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Abstract

Pulkhana anticline is located in Tuzhurmatu area, about 50 km SE of Kirkuk city.
The study area forms a part of the Zagros Folded Zone which is situated in the
unstable shelf of Iraq within the physiographic zone called Foothill Zone (in the
middle of Hemrin- Makhul subzone). The north eastern limb of the anticline reaches
to 50° and the dip of the south western limb reaches to 70°. The core of the structure
comprises the rocks of Fat’ha Formation surrounded by rocks of Injana and
Mukdadiya Formations, whereas Bai-Hasan Formation forms the slopes of the low
hills surrounding the anticline. These Formations range in age from Middle Miocene
to Pliocene. More than 761 readings of joint planes were collected from 20 stations
within 5 traverses in the study area. The study of joint sets and system was within
Injana and Mukhdadiya formations, along traverses with 3-5 stations for each travers
track. The results showed the presence of two sets of tension joints (bc, ac) and five
sets of shear joints, through defining the maximum stress axis (c1) and acute angle
dividers for these conjugate joints. It was determined that two directions of
Paleostress are present in the area, which are NE-SW and NW-SE. The direction of
the first major stress (NE-SW) is orthogonal with, or normal to, the fold axis in the
study area, which can be considered as a horizontal component which resulted from
obligue collision of Arabian and Eurasian Plates. This old compressive stress is the
reason behind the formation of the tension joint (ac) and shear joints, where the sets
(ac) and system are perpendicular-semi perpendicular to the bedding plane, as they
were formed at an early stage of folding. Also, the ) joint was formed in five tectonic
stages with different time intervals. Joints formed in different tectonic stages, in the
study area, are attributed to oblique collision of Arabian and Eurasian plates and
counter clockwise rotation of Arabian plate relative to Eruasian plate.

Keywords: paleostress, pulkhana anticline, tension joints, shear joints, Arabian
plate, compressive strength.
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1- Introduction

The state of stress in the rocks is generally anisotropic and is defined by stress ellipsoid axes, which
characterize the magnitude of the principal stresses [1]. Stress analysis is a useful and popular tool for
structural and seismological elements [2]. If an ellipsoidal body undergoes positive compression, the
longest axis is the ellipsoid’s major stress (61), the intermediate axis is the intermediate stress (62),
and the shortest axis is the minimum stress (63) [3]. Several paleostress inversion methods have been
developed using graphical and analytical means. The orientation and shape of the stress ellipsoid, with
respect to earth’s surface, controls the type, orientation and slip sense of faults developed in an area
[4]. Extensional structures grow perpendicular to a minimum principal stress (63) [5]. (61) is oriented
perpendicular to compressional structures, and for strike- slip fault and other tectonic structures
produced by shearing, the intermediate stress is vertical [6,7]. Although paleostress analysis proved to
be empirically valid and successful, there are some limitation to its usage [8]. Paleostress inversion
studies are used to understand the effects of past slip events along active fault by making use of
deflection in the orientations of the stress axes to recognize stress perturbations near the major fault
[9,10]. Standard paleostress inversion techniques are used only for determining the orientations and
relative magnitude (stress ratio) of the regional principal stress axes [4]. It is assumed that slip on the
activated pre-existing planes of weaknesses and newly developed faults occur in accordance with the
orientation and relative magnitudes of the principal stresses [11].

When the fault cannot be observed by paleostress analysis, joints have been used instead [12].
Joints as paleostress markers provide the record of stress orientation at the time of propagation and are
often extensional in nature [13,14]. Joints can be used separately or collectively with other structures,
including contractional fractures such as stylolites, to constrain the stress field that led to their
formation [12]. The assumption is that the fractures formed in the same homogenous stress field, i.e.
related to the same deformational event that the rocks themselves are fairly homogenous, do not
significantly perturb the stress field in their vicinity, and also that the structures have not rotated
significantly since their initiation [15].

