

ISSN: 0067-2904

A Generalized Subclass of Starlike Functions Involving Jackson's (p, q) Derivative

Abdeljabbar Talal Yousef*, Zabidin Salleh
School of Informatics and Applied Mathematics, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.

Received: 9/6/ 2019
Accepted: 21/ 9/2019

Abstract

In this paper, we generalize many earlier differential operators which were studied by other researchers using our differential operator. We also obtain a new subclass of starlike functions to utilize some interesting properties.

Keywords: Differential operator, starlike functions, coefficient inequality, inclusion properties, convexity.

1. Introduction

Let A represents the class of all analytic functions φ defined in the open unit disk $\Theta=\{z \in \mathrm{C}:|z|<1\}$, and normalized by the conditions $\varphi(0)=0$ and $\varphi^{\prime}(0)=1$. Therefore, each $\varphi \in A$ has a Taylor-Maclaurin series extension of the form:

$$
\begin{equation*}
\varphi(z)=z+\sum_{h=2}^{\infty} a_{h} z^{h},(z \in \Theta) \tag{1.1}
\end{equation*}
$$

Furthermore, let S represents the class of all functions $\varphi \in A$ which are univalent in Θ. The quantum calculus (henceforth q-calculus) is considered as a crucial tool that is used to explore the subclasses of analytic functions. q - calculus operators were used by Kanas and Raducanu to investigate some significant classes of functions which are analytic in Θ [1]. The importance of the fractional calculus applications is obvious in many topics of mathematics, such as in the fields of $q-$ transform analysis, ordinary fractional calculus, and operator theory. Recently, researchers paid more attention to the area of q - calculus and several new operators have been proposed. The application of q - calculus was first founded by Jackson who developed the q - integral and q - derivative in a systematic way [2]. After that, through several studies on quantum groups, the geometrical interpretation of q - analysis was identified. Unlike the typical calculus, this calculus has no limits notion. A good detailed work on the calculus and it's applications in operator theory is found in aprevious report [3], while more information were provided in other articles [4,5].
The main structure of (p, q) - calculus was established on only one parameter, but since then it was generalized to the post-quantum calculus (represented by $(p, q)-$ calculus). In this section, we assume that we can obtain calculus by substituting $p=1$ in calculus.
To be fulfilled, some brief notations and definitions of $(p, q)-$ calculus are provided below: For Jackson's derivative where $0<p<q \leq 1$ and $\varphi \in A$, the following is provided [2]:

[^0]\[

D_{p, q} \varphi(z)=\left\{$$
\begin{array}{ccc}
\frac{\varphi(p z)-\varphi(q z)}{(p-q) z} & \text { for } & z \neq 0 . \tag{1.2}\\
\varphi^{\prime}(0) & \text { for } & z=0 .
\end{array}
$$\right.
\]

From (1.2), we have

$$
\begin{equation*}
D_{p, q} \varphi(z)=1+\sum_{h=2}^{\infty}[h]_{p, q} a_{h} z^{h-1} \tag{1.3}
\end{equation*}
$$

Where

$$
\begin{equation*}
[h]_{p, q}=p^{h-1}+p^{h-2} q+p^{h-3} q^{2}+\ldots+p q^{h-2}+q^{h-1}=\frac{p^{h}-q^{h}}{p-q} \tag{1.4}
\end{equation*}
$$

is named (p, q) - bracket. It's notable that when $p=1$, the bracket is an obvious generalization of the q - number, that is
$[h]_{1, q}=\frac{1-q^{h}}{1-q}=[h]_{q}, q \neq 1$

For $p=1$, one can notice that the Jackson's (p, q) - derivative will be reduced to the q derivative, as previously described [2]. It was clearly proved that for a function $\gamma(z)=z^{h}$, the $D_{p, q} \gamma(z)=D_{p, q} z^{h}=\frac{p^{h}-q^{h}}{p-q} z^{h-1}=[h]_{p, q} z^{h-1}$ is obtained. For $\varphi \in A$, the Sălăgean $(p, q)-$ differential operator is defined as follows [6]:

$$
\begin{align*}
\Gamma_{p, q}^{0} \varphi(z) & =\varphi(z), \\
\Gamma_{p, q}^{1} \varphi(z) & =z D_{p, q} \varphi(z), \\
& \ldots \tag{1.5}\\
\Gamma_{p, q}^{k} \varphi(z) & =\Gamma_{p, q}^{1}\left(\Gamma_{p, q}^{k-1} \varphi(z)\right), \\
& =z+\sum_{h=2}^{\infty}[h]_{p, q}^{k} a_{h} z^{h}, \quad\left(k \in \mathrm{~N}_{0}=\mathrm{N} \cup\{0\}, z \in \Theta\right)
\end{align*}
$$

