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Abstract
In this paper we study the uniqueness of meromorphic functions that share one
value only with their derivatives. The results here are improved for the results in [1]
and also we gave answer for open question in our paper.
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1. Introduction
Let f be a function meromorphic (i.e.

analytic except for poles) and not constant in the
complex plane. For any complex a, including

oo, we denote by n(t, ) the number of

roots of the equation f(z)=a in |z|St
(t=0), roots of order p being counted p

1
times, by n(0,——) the order of root of the

equation f(z)=a at z=0 (if f(0)# a, then

! )= n(t, f)the

— o0

"0 =0).by 1,

number of poles

of f in |z| <t, poles of order p being counted

p times and by Z(t, ) the number of

distinct roots of f(z)=a in |z| <t.
Correspondingly we define

1 1

r n(t’ )_n(o’ )
Ny = [0 o4y,
f—a 0 t

n(O,fl_a)logrv

t

0

n(0, f)logr,
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— 1 a
N(r, )= dt+
f—a ;[ t

- 1
n(O,f_a

)logr>
Let k be a positive integer, we denote by

1
Ny (t,fa) (resp. ng., (I,E) ) the

number of roots of the equation f(z)=a with
order < k (resp.> k) counting multiplicities in

|z| <t. Similarly as in above, we can define

1 1 ~
Nk)(r,ﬁ), N(,M(r,f—), N(r, f),

—a

— 1
) Nan(r,

N (rs f), Ni(r, f) and Nua(r, f) (see
[2], [3D.

We assume that the reader is familiar with
the usual notations and fundamental results of
Nevanlinna’s theory of meromorphic functions
(see [2], [3]). For example,

1 2 .
m(r, f) = [log
0

N (r,

)s Ny f),

where

fre)de,

log* x = max{logx,0}, x>0, T(r, f) =
m(r, f)+N(r,f), and S(r, f) will denote
any quantity that satisfies
S(r,f)=o()T(r,f) as r —>oco possibly
outside a set E of rof finite linear measure.
We say that two non-constant meromorphic
functions f and g share a finite value a IM
(ignoring multiplicity), if f—a and g-—a
have the same zeros. They share a finite value a
CM (counting multiplicity), if f—a and g —a
have the same zeros with the same
multiplicities. And we set

1 - 1. = 1
N (r’_):N(r7_)+N(2(r7_)'
U f f
2. The main results

In [4] R. Briick proved the following
theorem:

Theorem A.
Let f be a non-constant entire function

;,)z S(r,f). If £ and f’

satisfying N(r,
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share the value 1 CM, then f—1=c(f —1),

for some nonzero constant c.
In [5] and [6], A. H. H. Al-Khaladi improved
Theorem A and proved the following theorems:

Theorem B[5].
Let f be a non-constant meromorphic function

satisfying N(r,%) +N(r,f) =S(r,f). If

f and f® (k >1) share the value 1 CM, then
f-1=
c(f* —1), for some nonzero constant c.

Theorem C[6].
Let f be a non-constant meromorphic function

1
satisfying N (l’,?)

=S(r,f).If £ and f’ share the value 1 CM,
then f—1=c(f’—1), for some nonzero

constant c.
Theorem C suggests the following question
as an open problem:

Question 1. What can be said when a non-
constant meromorphic function f shares one

nonzero finite value CM with f”?

In this paper, we will answer Question 1.
Indeed, we shall prove the following theorems:

Theorem 1.
Let f be a non-constant meromorphic function.

If £ and f share the value a(# 0,00) CM,
then one of the following four cases must occur:

(O f=r"
.. _a(z—o)
(it) f(z2) =1t A
are constants.
(i) T(r, f) < 2N (r, f) + 2N2(r,%) +
S(r, f).
(iv) T(r, f) < 4N2(r,%)+ S, f).

, where A(#0) and c¢

Theorem 2.
Let f be a non-constant meromorphic function.

If f and f’ share the value a(0# ) CM,
then either f = f” or

T(r. f) Sﬁ(r,f)+N2(r,%)+S(r,f).
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As an immediate consequence of Theoreml,
we have

Corollary 1.

