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Abstract 
     In this paper, we generalize many earlier differential operators which  were 

studied by other researchers using our differential operator. We also obtain a new 

subclass of starlike functions to utilize some interesting properties. 
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1. Introduction 

Let  A   represents the class of all analytic functions    defined in the open unit disk  

 C: 1z z    , and normalized by the conditions  (0) 0    and  (0) 1


 . Therefore, each 

A  has a Taylor-Maclaurin series extension of the form: 

2

( ) , ( )  h

h

h

z z a z z




                              (1.1) 

     Furthermore, let  S   represents the class of all functions  A   which are univalent in  . The 

quantum calculus (henceforth  q   calculus) is considered as a crucial tool that is used to explore the 

subclasses of analytic functions.  q   calculus operators were used by Kanas and Raducanu to 

investigate some significant classes of  functions which are analytic in     [1]. The importance of the 

fractional calculus applications is obvious in many topics of mathematics, such as in the fields of q   

transform analysis, ordinary fractional calculus, and operator theory. Recently, researchers paid more 

attention to the area of   q   calculus and several new operators have been proposed. The application 

of  q   calculus was first founded by Jackson who developed the  q   integral and  q   derivative in 

a systematic way [2]. After that, through several studies on quantum groups, the geometrical 

interpretation of  q   analysis was identified. Unlike the typical calculus, this calculus has no limits 

notion. A good detailed work on the calculus and it's applications in operator theory is found in 

aprevious report [3], while more information were provided in other articles [4, 5]. 

 The main structure of ( , )p q   calculus was established on only one parameter, but since then it was 

generalized to the post-quantum calculus (represented by  ( , )p q   calculus). In this section, we 

assume that we can obtain calculus by substituting  1p    in calculus. 

To be fulfilled, some brief notations and definitions of  ( , )p q   calculus are provided below: For 

Jackson's derivative where  0 1p q     and  A ,  the following is provided [2]: 
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( ) ( )

( )

,
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( )    

(0) 0.

pz qz

p q z

p q

for z
D z

for z

 









 

 


  (1.2) 

 

From (1.2), we have 

 

1

, ,

2

( ) 1 [ ]   h

p q p q h

h

D z h a z






                   (1.3) 

 

Where  

1 2 3 2 2 1

,[ ] ...   
h h

h h h h h

p q

p q
h p p q p q pq q

p q

     
      


                (1.4) 

 

 

is named  ( , )p q   bracket. It’s notable that when  1p   , the bracket is an obvious generalization of 

the  q   number, that is 

1,

1
[ ] [ ] , 1

1

h

q q

q
h h q

q


  


 

 

 

For 1p  ,  one can notice that the Jackson's  ( , )p q   derivative will be reduced to the  q   

derivative, as previously described [2]. It was clearly proved that for a function  ( ) hz z    , the  

1 1

, , ,( ) [ ]
h hp qh h h

p q p q p qp q
D z D z z h z   


     is obtained. For  A   , the 

Sălăgean  ( , )p q   differential operator is defined as follows [6]:  

0

,

1

, ,

1 1

, , ,

, 0

2

( ) ( ),

( ) ( ),

...

( ) ( ( )),

[ ] ,   ( N N {0}, )   

p q

p q p q

k k

p q p q p q

k h

p q h

h

z z

z zD z

z z

z h a z k z

 

 

 





 

 

   

     

  (1.5) 

 

It’s observable when  1p    and  
1

lim
q 

,  the well-known Sălăgean operator is obtained [6]: 

2

( ) ,  ( )   k k h

h

h

z z h a z z




      (1.6) 

Now let  
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, , , , ,

1,

, , , , ,

,

2

2, 1, 1,

, , , , , , , , , , , ,

2

( ) ( ),

( ) (1 ( )) ( ) ( ) ( )    

[ ] [1 ( )( 1)] .