This study aims to rebuild the evolution of the collision between the northeastern parts of the
Arabian plate with the Eurasian plate, in addition to determining the plaeostress in the northeast limb
of the Pulkhana anticline. In order to achieve that, we analyzed more than 760 joint slip surfaces in the
study area.
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2- Geological Setting

The study area is located between latitudes (34° 39' 34.9" N _ 35° 01' 15.6") and longitudes (44° 31'
52.7" E_ 45° 00' 57.3" E). The northwestern end of the study area is located in Salah Al- Deen
Governorate, while the southeastern end is located in Diyala Governorate (Figure-1). The study area
forms a part of the Zagros Folded Zone which is situated within the physiographic zone called Foothill
Zone (in the middle of Hemrin- Makhul subzone) in the unstable shelf of Iraq [16] (Figure-2).
Pulkhana anticline (study area) is one of the important structural elements in Hemrin- Makhul
subzone. It has asymmetric long anticline trends (NW_SE). The anticline is overthrust from the NE in
the exposed rocks and the most of the SW limb of the anticline is absent beneath the recent deposits
(Figure-3). The dip of the north eastern limb of the anticline reaches 50°, while the dip of the south
western limb reaches to 70°. Accordingly, Pulkhana anticline is an upright anticline depending on its
axial plane, while it is a gentle anticline depending on its interlimb angle (Table-1& Figure-4),
according to the classification of a previous study [17].
This information must be moved to the first page

The core of the structure comprises rocks of Fat’ha Formation surrounded by rocks of Injana and
Mukdadiya formations, whereas Upper Bakhtiary Formation forms the slopes of the low hills
surrounding the anticline. These Formations range in age from Middle Miocene to Pliocene [18].
The present study was conducted in the exposed Fat’ha, Injana, and Mukdadiya Formations. In the
study area, the exposed Fatha Formation includes 641.8m thick layers of gypsum, limestone,
claystone and marl. Gypsum is white, occasionally light grey and medium grey, moderately hard to
hard, massive, occasionally showing nodules, bands and rosy shapes, randomly fractured, and
occasionally filled by clay minerals. Limestone beds are pale yellowish brown to dark yellowish
brown, moderately hard to hard, thinly to thickly bedded, fossiliferous, fractured, occasionally
recrystallized, and showing karst features in some places, while anhydritic and silty in other places.
Claystone is reddish brown, occasionally moderately yellowish brown, soft, and eroded. Injana
Formation is comprised of 1393.6 m thick layers of sandstone and claystone. Sandstone is light
brownish grey to light olive grey, occasionally reddish brown, firm to hard, fine to coarse grained,
thickly bedded, poorly cemented, calcareous, occasionally ripple marked, and cross bedded. Claystone
is moderately reddish brown to moderately brown, soft to firm, thinly bedded, moderately bedded in
some places, silty, and fractured. Mukdadiya Formation includes 655.3m thicklayers of pebbly
sandstone, sandstone and claystone. Sandstone is light olive grey to light grey, occasionally yellowish
grey, soft to firm, coarse to very coarse grained, poorly cemented, cemented in some places,
moderately bedded, occasionally cross bedded, silty, fractured, and pebbly. The size of the pebbles
ranges 1- 1.5 cm. Claystone is moderately brown to light brown, soft to firm, thinly to moderately
bedded, silty, fractured, and eroded. Marl is greenish grey to very pale green, soft, thinly bedded, and
eroded. Bai-Hassan Formation is the youngest Formation in the study area, as recognized on the basis
of the first appearance of thick conglomeratic bed, according to previously reported criteria [19, 20]. It
is characterized by 741m thick layers, calcareous and poorly cemented conglomerates with
intercalated light olive grey sandstone lenses and light brown to moderately yellowish brown
claystone. Conglomerate consists of gravels of different sizes (1-15 cm). The shape of the gravels is
spherical, rod, or bladed .
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Figure 1-Location map of the study area.
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Tectonic map of Iraq
(after Al-Kadhimi et al., 1996)
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Figure 2-Tectonic map of Iraq [19].
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Figure 3-Geological map of the study area.
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Table 1-The classification of Pulkhana anticline depending on its axial plane and interlimb angle.
Type Interlimb Angle Type Dip of Axial Plane | Attitude of Limbs
Dip . Dip .
ot 20 Unrich Angle Strike Angle Strike
entle pright 80 | 318 | 50/70 |318/138

Pole of Second Limb ‘

l Plane of First Limb ‘

I Axial Plane |

! Pole of First Limb ‘

Fold Axis

| Plane of second Limb |

Figure 4-Pi- diagram of pulkhana anticline.