Let f be a non-constant meromorphic function.
If f and f~ share the value a (0# o0)CM,

and if N(r,i) =
f

S(r, f),theneither f = f"or f(z)=
M , where A(# 0) and c are constants.
1+ Ae™*

This is exactly Theorem 1 in [1].
Theorem 3.
Let f be a non-constant meromorphic function.
If f and f~ share the value a (0 # o) IM,

then exactly one of the following three cases
must occur:

i f=r".
(in) f(z)=L where A is nonzero
1-Ae™>’
constant.
1 — 1
i) T(r, f)<4N,(r,—)+5N(r, +
@) T(r, f) 2 ( f) ( f')
S(r, f).

From Theorem 3, we immediately deduce the
following Corollary:

Corollary 2
Let f be a non-constant meromorphic function.

If f and f share the value a(# 0,%) IM, and

if N(r,i) +
f
N(r, 1,) =S(r, f), then either f =f" or
2a

7)=——, where A is a nonzero
/2) 1—Ae™
constant.

This is exactly Theorem 2 in [1].
3. Proof of Theorem 1

Suppose a =1 (the general case following by

1
considering — f* instead of f)and f
a

# 7. We set
I A
== (D
f(f -1 f—l)

From the fundamental estimate of logarithmic
derivative it follows that
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m(r,F)=S(r, f). )
Suppose z, is a simple pole of f . Then the
Laurent expansion of f about z, is

f(@=a_(z-z) " +a,+a,(z—z)+,

(a, #0) 3)
Consequently, from (1),
-1 1
F(o)=—+—(z—z)+-. 4)
o 4y
Hence
, 1
F(Z)=—2+-~-. (&)
a,
It follows from (4) and (5) that
F*(z,)-F'(z,)=0. (6)

Again from (1), if z, is a pole of f of
multiplicity p 22, then z, is possible a zero
of F  of multiplicity
F(2)=0((z—z,)"™"). (7)

We consider two cases:

p—1, ie,

Case 1. F* — F’=0. Solving this equation
, we have

F(z)= 1 : ®)
c—z

where ¢ is a constant. Substituting this into (1)

gives

I 1 ( b f’

c—-z f f'-1 f-1

From this, it is easy to see that

N(z(r’f)zo- (10)
function, then f(z)=

) (€))

If f is a rational
P(2)
0(2)

no common zeros. Since f and f~ share 1
CM, it follows that the function
f-1_PQ-pPQ -0’
f-1 o(P-0)
has no zeros, further, the poles of this function
can only occur at the poles of f, i.e., at the

, where P and Q are polynomials have

; Y

zeros of Q. From (10), we know that all zeros
of Q are simple, so P’Q—PQ —Q%and Q

have no common zeros. Thus we conclude from
(11) that

P'Q-PQ -0 =¢,(P-0). (12)
where ¢, is a nonzero constant. From (12), (11)
and (9) we have P =(z—c)Q . Combining
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with (12), we arrive at a contradiction. Therefore
f is a transcendental meromorphic function,

and hence m(r,c—z) = S(r, f). From this and

(9), we deduce that m(r,f)=S(r,f).

Combining this with (10) yields

T(r,f)=Ny(r, f)+Sr.f). (13)
f=f

Set p=—————F. (14)
FfF=D

Then it is clear that

m(r,@) < m(r, fl 1)+m(r,F)+S(r,f) ,

and from (2), we have

m(r,(/))Sm(r,f1 l)+S(r,f). (15)

Since f and f’ share the value 1 CM, we see
from (14) and (8) that

N(r,p) < N(r,%) +8(r, f). (16)
From (15) and (16),
1 — 1
T(r,p)< m(r, 7 _1) +N(r,7)+S(r,f).
(17

Let z, be a simple pole of f. By a simple
calculation on the local expansion we see that
@(z,)=0.1If ¢=0 , then from (14) and (8)
d [(z —c)e’
dz= f(2)

integration and  fis a transcendental

meromorphic function, we obtain the conclusion
>ir) . If p#0, then

we conclude that ]=e*. By

1
Nl)(r,f)SN(T,E)ST(T,¢)+O(1) (18)
Therefore (18), (17) and (13) give that

1 — 1
T(r,f)Sm(r,f_1)+N(r,7)+S(r,f)