( ) (1 ( )) ( ) ( ) ( )

[ ]

k k

p q p q

k k k

p q p q

k h

p q h

h

k k k

p q p q p q

h

z z

z z z z

z h h a z

z z z z

z h

  

  

        

 

        

  

        













  

       

    

       

 




2

, [1 ( )( 1)] .   k h

p q hh a z    

  (1.7) 

In general, we have  

 , 1, 1,

, , , , , , , , , , , ,

,

2

( ) (1 ( )) ( ) ( ) ( )

[ ] [1 ( )( 1)]

k k k

p q p q p q

k h

p q h

h

z z z z

z h h a z

  

        



        

  



 





       

    
  (1.8) 

Where 
0 0, 0, 0 Nand       . 

     It is observable that we have  
0,0

, , , , ( ) ( ),p q z z        and  
1,0

, , , , ( ) ( ).p q z z z    


    It is 

noticeable that when  1p  , the differential operator  
,

, ( )k

q z

   that was defined and studied by 

Frasin and Murugusundaramoorthy is obtained [7]. Also, it is noticeable that when  1p    and  

1limq
  , the following differential operator is obtained: 

,

2

( ) [1 ( )( 1)]k k h

h

h

z z h h a z 

    




       

     It is noticeable that when  1    and 0  , we find the differential operator  
,

, , ( )k

p q z

    that 

was defined and studied by Feras Yousef [8]. Furthermore, when  0k    we find the differential 

operator  , ,



     that was defined and studied by Ibrahim and Darus [9, 10], and when  1   ,  

0    and  0k    we identify the differential operator  


   defined and studied by Al-Oboudi [10], 

while if  0   , we identify Sălăgean differential operator  
  [6]. 

     By using the differential operator  
,

, , , , ( )k

p q z

     , we say that a function  ( )z   belonging to  A   

is in the class  
,

, ( , , , , )k

p qQ b       if and only if  

   

   

, 1 , 1

, , , , , , , ,

, ,

, , , , , , , ,

, 1 , 1

, , , , , , , ,

,

, , , ,

(1 ( )) ( ) ( ) ( )
1

(1 ( )) ( ) ( ) ( )

(1 ( )) ( ) ( ) ( )

(1 ( )) ( )

k k

p q p q

k k

p q p q

k k

p q p q

k

p q

z z z z

z z

z z z z

z

 

     

 

     

 

     



  

       

       

       


   

 

 

 

 

     


     

     


  
0,

, , , ,

,   ( , N )
( ) ( )k

p q

b k
z

  


   

 
  

 

 (1.9) 

 for some  (0 1)   , , , 0,      and  0 1b    for all  .z   

Let  T   denotes the subclass of  A   consisting of functions of the form  

2

( )     ( 0, )   h

h h

h

z z a z a z




                                   (1.10) 
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Further, we define the class  
,

, ( , , , , )k

p qP b       by 

, ,

, ,( , , , , ) ( , , , , )     k k

p q p qP b Q b T           

     The main target of this paper is to provide a systematic investigation of some important features 

and characteristics of the class  
,

, ( , , , , )k

p qP b     . Some interesting corollaries and natural 

consequences of the main findings are also considered. Some important techniques used earlier by 

many researchers were applied in this work (see Al-Hawary et al. [11, 12], Aouf and Srivastava [13], 

and Frasin et al. [14- 19]). 

2. Coefficient inequality 

     In this section, we find the coefficient inequality for the class  
,

, ( , , , , )k

p qP b     .  

     Theorem 2.1.  Let the function  ( )z   be defined by (1.10). Then  
,

,( ) ( , , , , )k

p qz P b      if 

and only if  

 , ,

2

[ ] [ ] (1 ) 1 [1 ( 1) ( )] (1 )   k

p q p q h

h

h h h b h a b     




          (2.1) 

 

The result is sharp.  