It's observable when $p=1$ and $\lim _{q \rightarrow 1^{-}}$, the well-known Sălăgean operator is obtained [6]:
$\Gamma^{k} \varphi(z)=z+\sum_{h=2}^{\infty} h^{k} a_{h} z^{h},(z \in \Theta)$
Now let

$$
\begin{align*}
\Lambda_{\beta, \delta, \lambda, p, q}^{0, k} \varphi(z) & =\Gamma_{p, q}^{k} \varphi(z), \\
\Lambda_{\beta, \delta, \lambda, p, q}^{1, k} \varphi(z) & =(1-\beta(\delta-\lambda)) \Gamma_{p, q}^{k} \varphi(z)+\beta(\delta-\lambda) z\left(\Gamma^{k} \varphi(z)\right)^{\prime} \\
& =z+\sum_{h=2}^{\infty}[h]_{p, q}^{k}[1+\beta(\delta-\lambda)(h-1)] a_{h} z^{h} . \tag{1.7}\\
\Lambda_{\beta, \delta, \lambda, p, q}^{2, k} \varphi(z) & =(1-\beta(\delta-\lambda)) \Lambda_{\beta, \delta, \lambda, p, q}^{1, k} \varphi(z)+\beta(\delta-\lambda) z\left(\Lambda_{\beta, \delta, \lambda, p, q}^{1, k} \varphi(z)\right) \\
& =z+\sum_{h=2}^{\infty}[h]_{p, q}^{k}[1+\beta(\delta-\lambda)(h-1)]^{2} a_{h} z^{h} .
\end{align*}
$$

In general, we have

$$
\begin{align*}
\Lambda_{\beta, \delta, \lambda, p, q}^{\zeta, k} \varphi(z) & =(1-\beta(\delta-\lambda)) \Lambda_{\beta, \delta, \lambda, p, q}^{\zeta-1, k} \varphi(z)+\beta(\delta-\lambda) z\left(\Lambda_{\beta, \delta, \lambda, p, q}^{\zeta-1, k} \varphi(z)\right) \\
& =z+\sum_{h=2}^{\infty}[h]_{p, q}^{k}[1+\beta(\delta-\lambda)(h-1)]^{\zeta} a_{h} z^{h} \tag{1.8}
\end{align*}
$$

Where $\beta \geq 0, \lambda \geq 0, \delta \geq 0$ and $\zeta \in \mathrm{N}_{0}$.
It is observable that we have $\Lambda_{\beta, \delta, \lambda, p, q}^{0,0} \varphi(z)=\varphi(z)$, and $\Lambda_{\beta, \delta, \lambda, p, q}^{1,0} \varphi(z)=z \varphi(z)$. It is noticeable that when $p=1$, the differential operator $\Lambda_{\beta, q}^{\zeta, k} \varphi(z)$ that was defined and studied by Frasin and Murugusundaramoorthy is obtained [7]. Also, it is noticeable that when $p=1$ and $\lim _{q \rightarrow 1}$, the following differential operator is obtained:
$\Lambda_{\beta}^{\zeta, k} \varphi(z)=z+\sum_{h=2}^{\infty} h^{k}[1+\beta(\delta-\lambda)(h-1)]^{\zeta} a_{h} z^{h}$
It is noticeable that when $\delta=1$ and $\lambda=0$, we find the differential operator $\Lambda_{\beta, p, q}^{\zeta, k} \varphi(z)$ that was defined and studied by Feras Yousef [8]. Furthermore, when $k=0$ we find the differential operator $\Lambda_{\beta, \delta, \lambda}^{\zeta}$ that was defined and studied by Ibrahim and Darus [9, 10], and when $\delta=1$, $\lambda=0$ and $k=0$ we identify the differential operator Λ_{β}^{ζ} defined and studied by Al-Oboudi [10], while if $\zeta=0$, we identify Sălăgean differential operator Λ^{ζ} [6].

By using the differential operator $\Lambda_{\beta, \delta, \lambda, p, q}^{\zeta, k} \varphi(z)$, we say that a function $\varphi(z)$ belonging to A is in the class $Q_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$ if and only if

$$
\begin{align*}
& \left|\frac{(1-\beta(\delta-\lambda)) z\left(\Lambda_{\beta, \delta, \lambda, p, q}^{\zeta, k+1} \varphi(z)\right)+\beta(\delta-\lambda) z\left(\Lambda_{\beta, \delta, \lambda, p, q}^{\zeta, k+1} \varphi(z)\right)}{(1-\beta(\delta-\lambda)) \Lambda_{\beta, \delta, \lambda, p, q}^{\zeta, k} \varphi(z)+\beta(\delta-\lambda) \Lambda_{\beta, \delta, \lambda, p, q}^{\zeta, k} \varphi(z)}-1\right| \\
& <\mu\left|\frac{(1-\beta(\delta-\lambda)) z\left(\Lambda_{\beta, \delta, \lambda, p, q}^{\zeta, k+1} \varphi(z)\right)+\beta(\delta-\lambda) z\left(\Lambda_{\beta, k, \lambda, p, q}^{\zeta, k+1} \varphi(z)\right)}{(1-\beta(\delta-\lambda)) \Lambda_{\beta, \delta, \lambda, p, q}^{\zeta, k} \varphi(z)+\beta(\delta-\lambda) \Lambda_{\beta,, \delta, \lambda, p, q}^{\zeta, k} \varphi(z)}-b\right|,\left(k, \zeta \in \mathrm{~N}_{0}\right) \tag{1.9}
\end{align*}
$$

for some $\mu(0 \leq \mu<1), \beta, \delta, \lambda \geq 0$, and $0 \leq b<1$ for all $z \in \Theta$.
Let T denotes the subclass of A consisting of functions of the form

$$
\begin{equation*}
\varphi(z)=z-\sum_{h=2}^{\infty} a_{h} z^{h} \quad\left(a_{h} \geq 0, z \in \Theta\right) \tag{1.10}
\end{equation*}
$$