Hence
N(r, !
f-1
gl U=D
=D
Obviously, m(r,H)<m(r, f)+S(r, f).
Together with (13) we have
m(r,H)=S(r,f). 21
It follows from (20) that if z, is a simple pole of
f, then

)SN(r,%)+S(r,f). (19)

Set (20)
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H(z)=2. (22)
Since f and f share 1 CM, we deduce from

(20), (22) and (10) that N(r,H) < N(r, ;,).
Combining this with (21) we obtain

T(r,H)< N(r, ;,) +S(r, f). (23)

If H=2, we deduce from (20) that
ff=1=c,(f - 1)?, with ¢, (# 0) constant. So
f and f’ can not share the value 1 CM, which

is a contradiction. Thus we conclude H # 2,
and so

Nl)(r,f)S N(r,

1
H-2

)<T(r,H)+0()

< N(r,%) +S(r, f), (24)

by (23). From the second fundamental theorem,
(19), (24) and (10) we have
1

1 J—
T(r,f)SN(r,7)+N(r,f_l)+N(r,f)
—N(r,fl,)+S(r,f)

1. — 1. — 1
SN(@r,—)+ N(r,—)+N(r,—) -
(rf) (rf) (rf)
N(r, ;,)+S(r, 1. (25)
Clearly, N(r l)+ﬁ(r 1)—N(r 1)
s ’f ’f, ’f,
1
<N,(r,—). (26)
"y

Thus, we find from (25) and (26) that
1
T(r,f)<2N, (r,7) +S(r, f), and this gives

(iii).

Case 2. If F?—F’#0, we deduce from (6),
(7) and (2) that N, (r, f)+ N(r, f)

1 )<

2 F’ -

—2Na(r, f) S N(r,

1 ) ,
-m(r,———)+T(r, F"—F)+ 0
(rog ) T )+0)

1
<-m(r,——)+N(r,F* —F)+
( FZ—F') ( )
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S(r,f), that is N, (r,f)+Ns(r,f)+

1 _
l’l’l(l’,m) < 2N(3(r,f) +
N(r,F> =F)+S(r, f). (27)
Here we estimate N(r,F>—F") and
1 ,
m(r,———;) . Since and share 1 CM,
(5 ). Since f and f

we find from (1), (6) and (7) that the poles of
F>-F
However, the zeros of f with multiplicity

can only occur at the zeros of f .

g=1 (resp.q=>2) are all poles of F>—F’
with multiplicity 2 (resp . 4), at most, thus

N(r,F*-F")<2N, (r,%) . (28)

Let h be the

h= ~1
f-
1

function defined by

~

. Then from (1), we have

~

1
F = h Hence f* = [(—)

e FFh

/

f
+ ﬁf’ - (;)'f] . It follows that
2m(r, f) < m(’”

S(r, f), thatis

)+m(r )+

m(r, f) < m(r, )+S(F ). (29)

Combining (27), (28) and (29) we deduce
T(r,f)<2Na(r, f)+ 2N2(r,%) +S(r, f).
(30)

This is conclusion (iii) .

From (1), (6), (7) and the assumption that f
and f " share 1 CM, we see that the poles of F
coincide with the zeros of f, in fact the zeros
of f with multiplicity g =1 are all poles of F
with multiplicity at most 2. Thus, we get from

2)
T(r,F)SNZ(r,%)+S(r,f). (31)

If F#0, we deduce from (7) and (31)
thatﬁ(z (r,f) < N(r,%) <T(r,F)+0Q)

<N, (r,%)+ S(r, f). From this and (30), we
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arrive at the conclusion (iv). If F =0, by

integrating (1) once gives
f=1=c,(f -1, (32)
with ¢;(# 0) constant. From this we arrive at

(i) or (iv). Thus we complete the proof of
Theorem 1.

