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Abstract

In this research, a new coefficient of conjugate gradient technique is identified
which is used for solving issues related to image restoration. This coefficient is
derived using Perry's conjugacy condition and the quadratic model. The algorithms
have been shown to exhibit global convergence and possess the descent property.
Through numerical testing, the new method demonstrated a significant
improvement. It has been shown that the innovative conjugate gradient method
works better than the conventional FR conjugate gradient technique.
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problems, Optimization, Gradient methods.

23l e gldl) Julat (8lial) gl 4zl da

Ghall ¢y ddadlaa ¢ Jeagall daals ‘Lnl:ual:'j\j PN (‘Jk’ < “"_llé."al:\‘)]\ pudd

LAl
O Glsdl) Qi sy (sMlls el (bl saaa dalie S lalas Auhall sda Adis
oals dlbiay Mals Bl e ledll el - sl zisally gl @A Jyd dadinly « geal
o) Ak o caf A€ lead saaadl dahl) Gl cgoaadl el DA ey Ll
FR Gl (38155l 2yl Ak (e deadl JS80 Joxd 5aaal) i)
1. Introduction
A two-phase approach to the fundamental problem of image processing, which is
removing noise from data [1] . Phase one consists of precisely identifying the source of
impulse noise through the application of a filter that calculates the median value. Phase two is
dedicated to eliminating the noise from the image [2].
Assume x is a real image consisting of M-by-N pixels, with XNM representing the gray level
of x. Let y be the noisy observed image of x, which has been affected by salt-and-pepper
noise, and y the image created in the first phase using the noisy image’s adaptive median
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filter approach y. The noise pixels can be restored by reducing the functional described
below:

fa(u) = Z(i,j)eN [lui,j - yi,j| + g(Sll’] + Slz’j)] .......... (1)

where  u;; = [ui,j] is a column vector of length |N|, B is parameter of the

(L))EN

regularization and : §; =2 Z 0,00, =V, Sfj = Z(m’n)epi‘jnN ®a(U;j — Ymn) the Noise
(m,n)eP,A,mN”

Candidate Indices set N€ is used to calculate a noisy pixel's maximum S,,,, and minimum

Smin- A= {1,2,3, ...... M} X {1,2,3, ...... N} and Vi,j = (Vi,j N NC) V) (Vi,j ] N) represent

(i,j) neighbourhood, while ¢, = Va + x2,a > 0 is expresses of example to an edge
preserving potential function using the parameter a. Similar optimization difficulties arise
when F, (w) is of type (1), when S}; + SZ; smooth but |u; ; — y; ;|non-smooth set to zero,[3]
reduces the function to a smooth half-quadratic approximation of F, (u):

fa(U) = Z(i,j)EN[(Z X Sg] + SLZJ)] .......... (2)
The conjugated gradients method was used to minimize (2), resulting in:Minf,(u) , u €
R™ f,(u):R™ = R is the smooth function. It is essential to keep in mind that conjugate
gradient algorithms adjust their sequence of points by using the recursive formula that is
shown in the following sentence:

Up+1 = Ug + akdk .......... (3)
where search direction is denoted by dj, and the typical step length obtained from an
adequate exact line search is denoted by ay, as in:

_ 9k
ay = —m .......... (4)
see,[4] . In order to meet the conditions of the Wolfe line search, which are as follows, the
step length is often chosen:
fle + apdy) < fx) + Saggld, (5a)
drg(e + apdy) 2 0dige (5b)
where 0 < § < ¢ < 1. For more details see [5]. Exploring the convergence behaviour of the
aforementioned equations when used with certain line search settings has taken a large
amount of time and effort from numerous writers over the course of several years. The
conjugate gradient algorithms provide the next set of search axes:
dk+1 = —Jk+1 + ﬁksk .......... (6)
where [ is a scalar. A study of the original presentation of the FR formula that the Fletcher-
Reeves (FR) method [6] made, which may be represented as the following formula:

FR _ Ngr+1ll? 7
k lgull? ™)

The gradient method is used to find the closest local minimum of a function by looking at
the function's gradient. This finding served as the impetus for research into conjugate
gradient techniques for solving iterative issues. Hence, large-scale iterative challenges were
efficiently managed [7]. The Fletcher-Reeves (FR) approach converges [1] when certain
assumptions about convex functions are taken into consideration.