Further, we define the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$ by
$P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)=Q_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b) \cap T$
The main target of this paper is to provide a systematic investigation of some important features and characteristics of the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$. Some interesting corollaries and natural consequences of the main findings are also considered. Some important techniques used earlier by many researchers were applied in this work (see Al-Hawary et al. [11, 12], Aouf and Srivastava [13], and Frasin et al. [14-19]).

2. Coefficient inequality

In this section, we find the coefficient inequality for the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$.
Theorem 2.1. Let the function $\varphi(z)$ be defined by (1.10). Then $\varphi(z) \in P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$ if and only if

$$
\begin{equation*}
\sum_{h=2}^{\infty}[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta} a_{h} \leq \mu(1-b) \tag{2.1}
\end{equation*}
$$

The result is sharp.

$$
\begin{equation*}
f(z)=z-\frac{\mu(1-b)}{[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta}} z^{h} \tag{2.2}
\end{equation*}
$$

Proof. Suppose that the inequality (2.1) holds. Then we have for $z \in \Theta$ and $|z|<1$:

$$
\begin{aligned}
& (1-\beta(\delta-\lambda)) z\left(\Lambda_{\beta, \delta, \lambda, p, q}^{\zeta, k+1} \varphi(z)\right)+\beta(\delta-\lambda) z\left(\Lambda_{\beta, \delta, \lambda, p, q}^{\zeta, k+1} \varphi(z)\right)- \\
& (1-\beta(\delta-\lambda)) \Lambda_{\beta, \delta, \lambda, p, q}^{\zeta, k} \varphi(z)-\left.\beta(\delta-\lambda) \Lambda_{\beta, \delta, \lambda, p, q}^{\zeta, k} \varphi(z)\right|^{-} \\
& \mu \mid(1-\beta(\delta-\lambda)) z\left(\Lambda_{\beta, \delta, \lambda, p, q}^{\zeta, k+1} \varphi(z)\right)+\beta(\delta-\lambda) z\left(\Lambda_{\beta, \delta, \lambda, p, q}^{\zeta, k+1} \varphi(z)\right)- \\
& b(1-\beta(\delta-\lambda)) \Lambda_{\beta, \delta, \lambda, p, q}^{\zeta, k} \varphi(z)-b \beta(\delta-\lambda) \Lambda_{\beta, \delta, \lambda, p, q}^{\zeta, k} \varphi(z) \mid \\
& =\left|\sum_{h=2}^{\infty}[h]_{p, q}^{k}\left(h[h]_{p, q}-1\right)[1+(h-1) \beta(\delta-\lambda)]^{\zeta} a_{h} z^{h}\right|- \\
& \mu\left|z(1-b)-\sum_{v=2}^{\infty}[h]_{p, q}^{k}\left(h[h]_{p, q}-b\right)[1+(h-1) \beta(\delta-\lambda)]^{\zeta} a_{h} z^{h}\right| \\
& \leq \sum_{h=2}^{\infty}[h]_{p, q}^{k}\left\{(1+\mu) h[h]_{p, q}-1-b \mu\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta} a_{h} z^{h}-\mu(1-b) \\
& \leq 0
\end{aligned}
$$

where $\Lambda_{\beta, \delta, \lambda, p, q}^{\zeta, k} \varphi(z)$ is given by (1.8).
This implies
$\sum_{h=2}^{\infty}[h]_{p, q}^{k}\left\{(1+\mu) h[h]_{p, q}-1-b \mu\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta} a_{h} z^{h} \leq \mu(1-b)$
which shows that $\varphi(z) \in P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$. For the converse, assume that

$$
\begin{align*}
& \frac{\left|-\sum_{v=2}^{\infty}[h]_{p, q}^{k}\left(h[h]_{p, q}-1\right)[1+(h-1) \beta(\delta-\lambda)]^{\zeta} a_{h} z^{h}\right|}{\mu\left|z(1-b)-\sum_{h=2}^{\infty}[h]_{p, q}^{k}\left(h[h]_{p, q}-b\right)[1+(h-1) \beta(\delta-\lambda)]^{\zeta} a_{h} z^{h}\right|} \tag{2.3}\\
& <1
\end{align*}
$$

Since the $\operatorname{Re}(z) \leq|z|$ for all z, it follows from (2.3) that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\sum_{h=2}^{\infty}[h]_{p, q}^{k}\left(h[h]_{p, q}-1\right)[1+(h-1) \beta(\delta-\lambda)]^{\zeta} a_{h} z^{h}}{z(1-b) \mu-\mu \sum_{h=2}^{\infty}[h]_{p, q}^{k}\left(h[h]_{p, q}-b\right)[1+(h-1) \beta(\delta-\lambda)]^{\zeta} a_{h} z^{h}}\right\}<1 \tag{2.4}
\end{equation*}
$$