3- Methodology

The methodology of this investigation included three stages; first, the stage of collection of data
from academic books, researches, papers, maps and satellite images as well as personal
communications. Second, field work stage which started with 3 field exploration trips and 13 field
work trips to the study area. The required equipment included a compass device (Brunton) to measure
bedding planes and joint planes and GPS devices (Garmin type) to calculate the location attitude in 5
traverses (Figure- 3). Field observations and calculations included:

- Measuring the dip direction/ dip angle for about 761 joint planes within an area of 5 x 10 m for
each station.

- Brief description of the exposed rocks of each formation in the study area.
Desk work stage included:

- Analyzing and describing joints data by stereographic projection.

- Calculating the paleostress direction of the conjugate joints by measuring their acute bisector ,
using Win- Tensor software.

- Preparing the topographic map of the study area by using GIS software.
4-  Results
Paleostress analysis
In this study, conjugate shear joints were used for analyzing paleostress.
4-1 joints

Joints are among the most common of all geological features. Hardly any outcrop of rock exist that
does not have some types of joints through it. They provide the sequence of tectonic events during
which the joints were formed and the physical characteristics of the rocks in which they occur [21].
Studying of joints in rocks, however, shows that the joints’ geometry is self-similar, which means that
the joints have the same geometric pattern and spatial distribution regardless of whether the scale at
which they are viewed is a microscopic scale, an outcrop scale, or a regional scale [21]. Because the
outcrop scale is easy to observe and is the basis of most field geology studies, we emphasized the
descriptive characteristics of joints at this scale. Joints in the study area were classified according to
their geometrical relations with the three perpendicular geometrical axes (a, b & c.), where (a) is
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parallel to the dip direction, (b) is parallel to the strike direction and (c) is perpendicular to a and b.
This classification was used by an earlier work [21], and followed by later reports [22-26] (Figure-5).
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Figure 5-Geometrical classification of the joints with respect to three orthogonal geometrical axes
[23].

2-1-1 joints analysis in the study are

Dip direction and dip angle were measured for the joint planes as well as the attitude of the bedding
plane which contains the joints. The shear systems appeared either as individual or conjugate. Many
collected data were neglected due to the nonexistence of the two conjugate joints of the system in the
same station.
Traverse 1/ station 1

As shown in Figure-5, the (Okl) acute angle about the (c) shear system was recognized in this
station.
Extensional stress was analyzed from the (Okl) acute about (c) axis with sub horizontal (63) attitude
(04°/325°) associated with the final uplifting of the major fold (Figure- 7B). Figure- 7A shows
field photos of the (Okl) acute about (c) in the study area. Individual (hkO) acute about (a), (hk0) acute
about (b), (hOl) acute about (c) joint systems, and (ac) and (bc) joint sets were recognized in this
station as well (Figure-6).
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Figure 6-Stratigraphic projection of joint poles in traverse 1/ station 1.
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Figure 7A-field photo of (Okl) acute about (c); B: paleostress analysis from (Okl) acute about (c) in
traverse 1/ station 1.

Traverse 1/ station 2

NW-SE compressive stress from (hkO) acute about (b) axis shear system with (cl) attitude

(05°/143°) was recognized in this station (Figures- 8 and 9). Individual (hk0) acute about (a) system as

well as (ac) and (bc) sets were also recognized in this station (Figure-8).
N

I 055 | doobon | .
" % ‘\»\..p_ko»\ D > Bedding plane

/ \\ angle
B No. of Dip Dip "
Ve he readings | angle | direction Type location
! 89 323 -
64 236 b
o2 309 | hk0>a | (34°53'31"N),
62 263 (44°39' 57°E)
68 199 | MKO>b | (injana Fn.)
89 199 -
80 100

Schrmidt Lower
PBT axes N Weight Hode 2
n/nt: 2/2

| | @01 05142
8.02: 60243

E]o-a 29/050

i 0.5 AD: 04
an E QRL:E

Total Dev.(°)
60

0 Sum of Weights 8

Flgure 9A field photo of (hkO) acute about (b) B: paleostress analysis from (hk0)
acute about (b) in traverse 1/ station 2.
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Traverse 1/ station 3

NE-SW compressive stress from (hk0) acute about (a) axis shear systems with (c1) attitude
(31°/072°) and NW-SE compressive stress from (hkO) acute about (b) axis shear systems with (c1)
attitude (05°/322°) were recognized in this station. This stress state is compatible with NW-SE stress
in traverse 1/ station 2 Figures-(10 and 11). Individual (ac) and (bc) tension sets and (hOl) acute about
(c) shear system were also recorded in this station.
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Figure 10-Stereographic projection of joint poles in traverse 1/ station 3.
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Figure 11 A- paleostress analysis from (hk0) acute about (a); B: paleostress analysis from (hkQ) acute
about (b) in traverse 1/ station 3.

