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Abstract  

     In this research, a new coefficient of conjugate gradient technique is identified 

which is used for solving issues related to image restoration. This coefficient is 

derived using Perry's conjugacy condition and the quadratic model. The algorithms 

have been shown to exhibit global convergence and possess the descent property. 

Through numerical testing, the new method demonstrated a significant 

improvement. It has been shown that the innovative conjugate gradient method 

works better than the conventional FR conjugate gradient technique. 
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 صيغ فائقة للتدرج المترافق لتقليل التشويش من الصور
 

 باسم عباس حسن*, محمد وعد الله طه 
 قسم الرياضيات، كلية علوم الحاسوب والرياضيات، جامعة الموصل، محافظة نينوى، العراق  

 

  الخلاصة 
التدرج المترافق، والذي يستخدم لتقليل التشويش من        تستمد هذه الدراسة معاملات مترافقة جديدة لطرائق 

خاصية   وتمتلك  شاملًا  تقاربًا  الخوارزميات  تُظهر  التربيعي.  والنموذج  لبيري  الترافق  شرط  باستخدام  الصور، 
التدرج   طريقة  أن  ثبت  لقد  كبيرا.  تحسنا  الجديدة  الطريقة  أظهرت  العددي،  الاختبار  خلال  ومن  الانحدار. 

 .FRالمترافق الجديدة تعمل بشكل أفضل من طريقة التدرج المترافق التقليدية 

1. Introduction 

     A two-phase approach to the fundamental problem of image processing, which is 

removing noise from data [1] . Phase one consists of precisely identifying the source of 

impulse noise through the application of a filter that calculates the median value. Phase two is 

dedicated to eliminating the noise from the image [2]. 

Assume 𝑥 is a real image consisting of M-by-N pixels, with XNM representing the gray level 

of 𝑥. Let 𝑦 be the noisy observed image of 𝑥, which has been affected by salt-and-pepper 

noise, and 𝑦̅ the image created in the first phase using the noisy image’s adaptive median 
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filter approach 𝑦. The noise pixels can be restored by reducing the functional described 

below: 

𝑓𝛼(𝑢) = ∑ [|𝑢𝑖,𝑗 − 𝑦𝑖,𝑗| +
𝛽

2
(𝑆𝑖,𝑗

1 + 𝑆𝑖,𝑗
2 )](𝑖,𝑗)∈𝛮                                    . . . . . . . . . . (1) 

where  𝑢𝑖,𝑗 = [𝑢𝑖,𝑗]
(𝑖,𝑗)∈𝛮

 is a column vector of length  |𝛮|, 𝛽 is parameter of the 

regularization and : ),(2

,),(

,,

1

, 


−=
c

jinm

nmjiji yuS  𝑆𝑖,𝑗
2 = ∑ 𝜙𝛼(𝑢𝑖,𝑗 − 𝑦𝑚,𝑛(𝑚,𝑛)∈𝛲𝑖,𝑗∩𝛮 ) the Noise 

Candidate Indices set 𝛮𝑐 is used to calculate a noisy pixel's maximum 𝑠𝑚𝑎𝑥 and minimum 

𝑠𝑚𝑖𝑛. 𝐴 = {1,2,3, . . . . . . 𝑀} × {1,2,3, . . . . . . 𝑁} and 𝑉𝑖,𝑗 = (𝑉𝑖,𝑗 ∩ 𝛮𝑐) ∪ (𝑉𝑖,𝑗 ∩ 𝛮) represent 

(𝑖, 𝑗) neighbourhood, while 𝜙𝛼 = √𝛼 + 𝑥2, 𝛼 > 0 is expresses of example to an edge 

preserving potential function using the parameter 𝛼. Similar optimization difficulties arise 

when 𝐹𝛼(𝑢) is of type (1), when 𝑆𝑖,𝑗
1 + 𝑆𝑖,𝑗

2  smooth but |𝑢𝑖,𝑗 − 𝑦𝑖,𝑗|non-smooth set to zero,[3] 

reduces the function to a smooth half-quadratic approximation of 𝐹𝛼(𝑢): 