By choosing values of z on the real axis and letting $|z| \rightarrow 1^{-}$through the real values, we obtain

$$
\sum_{h=2}^{\infty}[h]_{p, q}^{k}\left(h[h]_{p, q}-1\right)[1+(h-1) \beta(\delta-\lambda)]^{\zeta} a_{h}
$$

$\leq(1-b) \mu-\mu \sum_{h=2}^{\infty}[h]_{p, q}^{k}\left(h[h]_{p, q}-b\right)[1+(h-1) \beta(\delta-\lambda)]^{\zeta} a_{h}$
This gives the required condition.
Corollary 2.2. Let the function $\varphi(z)$, defined by (1.10), be in the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$. Then

$$
\begin{equation*}
a_{h} \leq \frac{\mu(1-b)}{[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta}}, \quad(h \geq 2) \tag{2.5}
\end{equation*}
$$

The inequality in (2.1) is obtained for the function $\varphi(z)$ given by (2.2).

3. Growth and Distortion Theorems

Theorem 3.1. Let the function $\varphi(z)$, defined by (1.10), be in the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$. Then for $|z|=r<1$,

$$
\begin{equation*}
\left|\Lambda_{\beta, \delta, \lambda, p, q}^{i, j} \varphi(z)\right| \geq r-\frac{\mu(1-b)}{[2]_{p, q}^{k-j}\left\{2[2]_{p, q}(1+\mu)-\mu b-1\right\}[1+\beta(\delta-\lambda)]^{\zeta-i}} r^{2} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{gather*}
\left|\Lambda_{\beta, \delta, \lambda, p, q}^{i, j} \varphi(z)\right| \leq r+\frac{\mu(1-b)}{[2]_{p, q}^{k-j}\left\{2[2]_{p, q}(1+\mu)-\mu b-1\right\}[1+\beta(\delta-\lambda)]^{\zeta-i}} r^{2} \tag{3.2}\\
(0 \leq i \leq \zeta, 0 \leq j \leq k, z \in \Theta)
\end{gather*}
$$

The inequalities in (3.1) and (3.2) are obtained for $\varphi(z)$ given by

$$
\begin{equation*}
\varphi(z)=z-\frac{\mu(1-b)}{[2]_{p, q}^{k}\left\{2[2]_{p, q}(1+\mu)-\mu b-1\right\}\left[1+(\beta(\delta-\lambda)]^{\zeta}\right.} \tag{3.3}
\end{equation*}
$$

Proof. Note that the function $\varphi(z) \in P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$ if and only if
$\Lambda_{\beta, \delta, \lambda, p, q}^{i, j} \varphi(z) \in P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$
and that

$$
\begin{equation*}
\Lambda_{\beta, \delta, \lambda, p, q}^{i, j} \varphi(z)=z-\sum_{h=2}^{\infty}[h]_{p, q}^{j}[1+(h-1) \beta(\delta-\lambda)]^{i} a_{h} z^{h} \tag{3.4}
\end{equation*}
$$

By the theorem 2.1

$$
\begin{align*}
& {[2]_{p, q}^{k}\left\{2[2]_{p, q}(1+\mu)-\mu b-1\right\}\left[1+(\beta(\delta-\lambda)]^{\zeta} \sum_{h=2}^{\infty}[h]_{p, q}^{j}(1+\beta(\delta-\lambda))^{i} a_{h}\right.} \tag{3.5}\\
& \leq \sum_{h=2}^{\infty}[h]_{p, q}^{k}\left\{2[2]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta} a_{h} \leq \mu(1-b)
\end{align*}
$$

Which implies,
$\sum_{h=2}^{\infty}[h]_{p, q}^{j}[1+\beta(\delta-\lambda)]^{i} a_{h} z^{h} \leq \frac{\mu(1-b)}{[2]_{p, q}^{k}\left\{2[2]_{p, q}(1+\mu)-\mu b-1\right\}\left[1+(\beta(\delta-\lambda)]^{\zeta-i}\right.}$
The assertions (3.1) and (3.2) of Theorem4.1 would now follow readily from (3.4) and (3.6).
Finally, we note that the equalities (3.1) and (3.2) are achieved for the function $\varphi(z)$, defined by

$$
\begin{equation*}
\Lambda_{\beta, \delta, \lambda, p, q}^{i, j} \varphi(z)=z-\frac{\mu(1-b)}{[2]_{p, q}^{k}\left\{2[2]_{p, q}(1+\mu)-\mu b-1\right\}\left[1+(\beta(\delta-\lambda)]^{\zeta-i}\right.} z^{2} \tag{3.7}
\end{equation*}
$$

Hence, the proof has been completed.
Taking $i=j=0$ in Theorem 2.1, we obtain this corollary.

Corollary 3.2.