0 Sum of Weights 8

Traverse 1/ station 4

compressive stress from (hk0) acute about (a) axis shear systems with (c1) attitude (31°/064°)
and NW-SE compressive stress from (hk0) acute about (b) axis shear systems with (c1) attitude
(02°/340°) were recognized in this station. This stress state is compatible with NE-SW stress in
traverse 1/ station 3 and NW-SE stress in traverse 1/ stations 2 & 3 (Figures 12 and 13). Individual
(ac) and (bc) tension sets were recorded in this station as well.
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Figure 12-Stratigraphic projection of joint poles in traverse 1/ station 4.
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Figure 13 A-paleostress analysis from (hk0) acute about (a); B: paleostress analysis from (hk0) acute
about (b) in traverse 1/ station 4.

Traverse 1/ station 5

NE-SW compressive stress from (hk0) acute about (@) axis shear systems with (61) attitude
(38°/060°) and NW-SE compressive stress from (hkO) acute about (b) axis shear systems with (c1)
attitude (02°/140°) were recognized in this station. This stress state is compatible with NE-SW stress
in traverse 1/ stations 3 & 4 and NW-SE stress in traverse 1/ stations 2, 3 & 4 (Figures-(14 and 15).
Individual (ac) and (bc) tension sets as well as (hOl) acute about (c) system were also recorded in this
station.
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Figure 15 A-paleostress analysis from (hk0) acute about (a); B: paleostress analysis from (hk0) acute
about (b) in traverse 1/ station 5.

0

Traverse 2/ station 1

As shown in Figure-16, the following shear systems were recognized: (hkO) acute about (a) axis
, (hk0) acute about (b) axis, (h0Ol) acute about (c) axis, and (Okl) acute about (c) axis. The paleostresses
which were analyzed from the shear joint systems are as described below.
Compressive stress
a) NE-SW compressive stress from (hk0) acute about (a) axis with (c1) attitudes (27°/048°),
normal to sub-normal to the general trend of the major anticline. This stress state is compatible with
NE-SW stress in traverse 1/ stations 3, 4 & 5 and it seems as being responsible for the initial folding of
the anticline (Figure- 17A).
b)  NW-SE compressive stress from (hk0) acute about (b) with (c1) attitudes (04°/132°) (Figure-
17 B). This stress state is compatible with NW-SE stress in traverse 1/ stations 2, 3, 4 & 5.
Extensional stress
a) NE-SW extensional stress from (hOl) acute about (c) axis with sub horizontal (c3) attitude
(02°/047°) associated with the final uplifting of the major fold (Figure 17 C).

b)  NW-SE extensional stress from (0kl) acute about (c) with (c3) attitudes (03°/318°) (Figure- 17
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D). This stress state is compatible with NW-SE stress in traverse 1/ station 1. Individual (ac) and (bc)

tension sets were recorded in this station as well.
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Figure 16-Stratigraphic projection of joint poles in traverse 2/ station 1.
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Figure 17 A- paleostress analysis from (hk0) acute about (a); B:—palleostress analysis from (hkO0) acute
about (b); C: paleostress analysis from (hOl) acute about (c); D: paleostress analysis from (Okl) acute
about (c) in traverse 2/ station 1.
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Traverse 2/ station 2

NE-SW compressive stress from (hkO) acute about (a) axis shear system with (c1) attitude
(23°/055°) was recognized in this station (Figures- 18 and 19). Individual (hkO) acute about (a) axis
and (hOI) acute about (c) axis systems as well as (ac) and (bc) sets were also recognized in this station.
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Figure 18-Stratigraphic projection of joint poles in traverse 2/ station 2.
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Figure 19 A-field photo of (hk0) acute about (a); B: paleostress analysis from (hk0)
acute about (a) in traverse 2/ station 2.