 , ,

(1 ) 
( )

[ ] [ ] (1 ) 1 [1 ( 1) ( )]

h

k

p q p q

b
f z z z

h h h b h 



    


 

     
  (2.2) 

 

 Proof. Suppose that the inequality (2.1) holds. Then we have for  z   and  1z  :  

   

   

, 1 , 1

, , , , , , , ,

, ,

, , , , , , , ,

, 1 , 1

, , , , , , , ,

,

, , , ,

(1 ( )) ( ) ( ) ( )

(1 ( )) ( ) ( ) ( )

(1 ( )) ( ) ( ) ( )

(1 ( )) (

k k

p q p q

k k

p q p q

k k

p q p q

k

p q

z z z z

z z

z z z z

b z

 

     

 

     

 

     



  

       

       

        

   

 

 

 

 

      

      

      

  

 

,

, , , ,

, ,

2

, ,

2

, ,

2

) ( ) ( )

[ ] ( [ ] 1)[1 ( 1) ( )]

(1 ) [ ] ( [ ] )[1 ( 1) ( )]

[ ] (1 ) [ ] 1 [1 ( 1) ( )] (1 )

0

k

p q

k h

p q p q h

h

k h

p q p q h

v

k h

p q p q h

h

b z

h h h h a z

z b h h h b h a z

h h h b h a z b



  







   

  

   

     













  

     

     

        









 

where  
,

, , , , ( )k

p q z

      is given by (1.8). 

This implies  

 , ,

2

[ ] (1 ) [ ] 1 [1 ( 1) ( )] (1 )k h

p q p q h

h

h h h b h a z b     




         

which shows that  
,

,( ) ( , , , , ).k

p qz P b       For the converse, assume that 
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, 1 , 1
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(1 ( )) ( ) ( ) ( )

(1 ( )) ( ) ( ) ( )

(1 ( )) ( ) ( ) ( )

(1 ( )) ( )

1
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p q p q
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p q p q

k k
p q p q

k
p q

z z z z

z z

z z z z
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,
, , , ,( ) ( )

2 , ,

2 , ,

[ ] ( [ ] 1)[1 ( 1) ( )]

(1 ) [ ] ( [ ] )[1 ( 1) ( )]

1

k
p q z

k h
v p q p q h

k h
h p q p q h

b

h h h h a z

z b h h h b h a z


     





  

   

 









    

     



  (2.3) 

 

Since the  Re( )z z   for all  z ,  it follows from (2.3) that 

2 , ,

2 , ,

[ ] ( [ ] 1)[1 ( 1) ( )]
Re 1.

(1 ) [ ] ( [ ] )[1 ( 1) ( )]

k h
h p q p q h

k h
h p q p q h

h h h h a z

z b h h h b h a z





  

    







     
 

       

  (2.4) 

By choosing values of  z   on the real axis and letting  1z    through the real values, we obtain  

, ,

2

, ,

2

[ ] ( [ ] 1)[1 ( 1) ( )]

(1 ) [ ] ( [ ] )[1 ( 1) ( )]

k

p q p q h

h

k

p q p q h

h

h h h h a

b h h h b h a





  

    









   

      





 

 This gives the required condition.                                                   

 Corollary 2.2. Let the function  ( )z  , defined by (1.10), be in the class  
,

, ( , , , , ).k

p qP b      Then 

 , ,

(1 )
,   ( 2).  

[ ] [ ] (1 ) 1 [1 ( 1) ( )]
h k

p q p q

b
a h

h h h b h 



    


 

     
                  (2.5) 

 The inequality in (2.1) is obtained for the function  ( )z   given by (2.2). 