𝑓𝛼(𝑢) = ∑ [(2 × 𝑆𝑖,𝑗
1 + 𝑆𝑖,𝑗

2 )](𝑖,𝑗)∈𝛮                                                    . . . . . . . . . . (2) 

 The conjugated gradients method was used to minimize (2), resulting in:𝑀𝑖𝑛𝑓𝛼(𝑢)  ,  u ∈
𝑅𝑛,𝑓𝛼(𝑢): 𝑅𝑛 → 𝑅 is the smooth function. It is essential to keep in mind that conjugate 

gradient algorithms adjust their sequence of points by using the recursive formula that is 

shown in the following sentence: 

𝑢𝑘+1 = 𝑢𝑘 + 𝛼𝑘𝑑𝑘                                                               . . . . . . . . . . (3) 

where search direction is denoted by 𝑑𝑘, and the typical step length obtained from an 

adequate exact line search is denoted by 𝛼𝑘, as in: 

𝛼𝑘 = −
𝑔𝑘

𝑇𝑑𝑘

𝑑𝑘
𝑇𝑄𝑑𝑘

                                                                . . . . . . . . . . (4) 

see,[4] . In order to meet the conditions of the Wolfe line search, which are as follows, the 

step length is often chosen: 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘                                          . . . . . . . . . . (5𝑎) 

 𝑑𝑘
𝑇𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≥ 𝜎 𝑑𝑘

𝑇𝑔𝑘                                                      . . . . . . . . . . (5𝑏) 

where  0 < 𝛿 < 𝜎 < 1. For more details see [5]. Exploring the convergence behaviour of the 

aforementioned equations when used with certain line search settings has taken a large 

amount of time and effort from numerous writers over the course of several years. The 

conjugate gradient algorithms provide the next set of search axes: 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑠𝑘                                                              . . . . . . . . . . (6) 

where 𝛽𝑘 is a scalar. A study of the original presentation of the FR formula that the Fletcher-

Reeves (FR) method [6] made, which may be represented as the following formula: 

 𝛽𝑘
𝐹𝑅 =

‖𝑔𝑘+1‖2

‖𝑔𝑘‖2                                                               . . . . . . . . . . (7)     

       

     The gradient method is used to find the closest local minimum of a function by looking at 

the function's gradient. This finding served as the impetus for research into conjugate 

gradient techniques for solving iterative issues. Hence, large-scale iterative challenges were 

efficiently managed [7]. The Fletcher-Reeves (FR) approach converges [1] when certain 

assumptions about convex functions are taken into consideration. 

 

     The conjugate gradient approach has known more sophisticated modifications, although 

this is merely a prototype, [6], [7], [8], [9]. There have been several attempts to create 

conjugate gradient algorithms with the crucial adequate descent property. CG methods 

provided by Wu and Chen [10] include the following examples: 

𝛽𝑘
𝑊𝐶 =

𝑦𝑘+1
𝑇 𝑔𝑘+1

𝑑𝑘
𝑇𝑦𝑘

+
2(𝑓𝑘−𝑓𝑘+1)+𝑔𝑘

𝑇𝑠𝑘

𝑑𝑘
𝑇𝑦𝑘

                                         . . . . . . . . . . (8) 
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which, in developing its concept, was based on a Perry's conjugacy condition, is 

characterized as follows: 

𝑑𝑘+1
𝑇 𝑦𝑘 = −𝑠𝑘

𝑇𝑔𝑘+1                                                          . . . . . . . . . . (9) 

    See, [11]. These strategies are both successful in theory and efficient in practice when it 

comes to numbers. The search direction calculation is where the conjugate gradient approach 

and Chen and Wu method diverge the most from one another. Please refer to [12], [13], [14], 

[15] for further references about the optimization approaches. 

    To begin, we suggest a whole new category of equations by basing them on the idea of the 

quadratic function. Next, we consider these formulae, study their theoretical properties, and 

then report on both their theoretical and numerical performance. 