Let $\varphi(z)$, defined by (1.10), be in the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$. Then, for $|z|=r<1$,

$$
\begin{equation*}
|\varphi(z)| \geq r-\frac{\mu(1-b)}{[2]_{p, q}^{k}\left\{2[2]_{p, q}(1+\mu)-\mu b-1\right\}[1+\beta(\delta-\lambda)]^{\zeta}} r^{2} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
|\varphi(z)| \leq r+\frac{\mu(1-b)}{[2]_{p, q}^{k}\left\{2[2]_{p, q}(1+\mu)-\mu b-1\right\}[1+\beta(\delta-\lambda)]^{\zeta}} r^{2} \tag{3.9}
\end{equation*}
$$

The equalities in (3.8) and (3.9) are achieved for the function $\varphi(z)$ given by (4.3).

4. Inclusion properties

We begin this section by showing the following inclusion relation.
Theorem 4.1. Let the hypotheses of theorem th1 be satisfied. Then

$$
\begin{aligned}
P_{p, q}^{\zeta, k}\left(\beta_{1}, \delta, \lambda, \mu_{1}, b\right) & \supseteq P_{p, q}^{\zeta, k}\left(\beta_{2}, \delta, \lambda, \mu, b\right) \\
P_{p, q}^{\zeta, k}\left(\beta, \delta_{1}, \lambda, \mu, b\right) & \supseteq P_{p, q}^{\zeta, k}\left(\beta, \delta_{1}, \lambda, \mu, b\right) \\
P_{p, q}^{\zeta, k}\left(\beta, \delta, \lambda_{1}, \mu, b\right) & \supseteq P_{p, q}^{\zeta, k}\left(\beta, \delta, \lambda_{2}, \mu, b\right) \\
P_{p, q}^{\zeta, k}\left(\beta, \delta, \lambda, \mu_{1}, b\right) & \supseteq P_{p, q}^{\zeta, k}\left(\beta, \delta, \lambda, \mu_{2}, b\right)
\end{aligned}
$$

Proof. Let the function $\varphi(z)$, defined by (1.10), be in the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$ and let $\beta_{1} \geq \beta_{2}$. Then, by theorem 2.1, we have

$$
\begin{aligned}
& \sum_{h=2}^{\infty}[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}\left[1+(h-1) \beta_{1}(\delta-\lambda)\right]^{\zeta} a_{h} \\
& \leq \sum_{h=2}^{\infty}[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}\left[1+(h-1) \beta_{1}(\delta-\lambda)\right]^{\zeta} a_{h} \\
& \leq \mu(1-b)
\end{aligned}
$$

Hence, $P_{p, q}^{\zeta, k}\left(\beta_{1}, \delta, \lambda, \mu_{1}, b\right) \supseteq P_{p, q}^{\zeta, k}\left(\beta_{2}, \delta, \lambda, \mu, b\right)$.
and

$$
\begin{aligned}
& \sum_{h=2}^{\infty}[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}\left[1+(h-1) \beta\left(\delta_{1}-\lambda\right)\right]^{\zeta} a_{h} \\
& \leq \sum_{h=2}^{\infty}[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}\left[1+(h-1) \beta\left(\delta_{2}-\lambda\right)\right]^{\zeta} a_{h} \\
& \leq \mu(1-b)
\end{aligned}
$$

Hence, $P_{p, q}^{\zeta, k}\left(\beta, \delta_{1}, \lambda, \mu, b\right) \supseteq P_{p, q}^{\zeta, k}\left(\beta, \delta_{2}, \lambda, \mu, b\right)$.

$$
\begin{aligned}
& \sum_{h=2}^{\infty}[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}\left[1+(h-1) \beta\left(\delta-\lambda_{1}\right)\right]^{\zeta} a_{h} \\
& \leq \sum_{h=2}^{\infty}[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}\left[1+(h-1) \beta\left(\delta-\lambda_{1}\right)\right]^{\zeta} a_{h} \\
& \leq 1-\mu(1-b)
\end{aligned}
$$

Hence, $P_{p, q}^{\zeta, k}\left(\beta, \delta, \lambda_{1}, \mu, b\right) \supseteq P_{p, q}^{\zeta, k}\left(\beta, \delta, \lambda_{2}, \mu, b\right)$.
Employing a similar procedure, we can prove that $P_{p, q}^{\zeta, k}\left(\beta, \delta, \lambda, \mu_{1}, b\right) \supseteq P_{p, q}^{\zeta, k}\left(\beta, \delta, \lambda, \mu_{2}, b\right)$.