3. Growth and Distortion Theorems 

Theorem 3.1. Let the function  ( ),z  defined by (1.10), be in the class  
,

, ( , , , , ).k

p qP b      Then for  

1,z r 
   

 
, 2

, , , ,

, ,

(1 )
( )    

[2] 2[2] (1 ) 1 [1 ( )]

i j

p q k j i

p q p q

b
z r r

b
   




     


  

    
  (3.1) 

 and 

 
, 2

, , , ,

, ,

(1 )
( ) ,    

[2] 2[2] (1 ) 1 [1 ( )]

(0 ,0 , )

i j

p q k j i

p q p q

b
z r r

b

i j k z

   




    



 


  

    

    

  (3.2) 

 The inequalities in (3.1) and (3.2) are obtained for  ( )z   given by  

 , ,

(1 )
( )    

[2] 2[2] (1 ) 1 [1 ( ( )]k

p q p q

b
z z

b 




    


 

    
  (3.3) 

 Proof. Note that the function  
,

,( ) ( , , , , )k

p qz P b      if and only if  

, ,

, , , , ,( ) ( , , , , )i j k

p q p qz P b

          

 and that  

,

, , , , ,

2

( ) [ ] [1 ( 1) ( )]    i j j i h

p q p q h

h

z z h h a z      




        (3.4) 
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 By the theorem 2.1  

 

 

, , ,

2

, ,

2

[2] 2[2] (1 ) 1 [1 ( ( )] [ ] (1 ( ))    

[ ] 2[2] (1 ) 1 [1 ( 1) ( )] (1 )

k j i

p q p q p q h

h

k

p q p q h

h

b h a

h b h a b





       

     









      

        





  (3.5) 

 Which implies,  

 
,

2 , ,

(1 )
[ ] [1 ( )]    

[2] 2[2] (1 ) 1 [1 ( ( )]

j i h

p q h k i
h p q p q

b
h a z

b 


  

    







  

    
   (3.6) 

     The assertions (3.1) and (3.2) of Theorem4.1 would now follow readily from (3.4) and (3.6). 

Finally, we note that the equalities (3.1) and (3.2) are achieved for the function  ( )z , defined by 

 
, 2

, , , ,

, ,

(1 )
( )    

[2] 2[2] (1 ) 1 [1 ( ( )]

i j

p q k i

p q p q

b
z z z

b
   




     


  

    
  (3.7) 

 Hence, the proof has been completed. 

Taking  0i j    in Theorem 2.1, we obtain this corollary. 

Corollary 3.2. 

     Let  ( ),z  defined by (1.10), be in the class  
,

, ( , , , , ).k

p qP b      Then, for  1,z r    

 
2

, ,

(1 )
( )    

[2] 2[2] (1 ) 1 [1 ( )]k

p q p q

b
z r r

b 




    


 

    
  (3.8) 

 and 

 
2

, ,

(1 )
( )    

[2] 2[2] (1 ) 1 [1 ( )]k

p q p q

b
z r r

b 




    


 

    
  (3.9) 

 The equalities in (3.8) and (3.9) are achieved for the function  ( )z   given by (4.3). 

4. Inclusion properties 

     We begin this section by showing the following inclusion relation. 

     Theorem 4.1. Let the hypotheses of theorem th1 be satisfied. Then  
, ,

, 1 1 , 2

, ,

, 1 , 1

, ,

, 1 , 2

, ,

, 1 , 2

( , , , , ) ( , , , , )

( , , , , ) ( , , , , )

( , , , , ) ( , , , , )

( , , , , ) ( , , , , )

k k

p q p q

k k

p q p q

k k

p q p q

k k

p q p q

P b P b

P b P b

P b P b

P b P b

 

 

 

 

       

       

       

       









 

Proof. Let the function  ( ),z  defined by (1.10), be in the class  
,

, ( , , , , )k

p qP b      and let  1 2.   

Then, by theorem 2.1, we have  

 

 

, , 1

2

, , 1

2

 [ ] [ ] (1 ) 1 [1 ( 1) ( )]

[ ] [ ] (1 ) 1 [1 ( 1) ( )]

(1 )

k

p q p q h

h

k

p q p q h

h

h h h b h a

h h h b h a

b





    

    











     

      

 



  

Hence, 
, ,

, 1 1 , 2( , , , , ) ( , , , , ).k k

p q p qP b P b           

and  
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2

, , 2

2

[ ] [ ] (1 ) 1 [1 ( 1) ( )]
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k

p q p q h

h

k

p q p q h

h

h h h b h a

h h h b h a
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Hence,  
, ,

, 1 , 2( , , , , ) ( , , , , ).k k

p q p qP b P b            

 