 

2. Our new formulas 

    We derive some efficient formula for gradient method. Let us begin with the Taylor 

expansion: 

𝑓(𝑢) = 𝑓(𝑢𝑘+1) + 𝑔𝑘+1
𝑇 (𝑢 − 𝑢𝑘+1) +

1

2
(𝑢 − 𝑢𝑘+1)𝑇𝑄(𝑢𝑘)(𝑢 − 𝑢𝑘+1)             . . . . . . . . . . (10) 

By imposing 𝑢 = 𝑢𝑘 and find the derivative of (10) as: 

𝑔𝑘+1 = 𝑔𝑘 + 𝑄(𝑥𝑘)𝑠𝑘                                                . . . . . . . . . . (11) 

Using (11) in (10), we obtain: 

𝑠𝑘
𝑇𝑄(𝑢𝑘)𝑠𝑘 = 2/3𝑠𝑘

𝑇𝑦𝑘 + 2/3(𝑓𝑘 − 𝑓𝑘+1)                                    . . . . . . . . . . (12) 

It follows from (𝛼𝑘) and (12) that: 

𝑠𝑘
𝑇𝑄(𝑥𝑘)𝑠𝑘 =

2

3

(𝑔𝑘
𝑇𝑠𝑘)2

(𝑠𝑘
𝑇𝑦𝑘+2/3(𝑓𝑘+1−𝑓𝑘))

= 𝜔𝑘𝑠𝑘
𝑇𝑦𝑘                                . . . . . . . . . . (13) 

where: 

𝜔𝑘
1 =

2

3

(𝑔𝑘
𝑇𝑠𝑘)2

𝑠𝑘
𝑇𝑦𝑘(𝑠𝑘

𝑇𝑦𝑘+2/3(𝑓𝑘+1−𝑓𝑘))
                                         . . . . . . . . . . (14) 

By using (9) and (14), we have:  

𝑑𝑘+1
𝑇 𝑦𝑘 = −𝜔𝑘𝑠𝑘

𝑇𝑦𝑘 − 𝑠𝑘
𝑇𝑔𝑘                                                  . . . . . . . . . . (15) 

Putting 𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑠𝑘in (15) suggest that: 

𝛽𝑘𝑠𝑘
𝑇𝑦𝑘 = 𝑔𝑘+1

𝑇 𝑦𝑘 − 𝜔𝑘𝑠𝑘
𝑇𝑦𝑘 − 𝑠𝑘

𝑇𝑔𝑘                                            . . . . . . . . . . (16) 

As a result 

𝛽𝑘 =
𝑔𝑘+1

𝑇 𝑦𝑘

𝑠𝑘
𝑇𝑦𝑘

− 𝜔𝑘
𝑠𝑘

𝑇𝑦𝑘

𝑠𝑘
𝑇𝑦𝑘

−
𝑠𝑘

𝑇𝑔𝑘

𝑠𝑘
𝑇𝑦𝑘

                                               . . . . . . . . . . (17) 

Utilized exact line search in (12), then (14) reduces to: 

𝜔𝑘
2 =

2

3

(𝑔𝑘
𝑇𝑠𝑘)2

𝑠𝑘
𝑇𝑦𝑘(−𝑠𝑘

𝑇𝑔𝑘+2/3(𝑓𝑘+1−𝑓𝑘))
                                            . . . . . . . . . . (18) 

and 

𝜔𝑘
3 =

2

3

(𝑔𝑘
𝑇𝑠𝑘)2

𝑠𝑘
𝑇𝑦𝑘(𝛼𝑘𝑔𝑘

𝑇𝑔𝑘+2/3(𝑓𝑘+1−𝑓𝑘))
                                            . . . . . . . . . . (19) 

This formula is referred to as the BP. Below is the BP conjugate gradient algorithm. 