4. Proof of Theorem 2
If F+#0, we may obtain from (7)

No(r f)=No(r. f) < N(r,%> <

< —m(r,%) +T(r,F)+0Q1). (33)
From (1), it follows that

m(r, f) < m(r,%) +S(r, f). (34)
Combining (34), (33) ind (31) we find that
N(z(r,f)'l_m(r’f)sN(Z(r’f)+

Nz(r,%)+S(r,f).So

T(r,f)< N(r,f)+N,(r,

o
-1 f-1
obtain (32). Then it is easy to see that either

’ s 1
f:f or T(r’f):N(r77)+S(r7f)The
proof is complete.
5. Proof of Theorem 3
From (20), we know that if z_
f of multiplicity ¢ =1, then
l+1

H(Zw)ZT- (35)

Let z, be a zero of f "—1 of multiplicity
g=>1. Since fand f’share 1 IM, we must

have z, is a simple zero of f —1. By a simple

1
—)+S(r,f). If
AR

F =0, then

. By integration, we

is a pole of

calculation on the local expansion we see that

H(z,))=q. (36)
From (20), (35) and (36) it can be seen that the
poles of H can only occur at the zeros of f’.

Thus
N(r,H)<

(37

Further, if H # 2, it follows that from (35),
(36), (37) and (20) that
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— 1 1
N1>(r’f)+NZ)(r’ﬁ)_NU(’"’ﬁ)
1
SN(———) <T(r,H) +0()
< N(r,H)+m(r,H)+0(1)
< N(r, ;,)+m(r,f)+S(r,f). (38)

If z, is a simple zero of f"—1, then from (1)
we find that ' will be holomorphic at z,. If

F #0, we deduce from this, the hypothesis of
Theorem 3, (1), (2), (34) and (7) that

Nolr ) =Nl ) SN <
T(r,F)— m(r,%) +00) <N, F)+
m(r,F)— m(r,%) +0() <N, (r,%) +

— 1
N<z(r,ﬁ)—m(r,f)+5(r,f). 39)
Combining (39) with (38) yields

NG )= Na(r f) < N2<r,%> "

1

’

N(r,

)+N<3(r,ﬁ)+ S(r.f). (0
This implies that N(r,f) <N, (r,%) +

e B 1
N(r,?)+N<3(r,ﬁ)+S(r,f).

From this and the second fundamental theorem

for f’, we find that
1,)+N(r,,;)+
f f=1

1

”

T(r,f) < N(r,

N(r, f)—N(r,

1
r, f rf

1 1. = 1
+N(r,ﬁ)+N2(r,7)+N(r,f,)

- 1 1
+N<3(r,f,_l)—N(r,?)+S(r,f).

Hence it

N~

”

follows that

1 1
SN(r,—)+N,(r,—)+
) (rf) (r f)

1
VES(nf). @D
et

N 1 J—
Na(r,——)+ N(r,
olr P+ NC
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— 1 — 1
Obviously N (r,——)+ N (r,——
y Na( 7 _1) @( 7 _1)

1 1. — 1
<N(r,—)+N(@r,—). (42)
) (rf (rf

’

+N(r,

Then (41) and (42) imply N .2 (r,

=t

1
f,)+S(r,f)- (43)
On the other hand, by (39) we get

Nao(r, f)+m(r, ) < Nz(r,%)+

1 N
< N,(r,—)+2N(r,
r f r

N@(r,ﬁ)+ S, f). (44)

Combining (40), (44) and (43) we obtain
T(r,f) < 4N2(r,JIC) + 5N(r,;,) +8(r, f)-

This is the conclusion (iif) .

If F=0, then similar as the proof of
Theorem 2, we will arrive at (i) or (iii).

If H =2, then we find from (20) that
[ =1=c(f -1, (45)
where ¢ is a nonzero constant. We rewrite (45)
in the form f'—1=

c(f =1+ A)f —1—-A), where A* 2—1.
c

- 1

— 1
Hence N(T,?) = N(r,m) +

N(r,————
f-1-A
fundamental theorem for f that if A# %1,

1
f-1+A

). It follows from the second

T(r. f) sﬁu,%) NG, )+

— 1
+S(r,
N(r, A) (r, f)

1

’

< N(r,%) +N(r,—)+S(r, ), which is

(iii) . If A==1, we have A*>=1 and so

o
=2 f
By integration once we conclude (ii) .This
proves Theorem 3.

¢ =—1. Thus (45) reads
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