Traverse 2/ station 3

NE-SW compressive stress from (hk0) acute about (a) axis shear systems with (cl) attitude
(25°/052°) and NW- SE extensional stress from (0kl) acute about (c) axis shear systems with (c3)
attitude (01°/317°) were recognized in this station (Figures- 20 and 21). Individual (ac) and (bc)
tension sets as well as (hOl) acute about (c) axis system were recorded in this station.
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Figure 20-Stratigraphic projection of joint poles in traverse 2/ station 3.
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Figure 21 A-paleostress analysis from (hk0) acute about (a); B: paleostress analysis from (0kl) acute
about (c) in traverse 2/ station 3.

Traverse 2/ station 4

NE-SW compressive stress from (hk0) acute about (a) axis shear systems with (c1) attitude (26°/056°)
and NE- SW extensional stress from (hOl) acute about (¢) axis shear systems with (63) attitude
(03°/049°) were recognized in this station (Figures- 22 and 23). Individual (ac) and (bc) tension sets as
well as (hkQ) acute about (b) axis system were recorded in this station.
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Figure 22-Stratigraphic projection of joint poles in traverse 2/ station 4.
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Figure 23 A- paleostress analysis from (hk0) acute about (a); B: paleostress analysis from (h0l) acute
about (c) in traverse 2/ station 4.

Traverse 3/ station 1

NW-SE compressive stress from (hk0) acute about (b) axis shear system with (c1) attitude
(02°/323°) was recognized in this station (Figures- 24 and (Figure- 25 B). Individual (hk0) acute about
(a) axis, (hOl) acute about (c) axis, (Okl) acute about (c) axis systems as well as (ac) and (bc) sets were
recognized in this station. Figure- 25 A shows a field photo for (hOl) acute about (c) axis system.

2951



Othman and Jadda Iragi Journal of Science, 2020, Vol. 61, No. 11, pp: 2936-2963

B
I \\ g direclfion

. Bedding plane
2% Dip

hk0>be. angle

No. of Dip Dip :
readings | angle | direction Type location
89 318 =
65 | 226 b

80 | 305 | hkosa | (3450'22'N),
(44 43'12°E)

42 65 207 3
> hk0=b (Injana
67 260 Formation)
87 225 hOl=¢
75 330 Okl=c

Schmidt Lower]
PBT axes N Weight Mode 2
n/nt: 2/2

®ol: 02/323
Aoﬂ: £4/228
[#]03: 28054

R: 0.5 AD: 0.4
QRw: E QRE: E
Total Dev.(°)
60

30

0

0 Sum of Weights 8

Figure 25 A-field photo of (hOI) acute about (c); B: paleostress analysis from (hk0) acute about (b) in
traverse 3/ station 1.

Traverse 3/ station 2

As shown in Figure-26, the following shear systems were recognized: (hkO) acute about (a) axis
, (hk0) acute about (b) axis, and (Okl) acute about (c) axis. The paleostresses which were analyzed
from shear joint systems are described below
Compressive stress
a)  NE-SW compressive stress from (hkO) acute about (a) axis with (o1) attitudes (22°/050°),
normal to sub-normal to the general trend of the major anticline (Figure- 27 A).
b) NW-SE compressive stress from (hkQ) acute about (b) with (e1) attitudes (04°/319°). (Figure-
27 B).
Extensional stress
Analyzed from (OKI) acute about (c¢) with (63) attitudes (02°/314°) (Figure- 27 C). Individual (ac) and
(bc) tension sets were recorded in this station as well.
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Figure 26-Stratigraphic projection of joint poles in traverse 3/ station 2.
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Figure 27 A-paleostress analysis from (hk0) acute about (a): B: paleostress analysis from (hk0) acute

about (b); C: paleostress analysis from (Okl) acute about (c) in traverse 3/ station 2.

Traverse 3/ station 3

NW-SE compressive stress from (hk0) acute about (b) axis shear system with (c1) attitude
(03°/322°) was recognized in this station (Figures- 28 and 29). Individual (hOl) acute about (c) axis

and (OKI) acute about (c) axis systems as well as (ac) and (bc) sets were recognized in this station.
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Figure 28-Stratigraphic projection of joint poles in traverse 3/ station 3.
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Figure 29-paleostress analysis from (hk0) acute about (b) in traverse 3/ station 3.