5. Closure Theorems

This section has begun with proving that the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$ is closed under convex linear combinations.
Theorem 5.1. The class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$ is a convex set.
Proof. Let the functions

$$
\begin{equation*}
\varphi_{\varepsilon}(z)=z-\sum_{h=2}^{\infty} a_{\varepsilon, h} z^{h} \quad\left(a_{\varepsilon, h} \geq 0 ; \varepsilon=1,2 ; z \in \Theta\right) \tag{5.1}
\end{equation*}
$$

be in the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$. It is sufficient to show that the function $\gamma(z)$ defined by

$$
\begin{equation*}
\gamma(z)=\xi \varphi_{1}(z)+(1-\xi) \varphi_{2}(z) \tag{5.2}
\end{equation*}
$$

is also in the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$. Since, for $0 \leq \xi \leq 1$,

$$
\begin{equation*}
\gamma(z)=z-\sum_{h=2}^{\infty}\left\{\xi a_{1, h}+(1-\xi) a_{2, h}\right\} z^{c} \tag{5.3}
\end{equation*}
$$

by using theorem 2.1 , we have
$\sum_{h=2}^{\infty}[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta}\left\{\xi a_{1, h}+(1-\xi) a_{2, h}\right\} \leq \mu(1-b)$
which means that $\gamma(z) \in P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$. Hence $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$ is a convex set.
Theorem 5.2. Let $\varphi_{1}(z)=z$ and
$\varphi_{h}(z)=z-\frac{\mu(1-b)}{[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta}} z^{h}, \quad\left(h \geq 2 ; k, \zeta \in \mathrm{~N}_{0}\right)$
for $0 \leq \mu<1$ and $0 \leq \beta(\delta-\lambda) \leq 1$. Then $\varphi(z)$ is in the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$ if and only if it could be expressed in the form:

$$
\begin{equation*}
\varphi(z)=\sum_{h=1}^{\infty} \omega_{h} \varphi_{h}(z) \tag{5.6}
\end{equation*}
$$

where
$\omega_{h} \geq 0(h \geq 1)$ and $\sum_{h=1}^{\infty} \omega_{h}=1$

Proof. Assume that

$$
\begin{aligned}
\varphi(z) & =\sum_{h=1}^{\infty} \omega_{h} \varphi_{h}(z) \\
& =z-\sum_{h=2}^{\infty} \frac{\mu(1-b)}{[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta}} \omega_{h} z^{h}
\end{aligned}
$$

Then it follows that
$\sum_{h=2}^{\infty} \frac{[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta}}{\mu(1-b)}$
$\frac{\mu(1-b)}{[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta}} \omega_{h}=\sum_{h=2}^{\infty} \omega_{h}=1-\omega_{1}$
Thus, by Theorem 2.1, $\varphi(z) \in P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$.
Conversely, suppose that $\varphi(z)$, defined by (1.10), is in the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$. Then
$a_{h} \leq \frac{\mu(1-b)}{[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta}}, \quad\left(h \geq 2 ; k, \zeta \in \mathrm{~N}_{0}\right)$.
considering
$\omega_{h}=\frac{[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(v-1) \beta(\delta-\lambda)]^{\zeta}}{\mu(1-b)} a_{h} \quad\left(h \geq 2 ; k, \zeta \in \mathrm{~N}_{0}\right)$
and
$\omega_{1}=1-\sum_{h=2}^{\infty} \omega_{h}$
It's observable that $\varphi(z)$ can be expressed in (5.6). Which completes the proof.
6. Radii of close-to-convexity, starlikenss, and convexity

In this section, we shall determine the radii of close-to-convexity, starlikeness, and convexity for the functions belonging to the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$.
Theorem 6.1. Let the function $\varphi(z)$, defined by (1.10), be in the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$. Then $\varphi(z)$ is close-to-convex of order $\sigma(0 \leq \sigma<1)$ in $|z|<r_{1}$, where
$r_{1}=\inf \left\{\frac{(1-\sigma) h^{-1}[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta}}{\mu(1-b)}\right\},(h \geq 2)$
(6.1)

The result is sharp, with the extremal function $\varphi(z)$ given by (2.2).
Proof. We need to show that
$\left|\varphi^{\prime}(z)-1\right| \leq 1-\sigma$ for $|z|<r_{1}$
where r_{1} is given by (6.1). Then we yield from definition (1.10)
$|\varphi(z)-1| \leq \sum_{h=2}^{\infty} h a_{h}|z|^{h-1}$.
Thus,
$\left|\varphi^{\prime}(z)-1\right| \leq 1-\sigma$
if

$$
\begin{equation*}
\sum_{h=2}^{\infty}\left(\frac{h}{1-\sigma}\right) a_{h}|z|^{h-1} \leq 1 \tag{6.2}
\end{equation*}
$$

But, by Theorem 6.1, (6.2) holds true if
$\left(\frac{h}{1-\sigma}\right)|z|^{h-1} \leq \frac{[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\xi}}{\mu(1-b)}$
that is, if
$|z| \leq\left(\frac{(1-\sigma) h^{-1}[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta}}{\mu(1-b)}\right)^{\frac{1}{(h-1)}}(h \geq 2)$
Theorem 6.1 follows readily form (6.4).
Theorem 6.2. Let $\varphi(z)$, defined by (1.10), be in the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$. Then $\varphi(z)$ is a starlike of order $\sigma(0 \leq \sigma<1)$ in $|z|<r_{2}$, where
$r_{2}=\inf \left\{\frac{(1-\sigma)[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta}}{\mu(h-\sigma)(1-b)}\right\}^{\frac{1}{(h-1)}},(h \geq 2)$
The result is sharp, with the extremal function $\varphi(z)$ given by (2.2).
Proof. We need to show that
$\left|\frac{z \varphi(z)}{\varphi(z)}-1\right| \leq 1-\sigma$ for $|z|<r_{2}$
where r_{2} is given by (6.4). Indeed, definition (1.10) implies that
$\left|\frac{z \varphi(z)}{\varphi(z)}-1\right| \leq \frac{\sum_{h=2}^{\infty}(h-1) a_{h}|z|^{h-1}}{1-\sum_{h=2}^{\infty} a_{h}|z|^{h-1}}$
Thus,
$\left|\frac{z \varphi(z)}{\varphi(z)}-1\right| \leq 1-\sigma$
if