 

, , 1

2

, , 1

2

[ ] [ ] (1 ) 1 [1 ( 1) ( )]

[ ] [ ] (1 ) 1 [1 ( 1) ( )]

1 (1 )

k

p q p q h

h

k

p q p q h

h

h h h b h a

h h h b h a

b





    

    











     

      

  



  

Hence,  
, ,

, 1 , 2( , , , , ) ( , , , , ).k k

p q p qP b P b           

Employing a similar procedure, we can prove that  
, ,

, 1 , 2( , , , , ) ( , , , , ).k k

p q p qP b P b           

5. Closure Theorems 

     This section has begun with proving that the class  
,

, ( , , , , )k

p qP b      is closed under convex 

linear combinations. 

 Theorem 5.1.  The class  
,

, ( , , , , )k

p qP b      is a convex set. 

 Proof. Let the functions  

, ,

2

( )   ( 0; 1, 2; )   h

h h

h

z z a z a z   




       (5.1) 

 be in the class  
,

, ( , , , , ).k

p qP b       It is sufficient to show that the function  ( )z   defined by 

1 2( ) ( ) (1 ) ( )   z z z                       (5.2) 

is also in the class  
,

, ( , , , , ).k

p qP b       Since, for  0 1,    

 1, 2,

2

( ) (1 ) ,    c

h h

h

z z a a z  




      (5.3) 

 by using theorem 2.1 , we have  

   , , 1, 2,

2

[ ] [ ] (1 ) 1 [1 ( 1) ( )] (1 ) (1 )   k

p q p q h h

h

h h h b h a a b       




           (5.4) 

which means that  
,

,( ) ( , , , , )k

p qz P b     . Hence  
,

, ( , , , , )k

p qP b      is a convex set. 

 Theorem 5.2.  Let  1( )z z     and  

 
0

, ,

(1 )
( ) ,   ( 2; , N )   

[ ] [ ] (1 ) 1 [1 ( 1) ( )]

h

h k

p q p q

b
z z z h k

h h h b h 


 

    


   

     
 

 (5.5) 

 for  0 1    and  0 ( ) 1.       Then  ( )z   is in the class  
,

, ( , , , , )k

p qP b       if and only 

if it could be expressed in the form:  

1

( ) ( ),    h h

h

z z  




                            (5.6) 

 where  

1

0 ( 1)    1   h h

h

h and 




     (5.7) 
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 Proof. Assume that  

 

1

2 , ,

( ) ( )

(1 )

[ ] [ ] (1 ) 1 [1 ( 1) ( )]

h h

h

h

hk
h p q p q

z z

b
z z

h h h b h 

  




    












 

     




 

 Then it follows that  

 , ,

2

[ ] [ ] (1 ) 1 [1 ( 1) ( )]

(1 )

k

p q p q

h

h h h b h

b

    







     


  

 

 
1

2, ,

(1 )
1

[ ] [ ] (1 ) 1 [1 ( 1) ( )]
h hk

hp q p q

b

h h h b h 


  

    






  

     
  

 Thus, by Theorem 2.1,  
,

,( ) ( , , , , ).k

p qz P b       

Conversely, suppose that  ( )z , defined by (1.10), is in the class  
,

, ( , , , , ).k

p qP b       Then  

 
0

, ,

(1 )
,    ( 2; , N ).

[ ] [ ] (1 ) 1 [1 ( 1) ( )]
h k

p q p q

b
a h k

h h h b h 




    


  

     
 

 considering  

 , ,

0

[ ] [ ] (1 ) 1 [1 ( 1) ( )]
    ( 2; , N )

(1 )

k

p q p q

h h

h h h b v
a h k

b

    
 



     
  


 

 and  

1

2

1 h

h

 




   

 It’s observable that  ( )z   can be expressed in (5.6). Which completes the proof. 