 

3. Convergence analysis 

Assumptions are needed to demonstrate the new algorithm's global convergence: 

1. The level set 𝛺 = {𝑥 ∈ 𝑅𝑛/𝑓(𝑥) ≤ 𝑓(𝑥1)} is bounded. 

2. The Lipschitz gradient g is continuous, that is there exists a positive constant L > 0 such 

that: 
‖𝑔(𝜅) − 𝑔(𝜍)‖ ≤ 𝐿 ‖𝜅 − 𝜍‖, ∀𝜅, 𝜍 ∈ 𝑅                                      . . . . . . . . . . (20) 

It is called strongly monotone if: 

(𝑔(𝜅) − 𝑔(𝜍))𝑇(𝜅 − 𝜍) ≥ 𝜇‖𝜅 − 𝜍‖2∀𝜅, 𝜍 ∈ 𝑅                                . . . . . . . . . . (21) 

See,[16], [17]. 
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3.1 Theorem 

   If 𝑑𝑘+1 is generate by via a new technique, then 𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −𝑐‖𝑔𝑘+1‖2 holds.  

Proof: 

    As 𝑑0 = −𝑔0, we get 𝑔0
𝑇𝑑0 = −‖𝑔0‖2 ≤ 0. Let 𝑔𝑘

𝑇𝑑𝑘 < 0 for all 𝑘 ∈ 𝑛. By taking the 

inner product (6) by 𝑔𝑘+1
𝑇 , , we get: 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = −‖𝑔𝑘+1‖2 + [

𝑔𝑘+1
𝑇 𝑦𝑘

𝑠𝑘
𝑇𝑦𝑘

− 𝜔𝑘
𝑠𝑘

𝑇𝑦𝑘

𝑠𝑘
𝑇𝑦𝑘

−
𝑠𝑘

𝑇𝑔𝑘

𝑠𝑘
𝑇𝑦𝑘

] 𝑠𝑘
𝑇𝑔𝑘+1                          . . . . . . . . . . (22) 

From (22) , (11) and (13), it obtains  

𝑑𝑘+1
𝑇 𝑔𝑘+1 = −‖𝑔𝑘+1‖2 + [

𝑔𝑘+1
𝑇 𝑦𝑘

𝑠𝑘
𝑇𝑦𝑘

−
𝑠𝑘

𝑇𝑔𝑘+1

𝑠𝑘
𝑇𝑦𝑘

] 𝑠𝑘
𝑇𝑔𝑘+1                            . . . . . . . . . . (23) 

Applying Lipschitz condition, lead to the:   

 𝑦𝑘
𝑇𝑔𝑘+1 ≤ 𝐿𝑠𝑘

𝑇𝑔𝑘+1                                                  . . . . . . . . . . (24) 

But it holds from (24) and (25), implies that: 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −‖𝑔𝑘+1‖2 + [𝐿

𝑠𝑘
𝑇𝑔𝑘+1

𝑠𝑘
𝑇𝑦𝑘

−
𝑠𝑘

𝑇𝑔𝑘+1

𝑠𝑘
𝑇𝑦𝑘

] 𝑠𝑘
𝑇𝑔𝑘+1                            . . . . . . . . . . (25) 

So that we obtain: 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −‖𝑔𝑘+1‖2 + [𝐿 − 1]

(𝑠𝑘
𝑇𝑔𝑘+1)2

𝑠𝑘
𝑇𝑦𝑘

                                       . . . . . . . . . . (26) 

Clearly, it gets: 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −‖𝑔𝑘+1‖2 < 0                                              . . . . . . . . . . (27) 

This completes the proof.      

    In [1], a general result was established for any conjugate gradient method that adheres to 

the Wolfe conditions. 

3.1 Lemma  

    Let assumptions hold. Any iteration method, where search direction is a descent and 𝛼𝑘 is 

computed using the Wolfe conditions. If: 

∑
1

‖𝑑𝑘+1‖2 = ∞𝑘≥0                                                   . . . . . . . . . . (28) 

Then: 

 𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0                                               . . . . . . . . . . (29) 

3.2 Theorem 

    Let be generated by new algorithm and that assumptions holds If: 

 𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0                                                  . . . . . . . . . . (30) 

Proof: 

    By the definition the direction of line search by (9), we have: 