$$
\begin{equation*}
\sum_{h=2}^{\infty}\left(\frac{h-\sigma}{1-\sigma}\right) a_{h}|z|^{h-1} \leq 1 \tag{6.5}
\end{equation*}
$$

But, by Theorem 2.1, (6.5) holds true if

$$
\begin{equation*}
\left(\frac{h-\sigma}{1-\sigma}\right)|z|^{h-1} \leq \frac{[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta}}{\mu(h-\sigma)(1-b)} \tag{6.6}
\end{equation*}
$$

that is, if
$|z| \leq\left(\frac{(1-\sigma)[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta}}{\mu(h-\sigma)(1-b)}\right)^{\frac{1}{(h-1)}}(h \geq 2)$
Theorem 6.2 follows readily form (6.7).
Corollary 6.3. Let the function $\varphi(z)$, defined by (1.10), be in the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$. Then $\varphi(z)$ is a convex of order $\sigma(0 \leq \sigma<1)$ in $|z|<r_{2}$, where
$r_{3}=\inf \left\{\frac{(1-\sigma) h^{-1}[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta}}{\mu(h-\sigma)(1-b)}\right\}^{\frac{1}{(h-1)}},(h \geq 2)$
The result is sharp, with the extremal function $\varphi(z)$ given by (2.2).

7. Integral means inequality

For any two functions, φ and Γ, analytic in Θ, φ is said to be subordinate to Γ in Θ, written as $\varphi(z) \prec \Gamma(z)$, if there exists a Schwarz function $\omega(z)$, analytic in Θ, with
$\omega(0)=0$ and $|\omega(z)|<1$ for all $z \in \Theta$,
such that $\varphi(z)=\Gamma(\omega(z))$ for all $z \in \Theta$. Furthermore, if the function Γ is univalent in Θ, then we have the following equivalence [10]:
$\varphi(z) \prec \gamma(z) \Leftrightarrow \varphi(0)=\gamma(0)$ and $\varphi(\Theta) \subset \gamma(\Theta)$.
To prove the integral means inequality for functions belonging to the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$, we need the following subordination result found by Littlewood [16].
Lemma 7.1. If the functions φ and Γ are analytic in Θ with $\varphi(z) \prec \Gamma(z)$, then for $\eta>0$ and $z=r e^{i \theta} \quad(0<r<1)$,

$$
\begin{equation*}
\int_{0}^{2 \pi}|\varphi(z)|^{\eta} d \theta \leq \int_{0}^{2 \pi}|\gamma(z)|^{\eta} d \theta \tag{7.1}
\end{equation*}
$$

By applying Theorem 2.1 with the extremal function and Lemma 7.1, we achieve the following theorem.
Theorem 7.2. Let $\left\{[h]_{p, q}^{k}\left\{h[h]_{p, q}(1+\mu)-\mu b-1\right\}[1+(h-1) \beta(\delta-\lambda)]^{\zeta}\right\}_{h=2}^{\infty} \quad$ be a non-decreasing sequence. If $\varphi(z) \in P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$, then

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\varphi\left(r e^{i \theta}\right)\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|\gamma\left(r e^{i \theta}\right)\right|^{\eta} d \theta \quad(0<r<1 ; \eta>0), \tag{7.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{*}(z)=z-\frac{\mu(1-b)}{[2]_{p, q}^{k}\left\{2[2]_{p, q}(1+\mu)-\mu b-1\right\}\left[1+(\beta(\delta-\lambda)]^{\xi}\right.} z^{2} \tag{7.3}
\end{equation*}
$$

Proof. Let the function $\varphi(z)$, defined by (1.10), be in the class $P_{p, q}^{\zeta, k}(\beta, \delta, \lambda, \mu, b)$. Then we need to show that

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1-\sum_{h=2}^{\infty} a_{h, h} z^{h-1}\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|1-\frac{\mu(1-b)}{[2]_{p, q}^{k}\left\{2[2]_{p, q}(1+\mu)-\mu b-1\right\}\left[1+(\beta(\delta-\lambda)]^{\zeta}\right.} z\right|^{\eta} d \theta \tag{7.4}
\end{equation*}
$$

Thus, by applying Lemma 7.1, it would suffice to show that

$$
\begin{equation*}
1-\sum_{h=2}^{\infty} a_{h} z^{h-1} \prec 1-\frac{\mu(1-b)}{[2]_{p, q}^{k}\left\{2[2]_{p, q}(1+\mu)-\mu b-1\right\}\left[1+(\beta(\delta-\lambda)]^{\zeta}\right.} z \tag{7.5}
\end{equation*}
$$