Traverse 3/ station 4

As shown in Figure-30, (hkQ) acute about (b) axis and (0Okl) acute about (c) axis shear systems were
recognized. The paleostresses which were analyzed from the shear joint systems are described below.

Compressive stress

Analyzed stress from (hk0) acute about (b) with (c1) attitudes (04°/319°) was found in this station
(Figure-31 A).
Extensional stress

Analyzed from (0kl) acute about (c¢) with (63) attitudes (02°/314°) (Figure- 31 B). Individual (ac)
and (bc) tension sets were recorded in this station as well.
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Figure 30-Stratigraphic projection of joint poles in traverse 3/ station 4
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Figure 31 A-paleostr-ess analysis from (hk0) acute about (b); B: paleostress analysis from (Okl) acute

about (c) in traverse 3/ station 4.

Traverse 4/ station 1

NW-SE compressive stress from (hk0) acute about (b) axis shear system with (c1) attitude
(03°/130°) was recognized in this station (Figures- 32 and 33). Individual (hk0) acute about (a) axis as
well as (ac) and (bc) sets were recognized in this station.
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Figure 32-Stratigraphic projection of joint poles in traverse 4/ station 1.
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Figure 33-Paleostress analysis from (hk0) acute about (b) in traverse 4/ station 1.

Traverse 4/ station 2

No conjugate shear joint systems were observed in this station (Figure-34), whereas individual
(hk0) acute about (a) axis, (hk0) acute about (b) axis, (hOl) acute about (c) axis systems, as well as (ac)

and (bc) sets were recognized.
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Figure 34-Stratigraphic projection of joint poles in traverse 4/ station 2.

Traverse 4/ station 3

NE-SW compressive stress from (hk0) acute about (a) axis shear system with (c1) attitude
(37°/044°) was recognized in this station (Figures- 35 and 36). Individual (hk0) acute about (b) axis,

(hOl) acute about (c) axis systems, as well as (ac) and (bc) sets were recognized in this station.
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Figure 35-Stratigraphic projection of joint poles in traverse 4/ station 3.
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Figure 36-Paleostress analysis from (hkO) acute about (a) in traverse 4/ station 3.
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Traverse 4/ station 4
As shown in Figure- 37, (hkO) acute about (b) axis and (Okl) acute about (c) axis shear systems
were recognized. The paleostresses which were analyzed from the shear joint systems are described

below.

Compressive stress

Analyzed stress from (hk0) acute about (b) with (c1) attitudes (03°/323°) was found in this station

(Figure- 38 A).
Extensional stress

Analyzed from (0kl) acute about (c¢) with (c3) attitudes (02°/132°) (Figure- 38 B). Individual (hk0)

acute about (a) axis system as well as (ac) and (bc) sets were also recorded in this station.
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Figure 37-Stratigraphic projection of joint poles in traverse 4/ station 4
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Figure 38 A-paleostress analysis from (hkO) acute about (b),; B: paleostress analysis from (0Okl) acute
about (c) in traverse 4/ station 4.
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Traverse 5/ station 1

As shown in Figure- 39, (h0Ol) acute about (a) axis and (hOl) acute about (c) axis shear systems were
recognized. The paleostresses which were analyzed from the shear joint systems are described below.
Compressive stress
Analyzed stress from (hOl) acute about (a) with (c1) attitudes (01°/016°) was found in this station
(Figure- 40 A).
Extensional stress
Analyzed stress from (hOl) acute about (¢) with (63) attitudes (04°/018°) was found in this station
(Figure-40 B). Individual (hkO) acute about (b) axis shear system as well as (ac) and (bc) sets were
also recorded in this station.
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Figure 39-Stratigraphic projection of joint poles in traverse 5/ station 1.
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Figure 40 A-paleostress analysis from (hOl) acute about (a),; B: paleostress analysis from (hOl) acute
about (c) in traverse 5/ station 1.

Traverse 5/ station 2

No conjugate shear joint systems were observed in this station (Figure- 41), while individual (hkO)
acute about (a) axis, (hk0) acute about (b) axis, (hOl) acute about (c) axis systems, as well as (ac) and
(bc) sets were recognized.