       ‖𝑑𝑘+1‖ = ‖−𝑔𝑘+1 + 𝛽𝑘
BP1𝑠𝑘‖                                               . . . . . . . . . . (31) 

Substituting (17) in (6), we obtain: 

  ‖𝑑𝑘+1‖  = ‖−𝑔𝑘+1 + (
𝑔𝑘+1

𝑇 𝑦𝑘

𝑠𝑘
𝑇𝑦𝑘

− 𝜔𝑘
𝑠𝑘

𝑇𝑦𝑘

𝑠𝑘
𝑇𝑦𝑘

−
𝑠𝑘

𝑇𝑔𝑘

𝑠𝑘
𝑇𝑦𝑘

)𝑠𝑘‖                                    . . . . . . . . . . (32) 

From (11), (15) and (32), we obtained: 

  ‖𝑑𝑘+1‖  = ‖−𝑔𝑘+1 +
𝑔𝑘+1

𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

𝑠𝑘 −
𝑠𝑘

𝑇𝑔𝑘+1

𝑑𝑘
𝑇𝑦𝑘

𝑠𝑘‖                                    . . . . . . . . . . (33) 

By using (20) and (21), we get: 

  ‖𝑑𝑘+1‖  ≤ ‖𝑔𝑘+1‖ +
‖𝑔𝑘+1‖𝐿‖𝑠𝑘‖2

𝜇‖𝑠𝑘‖2
+

‖𝑔𝑘+1‖‖𝑠𝑘‖2

𝜇‖𝑠𝑘‖2
 

≤ (1 +
𝐿

𝜇
+

1

𝜇
) ‖𝑔𝑘+1‖ ≤ [

𝜇+𝐿+1

𝜇
] ‖𝑔𝑘+1‖                                 . . . . . . . . . . (34) 

This inequality implies: 

∑
1

‖𝑑𝑘‖2𝑘≥1 ≥ (
𝜇

𝜇+𝐿+1
)

1

𝛤
∑ 1𝑘≥1 = ∞                                          . . . . . . . . . . (35) 

It follows from (33) that 𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0. Similarly, idea we can test BP2 and BP3 method. 
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4. Numerical Results 

     In this part, we present numerical results demonstrating the effectiveness of new in 

eliminating salt-and-pepper impulse noise. Our experiments compare the new method with 

the FR technique. We follow a specific approach.   The MATLAB r2017a software includes 

all the necessary code for our study. Then a computer runs them. The halting criteria for both 

techniques are as follows: 

‖𝑓(𝑢𝑘)‖ ≤ 10−4(1 + |𝑓(𝑢𝑘)|) and 
|𝑓(𝑢𝑘)−𝑓(𝑢𝑘−1)|

|𝑓(𝑢𝑘)|
≤ 10−4                            . . . . . . . . . . (36) 

    Lena, House, the Cameraman, and Elaine are included in the test photographs, in addition 

to the test text. We qualitatively evaluate the restoration performance by using the PSNR 

(peak signal to noise ratio) in a way that is comparable to [3], [18], [19], [20]. The restoration 

performance is defined as follows: 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
2552

1

𝑀𝑁
∑ (𝑢𝑖,𝑗

𝑟 −𝑢𝑖,𝑗
∗ )2

𝑖,𝑗

                                        . . . . . . . . . . (37) 

 

     the values of 𝑢𝑖,𝑗
𝑟  and 𝑢𝑖,𝑗

∗ respectively, indicate the pixel values of the original picture as 

well as the image that has been restored to its previous state. In this study, we show the 

number of iterations (NI) and evaluations of functions (NF) needed to finish the denoising 

process, along with the PSNR of the resulting image. There are several iterative methods 

explained in [21-25].  The FR technique is slow compared to the new method, as indicated in 

Table 1. The PSNR values that are produced via the use of either the new approach or the FR 

method are also quite similar to one another.  

 

Table 1: Numerical results of  FR,  BP1,  BP2 and BP3 algorithms. 

