drivers that are

documented.

3- If the data carried in a packet payload is

highly pre-compressed, this data will have

very low redundancy. If such data is

compressed by a compression system, its size

may increase. This will negatively affect the

overall compression ratio. In addition, if such

data is being sent inside a large packet, there

will be a possibility that the size of the packet

after compression will be more than the MTU

size, and thus it will not be sent by the

underlying NIC. Hence, the best way to solve

this problem is by sending such packet

without compression. This requires the

inclusion of a flag in the packet to distinguish

those packets, which are compressed by the

compression system from those, which are

not.

8.Refrences
1. Munteanu,D and Williamson,G. 2004. An

FPGA-based Network Processor for IP

Packet Compression, Department of

Computer Science, University of Calgary,

Canada.

2. Blelloch, G.E. 2001. Introduction to Data

Compression, Computer Science

Department, Carnegie Mellon University,.

3. Microsoft Corporation, April 2001.

Microsoft Development Network,

Windows NT Workstation 4.0 Resource

Kit, "Kernel Mode and User Mode".

4. Hua,W ; Ohlund, J. and Butterklee,B.

May 1999. Unraveling the Mysteries of

Writing a Winsock 2 Layered Service

Hadi and Barjas Iraqi journal of science,Vol.52,No.3,2011,PP.362-369

 ٣٦٩

Provider, Microsoft Systems Journal,

Microsoft Corporation,

5. Divine,T.F. December 2002. Packet

Filtering Techniques, available at:

http://www.pcausa.com/resources/winpktf

ilter.htm,Printing Communications

Assoc., Inc.,

6. Smirnov,V.V. 2003. Firewall for

Windows 9x/ME/NT/2000/XP, available

at:Htt://www.ntndis.com/articles/firewalle

ng.htm, NT Kernel Resources

7. Microsoft Corporation, 2000. Microsoft

Windows 2000 Driver Development Kit,

Network Drivers.

8. Hornig,C. April 1984. A Standard for the

Transmission of IP Datagrams over

Ethernet Networks, Request For

Comments (RFC) 894.