2959



Othman and Jadda Iragi Journal of Science, 2020, Vol. 61, No. 11, pp: 2936-2963

N

-l e 033 | Dip

P \/ direction Beddiicalne
B | hobey N\, Dip gp
/ 43 d
\/7 p 7 hk0>b \ i i angle
[ ® o % No. of Dip Dip s fociia
hk0>a i ® he i readings angle direction ype ocation
! 89 302 ac
] 49 205 be | (34:43'09"N),
27 52 183 | hk0>b | (44°5720'E)
. 77 133 | hko=a | (InjanaFn)
l ) 77 | 209 | hobc
\ i sl
\
\ /*
\ A
M <
\’\’\ /(/
‘ S

Figure 4-Stratigraphic projection of joint poles in traverse 5/ station 2.

Traverse 5/ station 3

NE-SW compressive stress from (hOl) acute about (a) axis shear system with (cl) attitude
(02°/015°) was recognized in this station (Figure- 42 and B). Individual (hk0) acute about (b) axis
system as well as (ac) and (bc) sets were also recognized. Figure- 43 A shows a field photo for (hOl)
acute about (a) in the study area.
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Figure 42-Stratigraphic projection of joint poles in traverse 5/ station 3
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Flgure 43 A- fleld photo of (h0l) acute about (a); B: paleostress analysis from (hOl)
acute about (a) in traverse 5/ station 3.

Discussion

Pulkhana anticline is considered as of a Fault — Propagation Fold type [27-31] . The dip of the
south western limb of the anticline was previously reported to be about 70°, whereas the dip of the
north eastern limb reached to 50° [18]. Accordingly, Pulkhana anticline is classified as a gentle fold
depending on its interlimb angle or as an upright fold depending on its dip of axial plane.

Pulkhana anticline intersects by many of joint sets, some of which are parallel to the hinge line of
the fold and the others are vertical. From the study of these joints in Injana and Mukdadiya
Formations across five traverses vertical to the strike of bedding, two types of orthogonal extensional
joint sets (ac & bc) and five types of shear joint systems (hk0>a, hk0>b, hOl>a, hOl>c & Okl>c) were
distinguished.

Locating the maximum principal stress axis (1) from the acute bisectors of shear joints clarified
that the most prevalent Paleostress directions are NE- SW and NW- SE. The main principle stress
(NE- SW) was represented in the form of (ac) tension joints and (hk0>a & h0I>a) shear joints, whereas
the secondary principal stress (NW- SE) was represented in the form of (bc) tension joints and (hk0>b)
shear joints. The (hOI>c & Okl>c) shear joints developed by the extensional phase were associated with
NE- SW and NW- SE compressive stresses.

The formation of joints in multi- tectonic stages (i.e. different directions of maximum principal
stress ¢1) in the study area could be attributed to the oblique collision between the Arabian plate and
Eurasian plate, as well as the counter clockwise rotation of the former relative to the latter.
Conclusions
1- Joints formed in different tectonic stages, in the study area are attributed to obligue collision of the
Arabian and Eurasian plates, in addition to the counter clockwise rotation of the former relative to the
latter plates.

2- Most probably, the growth of Pulkhana anticline started in the Middle Miocene as fold-related fault
and developed in late Pliocene with influences by the conjugated strike slip fault.

3- Paleostress analysis for fracture structures indicated that the studied area was subjected throughout
it geological history to the compression stresses (NE-SW trend) which was perpendicular to Pulkhana
anticline axis.

4-Pulkhana anticline undergoes more than one tectonic stress regime, and this can be noticed from the
different values of stress directions in the study area. the best evidence enhancing this scenario is the
existence of (hkl) joints in the study area.

5-The study of joints in the NE limb of Pulkhana anticline clarified that the most prevalent paleostress
directions are NE-SW and NW-SE.
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6-The NE-SW stress direction is considered as a primary compressive stress resulted from the oblique
collision between the Arabian plate and Eurasian plate, which seems responsible for the initial folding
in the study area. Whereas the NW-SE stress direction is considered as a secondary compressive stress
developed during the relaxation event succeeding the primary compressive pulse.

7-The NE-SW extensional stress is considered as a releasing phase that is associated with the final
uplift of the fold.

8-The NW-SE extensional face is considered as an extensional stress related to the primary NE-SW
compressive stress.

9-The hkl joints could be resulted from the local stresses.

Finally, a detailed seismic reflection section is recommended to achieve a better view of the
stratigraphy and to indicate a conclusive evidence of the occurrence of the strike slip movement.
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