The conjugate gradient approach has known more sophisticated modifications, although
this is merely a prototype, [6], [7], [8], [9]. There have been several attempts to create
conjugate gradient algorithms with the crucial adequate descent property. CG methods
provided by Wu and Chen [10] include the following examples:
we _ Vier9kt1 | 2 k—Fre1) 9k Sk (8)
k diyk diyk
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which, in developing its concept, was based on a Perry's conjugacy condition, is
characterized as follows:
dis1Ve = —SkGk+1 . 9

See, [11]. These strategies are both successful in theory and efficient in practice when it
comes to numbers. The search direction calculation is where the conjugate gradient approach
and Chen and Wu method diverge the most from one another. Please refer to [12], [13], [14],
[15] for further references about the optimization approaches.

To begin, we suggest a whole new category of equations by basing them on the idea of the
quadratic function. Next, we consider these formulae, study their theoretical properties, and
then report on both their theoretical and numerical performance.

2. Our new formulas
We derive some efficient formula for gradient method. Let us begin with the Taylor
expansion:

1
f) = f@i1) + Grerr (U — Wern) + S~ Uer) Q) (U — Uer1) s (10)
By imposing u = uy and find the derivative of (10) as:
Ik+1 = Gk + Q(xk)sk .......... (11)
Using (11) in (10), we obtain:
skQuidsk = 2/3sgyk +2/3(fu = fusr) e (12)
It follows from () and (12) that:
T _2 A _ T
S Q(xk)SK == = WrSkYk e (13)

3 (sEyk+2/3(fr+1—fk))
where:
1_2 (9ksK)*
=k 14
©k = 3 Ty Tyt 2/3 ksa—10) (14)
By using (9) and (14), we have:

dir1Ve = —OkSEYe = Sk e (15)
Putting dj,,1 = —9gr+1 + BrSkin (15) suggest that:
BeSkVk = Giex1Vk — OkSk¥k — Sk e (16)
As a result
T T T
_ Ik+1YEk SkYk _ Sk9k
Br = Do T O T e (17)
Utilized exact line search in (12), then (14) reduces to:
2 _2 (gksi)*
=—cke 18
Yk = S TSt ot 2/3Fr—T 1) (18)
and
T 2
w3 =2 Gesl_ (19)

T3 stVi(argy gx+2/3(Fkar1—11)
This formula is referred to as the BP. Below is the BP conjugate gradient algorithm.

3. Convergence analysis

Assumptions are needed to demonstrate the new algorithm's global convergence:

1. The level set 2 = {x € R™/f(x) < f(x;)} is bounded.

2. The Lipschitz gradient g is continuous, that is there exists a positive constant L > 0 such
that:

lg() —gOI <L |lk—gl,Y,,c€R ... (20)
It is called strongly monotone if:
) —gN"(k—¢) = ullk —¢ll*ve,se R (21)

See,[16], [17].

278



Hassan and Taha Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 276-285

3.1 Theorem

If dy,, is generate by via a new technique, then dr,;gx+1 < —¢|lgr+11? holds.
Proof:

As dy = —go, we get gldy = —|lgoll? < 0. Let g-d, <0 for all k € n. By taking the
inner product (6) by gr. ., , we get:

Ghs1Y SkVk _ kg
dis1 s = ~Giaall® + [ T kT Szy’}j SKGke1 e (22)
From (22), (11) and (13), it obtains
T T
Qo = —llgenl? + [T - sgenl g, 23)
SkVk SkVk
Applying Lipschitz condition, lead to the:
YiGk+r SLSp g (24)
But it holds from (24) and (25), implies that:
T T
d£+1gk+1 < _”gk+1”2 + [L Sl;g;: - Sl;g;;:l] Sggk+1 ---------- (25)

So that we obtain:

T 2
di+19k41 < —lGraall? + [L — 1] (S"j{%:) .......... (26)
Clearly, it gets:
diy19k+1 < —lgesal><0 L (27)

This completes the proof.

In [1], a general result was established for any conjugate gradient method that adheres to
the Wolfe conditions.
3.1 Lemma

Let assumptions hold. Any iteration method, where search direction is a descent and «ay, is

computed using the Wolfe conditions. If:
1

D0 E=® e (28)

Then:
]glIzto infllgell =0 (29)

3.2 Theorem
Let be generated by new algorithm and that assumptions holds If:

Igl_tzlo infllgell =0 L (30)
Proof:
By the definition the direction of line search by (9), we have:
ldk+1ll = “_gk+1 + ﬁEPlsk” ---------- (31)
Substituting (17) in (6), we obtain:
T
isrll = [|=girs + Cp2E -0 e8] L (32)
From (11), (15) and (32), we obtained:
T
ldisall = ||—gk+1 +g"“y"s — gkt g ” .......... (33)

k T
y dp Yk
By using (20) and (21), we get:

Ndioill <l gusall + g lILIsill? N I gics 1 llllsicll?
k+1ll = llYk+1
' ' ullsell? TAE

<1+ ) lgenal < [E gl (34)

This inequality implies:
1

Dk=1 TRE = (u+L+1) Ykspl=00 (35)
It follows from (33) that ;Eim infllgill = 0. Similarly, idea we can test BP2 and BP3 method.
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4. Numerical Results

In this part, we present numerical results demonstrating the effectiveness of new in
eliminating salt-and-pepper impulse noise. Our experiments compare the new method with
the FR technique. We follow a specific approach. The MATLAB r2017a software includes
all the necessary code for our study. Then a computer runs them. The halting criteria for both
techniques are as follows:

I ol < 1074(1 + |f (w)]) andW <10™* (36)

Lena, House, the Cameraman, and Elaine are included in the test photographs, in addition
to the test text. We qualitatively evaluate the restoration performance by using the PSNR
(peak signal to noise ratio) in a way that is comparable to [3], [18], [19], [20]. The restoration

performance is defined as follows:
2552

PSNR =10log;g—n—— (37)

Nyt . —y* )2
MNZL,](ui,j ui’j)

the values of uj; and u; ;respectively, indicate the pixel values of the original picture as
well as the image that has been restored to its previous state. In this study, we show the
number of iterations (NI) and evaluations of functions (NF) needed to finish the denoising
process, along with the PSNR of the resulting image. There are several iterative methods
explained in [21-25]. The FR technique is slow compared to the new method, as indicated in
Table 1. The PSNR values that are produced via the use of either the new approach or the FR
method are also quite similar to one another.

Table 1: Numerical results of FR, BP1, BP2 and BP3 algorithms.

FR-Method BP1-Method BP2-Method BP3-Method
Noise
Image | level
r (%) PSNR PSNR PSNR PSNR
NI NF (dB) NI N.F (dB) NI N.F (dB) NI N.F (dB)

50 82 153 30.5529 68 71 304161 75 78 304322 73 76 30.4026
Le 70 81 155 274824 70 73 274228 72 75 27.5111 65 68 27.4234
90 108 211 228583 69 72 22.7644 70 73  23.038 66 69 22.7646

50 52 53 30.6845 36 40 347662 47 49 349512 50 51 34.7377
Ho 70 63 116 31254 56 59 31.122 53 55 31.0223 51 52 31.1241
90 111 214 25287 71 74 250109 73 76 249974 68 71 25.0125

50 35 36 339129 34 38 338871 34 38 338811 36 38 33.8854

El 70 380 39 31864 38 41 31811 40 43 318175 41 43 31.8077
90 65 114 282019 52 55 28.1588 55 57 282171 56 58 28.1539
512 50 59 87 355359 39 46 354177 44 47 35400 42 47 35.3973

70 78 142 30.6259 49 58 30.6629 50 52 30.6118 50 52 30.6516
90 121 236 243962 60 68 249243 71 73 247334 67 71 24.9046
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Figure 1: The results of the methods FR, BP1, BP2 and BP3 for 256 * 256 for 50% noise.

281

[
newB WBE

2

100 150
P28

)

ER R REEES
BB

0O WKW K E W
BMe



Hassan and Taha Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 276-285

15
3tz kvt

oy
-
' \g
L4
B
¢
y “ A
WO W B W B 4 M0t W B W B L& w0 F N O
B8 LT NaTB

3

K EEEEEE] Mo W B W B A0 s

WS R B NGIBEB

Figure 2: The results of the methods FR, BP1, BP2 and BP3 for 256 * 256 for 70% noise.
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Figure 3: The results of the methods FR, BP1, BP2 and BP3 for 256 * 256 for 90% noise.
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5. Conclusions

Based on the Taylor expansion, new ultra-formulas for conjugate gradient impulse noise
reduction from images. The search direction always satisfies the descent condition
independent of choices of conjugate parameter and line searches. Under some mild
conditions, the global convergence for the BP1, BP2, and BP3 are obtained. By embedding
the classical FR conjugate parameters in the BP1, BP2, and BP3, respectively, the numerical
comparison results associated with the resulting methods show that the BP1, BP2, and BP3
are very promising. Moreover, the numerical results illustrate the encouragement and
efficiency.
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