Image 

Noise 

level 

r (%) 

FR-Method BP1-Method BP2-Method BP3-Method 

N.I N.F 
PSNR 

(dB) 
N.I N.F 

PSNR 

(dB) 
N.I N.F 

PSNR 

(dB) 
N.I N.F 

PSNR 

(dB) 

Le 

50 

70 

90 

82 

81 

108 

153 

155 

211 

30.5529 

27.4824 

22.8583 

68 

70 

69 

71 

73 

72 

30.4161 

27.4228 

22.7644 

75 

72 

70 

78 

75 

73 

30.4322 

27.5111 

23.038 

73 

65 

66 

76 

68 

69 

30.4026 

27.4234 

22.7646 

Ho 

50 

70 

90 

52 

63 

111 

53 

116 

214 

30.6845 

31.2564 

25.287 

36 

56 

71 

40 

59 

74 

34.7662 

31.122 

25.0109 

47 

53 

73 

49 

55 

76 

34.9512 

31.0223 

24.9974 

50 

51 

68 

51 

52 

71 

34.7377 

31.1241 

25.0125 

El 

 

50 

70 

90 

35 

38 

65 

36 

39 

114 

33.9129 

31.864 

28.2019 

34 

38 

52 

38 

41 

55 

33.8871 

31.811 

28.1588 

34 

40 

55 

38 

43 

57 

33.8811 

31.8175 

28.2171 

36 

41 

56 

38 

43 

58 

33.8854 

31.8077 

28.1539 

c512 

 

50 

70 

90 

59 

78 

121 

87 

142 

236 

35.5359 

30.6259 

24.3962 

39 

49 

60 

46 

58 

68 

35.4177 

30.6629 

24.9243 

44 

50 

71 

47 

52 

73 

35.400 

30.6118 

24.7334 

42 

50 

67 

47 

52 

71 

35.3973 

30.6516 

24.9046 
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Figure 1: The results of the methods FR, BP1, BP2 and BP3 for 256 * 256 for 50% noise. 
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Figure 2: The results of the methods FR, BP1, BP2 and BP3 for 256 * 256 for 70% noise. 

 

 

 

 

 

 

 

 

 

 

 

Salt-and-pepper noise

r= 70%

50 100 150 200 250

50

100

150

200

250

FR

27.4824 dB

50 100 150 200 250

50

100

150

200

250

BP1

27.4228 dB

50 100 150 200 250

50

100

150

200

250

BP2

27.5111 dB

50 100 150 200 250

50

100

150

200

250

BP3

27.4234 dB

50 100 150 200 250

50

100

150

200

250

Salt-and-pepper noise

r= 70%

50 100 150 200 250

50

100

150

200

250

FR

31.2564 dB

50 100 150 200 250

50

100

150

200

250

BP1

31.122 dB

50 100 150 200 250

50

100

150

200

250

BP2

31.0223 dB

50 100 150 200 250

50

100

150

200

250

BP3

31.1241 dB

50 100 150 200 250

50

100

150

200

250

Salt-and-pepper noise

r= 70%

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

FR

28.2019 dB

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

BP1

31.811 dB

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

BP2

31.8175 dB

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

BP3

31.8077 dB

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Salt-and-pepper noise

r= 70%

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

FR

30.6259 dB

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

BP1

30.6629 dB

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

BP2

30.6118 dB

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

BP3

30.6516 dB

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500



Hassan and Taha                                       Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 276-285 

 

283 

     

     

     

     
Figure 3: The results of the methods FR, BP1, BP2 and BP3 for 256 * 256 for 90% noise. 

 

5. Conclusions 

     Based on the Taylor expansion, new ultra-formulas for conjugate gradient impulse noise 

reduction from images. The search direction always satisfies the descent condition 

independent of choices of conjugate parameter and line searches. Under some mild 

conditions, the global convergence for the BP1, BP2, and BP3 are obtained. By embedding 

the classical FR conjugate parameters in the BP1, BP2, and BP3, respectively, the numerical 

comparison results associated with the resulting methods show that the BP1, BP2, and BP3 

are very promising. Moreover, the numerical results illustrate the encouragement and 

efficiency. 
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