If the subordination (7.5) holds true, then there exists an analytic function ω with $\omega(0)=0$ and $\omega(z) \mid<1$ such that

$$
\begin{equation*}
1-\sum_{h=2}^{\infty} a_{h, h} z^{h-1}=1-\frac{\mu(1-b)}{[2]_{p, q}^{k}\left\{2[2]_{p, q}(1+\mu)-\mu b-1\right\}\left[1+(\beta(\delta-\lambda)]^{\zeta}\right.} \omega(z) . \tag{7.6}
\end{equation*}
$$

Using Theorem 2.1, we have

$$
\begin{aligned}
|\omega(z)| & =\left|\sum_{h=2}^{\infty} \frac{[2]_{p, q}^{k}\left\{2[2]_{p, q}(1+\mu)-\mu b-1\right\}\left[1+(\beta(\delta-\lambda)]^{\zeta}\right.}{\mu(1-b)} a_{h} z^{h-1}\right| \\
& \leq|z| \sum_{h=2}^{\infty} \frac{[2]_{p, q}^{k}\left\{2[2]_{p, q}(1+\mu)-\mu b-1\right\}\left[1+(\beta(\delta-\lambda)]^{\zeta}\right.}{\mu(1-b)} a_{h} \leq|z|<1,
\end{aligned}
$$

which proves the subordination (7.5). So the proof is completed.

References

1. Kanas, S. and Răducanu, D. 2014. Some class of analytic functions related to conic domains. Mathematica slovaca, 64(5): 1183-1196.
2. Jackson, F. H. 1909. XI.---on q-functions and a certain difference operator. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 46(2): 253-281.
3. .Aral, A., Gupta, V. and Agarwal, R. P. 2013. Applications of q-calculus in operator theory (p . 262). New York: Springer.
4. Altinkaya, S. and Kanas, S. 2018. Subclass of k-uniformly starlike functions defined by symmetric q-derivative operator. Ukrains' kyi Matematychnyi Zhurnal, 70(11): 1499-1510
5. Yalçn, S., Vijaya, K. and Murugusundaramoorthy, G. 2018. Certain class of analytic functions involving Salagean type q-difference operator. Konuralp Journal of Mathematics, 6(2): 264-271.
6. Salagean, G. S. 1983. Subclasses of univalent functions. In Complex Analysis-Fifth RomanianFinnish Seminar (pp. 362-372). Springer, Berlin, Heidelberg.
7. Frasin, B.A. and Murugusundaramoorthy, G. 2000. A subordination results for a class of analytic functions defined by q-differential operator, Submitted.
8. Yousef, F., Al-Shible, A. and Yalcin, S. 2019. An Application of Jackson's (p, q)-Derivative to a Subclass of Starlike Functions with Negative Coefficients. arXiv preprint arXiv: 2599556.
9. Darus, M. and Ibrahim, R. W. 2009. On subclasses for generalized operators of complex order. Far East Journal of Mathematical Sciences, 33(3): 299-308.
10. Al-Oboudi, F. M. 2004. On univalent functions defined by a generalized Sălăgean operator. International Journal of Mathematics and Mathematical Sciences, 2004(27): 1429-1436.
11. Al-Hawary, T., Frasin, B. A. and Yousef, F. 2018. Coefficients estimates for certain classes of analytic functions of complex order. Afrika Matematika, 29(7-8): 1265-1271.
12. Al-Hawary, T., Yousef, F. and Frasin, B. A. 2018. Subclasses of Analytic Functions of Complex Order Involving Jackson's (p, q)-derivative. Available at SSRN 3289803.
13. Aouf, M. K. and Srivastava, H. M. 1996. Some families of starlike functions with negative coefficients. Journal of mathematical analysis and applications, 203(3): 762-790.
14. Frasin, B. A., Al-Hawary, T. and Yousef, F. 2018. Necessary and sufficient conditions for hypergeometric functions to be in a subclass of analytic functions. Afrika Matematika, 1-8.
15. Yousef, F., Amourah, A. A. and Darus, M. 2016. Differential sandwich theorems for p-valent functions associated with a certain generalized differential operator and integral operator. Italian Journal of Pure and Applied Mathematics, 36: 543-556.
16. Littlewood, J. E. 1925. On inequalities in the theory of functions. Proceedings of the London Mathematical Society, 2(1): 481-519.
17. Goodman, A. W. 1957. Univalent functions and nonanalytic curves. Proceedings of the American Mathematical Society, 8(3): 598-601.
18. Ruscheweyh, S. 1981. Neighborhoods of univalent functions. Proceedings of the American Mathematical Society, 81(4): 521-527.
19. Ahuja, O. P., Çetinkaya, A. and Ravichandran, V. 2018. Harmonic Univalent Functions Defined by Post Quantum Calculus Operators. arXiv preprint arXiv:1809.00298.

[^0]: *Email: abduljabaryousef@gmail.com