6. Radii of close-to-convexity, starlikenss, and convexity 

     In this section, we shall determine the radii of close-to-convexity, starlikeness, and convexity for 

the functions belonging to the class  
,

, ( , , , , ).k

p qP b       

Theorem 6.1.  Let the function  ( )z , defined by (1.10), be in the class  
,

, ( , , , , ).k

p qP b       Then  

( )z   is close-to-convex of order  (0 1)     in  1z r  , where  

 
1

( 1)1

, ,

1

(1 ) [ ] [ ] (1 ) 1 [1 ( 1) ( )]
inf , ( 2)   

(1 )

hk

p q p qh h h h b h
r h

b

     



        
  

  

 

 (6.1) 

 The result is sharp, with the extremal function  ( )z   given by (2.2). 

 Proof. We need to show that  

1( ) 1 1  for z z r 


     

 where  1r   is given by (6.1). Then we yield from definition (1.10)  

1

2

( ) 1 .
h

h

h

z ha z







   

 Thus,  

( ) 1 1z 
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 if  

1

2

1   
1

h

h

h

h
a z








 
 

 
                           (6.2) 

 But, by Theorem 6.1, (6.2) holds true if  

 1 , ,[ ] [ ] (1 ) 1 [1 ( 1) ( )]

1 (1 )

k

h p q p qh h h b hh
z

b

    

 

       
 

  
 

 that is, if  

 
1

( 1)1

, ,(1 ) [ ] [ ] (1 ) 1 [1 ( 1) ( )]
  ( 2)   

(1 )

hk

p q p qh h h h b h
z h

b

     



       
  
 
 

  (6.3) 

 Theorem 6.1 follows readily form (6.4). 

 Theorem 6.2.  Let  ( )z , defined by (1.10), be in the class  
,

, ( , , , , ).k

p qP b      Then  ( )z   is a 

starlike of order  (0 1)     in  2z r  , where 
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  (6.4) 

 The result is sharp, with the extremal function  ( )z   given by (2.2). 

 Proof. We need to show that 
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 where  2r   is given by (6.4). Indeed, definition (1.10) implies that  
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 But, by Theorem 2.1, (6.5) holds true if  
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 that is, if  
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    (6.7) 

 Theorem 6.2 follows readily form (6.7). 

 Corollary 6.3.  Let the function  ( )z , defined by (1.10), be in the class  
,

, ( , , , , ).k

p qP b       Then  

( )z   is a convex of order  (0 1)     in  2z r  , where 
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 The result is sharp, with the extremal function  ( )z   given by (2.2). 

7. Integral means inequality 

For any two functions,  and , analytic in  ,   is said to be subordinate to     in   , written as  

( ) ( )z z  , if there exists a Schwarz function  ( )z , analytic in  ,  with 

(0) 0 and ( ) 1 for all ,z z     

 such that  ( )z ( ( ))z    for all  z . Furthermore, if the function    is univalent in  , then 

we have the following equivalence [10]: 

( ) ( ) (0) (0) and ( ) ( ).   z z           

     To prove the integral means inequality for functions belonging to the class  
,

, ( , , , , )k

p qP b     , we 

need the following subordination result found by Littlewood [16]. 

 Lemma 7.1.  If the functions   and   are analytic in   with  ( ) ( )z z   , then for      0   and  

iz re     (0 1),r    

2 2

0 0
( ) ( )    z d z d
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 By applying Theorem 2.1 with the extremal function and Lemma 7.1, we achieve the following 

theorem. 
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 Proof. Let the function  ( )z , defined by (1.10), be in the class  
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 Thus, by applying Lemma 7.1, it would suffice to show that  
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 If the subordination (7.5) holds true, then there exists an analytic function     with  (0) 0    and  

( ) | 1z 
  such that 
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 Using Theorem 2.1, we have  
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 which proves the subordination (7.5). So the proof is completed. 
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