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Abstract

Let R be a commutative ring with identity and M be an R-module. In this work,
we present the concept of semi-T-maximal sumodule as a generalization of T-
maximal submodule.
We present that a submodule K of an R-module M is a semi-T-maximal (sortly S- T-

max) submodule if % is a semisimple R-module (where T is a submodule of M).
We investigate some properties of these kinds of modules.
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1. Introduction
Throughout this paper, R is a ring with identity and every R-module is unitary left R-module,
unless otherwise stated. A proper submodule N of M is called maximal if and only if there is no proper
submodule of M different from N containing N properly [1]. The concept of semimaximal
submodules was initially introduced [2] where a submodule N of an R-module M is called
semimaximal submodule if and only if M/N is a semisimple R-module. A previous report [3]
introduced the concept of T-maximal submodule, where a submodule K of M is called T-maximal

submodule of M of % is simple. This concept leads to introduce the following concept; if K and T
are two submodules of an R-module M, K is said to be semi-T-maximal (shortly S-T-max) submodule
of % is a semisimple R-module.

The paper contains three parts. In part two, we investigate the concept of semi-T-maximal
submodule and provide the basic properties of this concept. We observe that the intersection of two
semi-T-maximal submodules is also semi-T-maximal (Prop. 2.2), and the homomerphic image of
semi-T-maximal submodule is semi-T-maximal under certain conditions (Prop. 2.9).
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Also we define a new concept which is called semi-T- Radical and we prove some relations about
it. S.2 Semi-T-maximal submodules

In this section, we present the concept of semi-T-maximal submodules as a generalization of T-
maximal submodules.
Definition 2.1: If K and T are submodules of an R-module M. K is said to be a semi- T-maximal

(shortly S- T-max ) submodule if % is a semisimple R-module.

Remarks and Examples 2.2
(1) Obviously, every T-maximal submodule is a S- T-max subomdule. However, for the Z-module
Q.1fK =6Z, T =5Z then

% = 526+Z6Z & =~ 7, which is Z-semisimple that is K is S-T-max, and K is not T- maximal

because Zg is not simple.

(2) Forany R-module M, If T = 0, then every submodule K of M is S- T-max, since % = % =~ (0)
is semisimple.

(3) Forany R-module M, M is S - T-max .

(4) 1t is clear that every semi-maximal submodule of an R-module M is S -T-max, where a

submodule U of M is semimax if % is semisimple [4]

On the other hand, consider M = (2) € Z,, as a Z-module and K = (8) < M. % ~ 7, is not
semisimple, so K is not semimaximal.
T+K _ (B)+(8) _ (@)

< =~ —— ~
If T (4) < M, then— ® =) Z,
Which is semisimple, that is K is S- T-max submodule of M .
Beside these, if T = M, then every S- T-max submodule of M is semisimple.
(5) If Aand T are submodules of M with A + T = M, then A is semimaximal if and only if A is S- T-
max.

(6) AandT are submodules of M and T is semisimple, then A is S- T-max.

Proof: Since ﬂ—% ( by 2™ Fundamental theorem ) and % is semisimple (because T is

semisimple), hence %A is semisimple and A is S- T-max.
(7) If Kisan S- T-max submodule of M and K; < K, then K; is not S- T-max in general as: when M

be Z-module Q, T =Z,K =6Z,K, = 12Z, K, € K, ﬂ = Z;’;Z =~ Z, which is semisimple, so that K

T+K, Z+12Z

is S- T-max, however —=* =~ o = Z45 is not sem|5|mple and this means K; is not S- T-max.
1

(8) LetT,K<M.IfKisS-T- max thenKisSAmax forallAcCT.
Proof: Since K is S-T-max, then 22X js semisimple. As A € T impllies ﬂ < M and so 22X js

semisimple, that is K is S-A-max.
Proposition 2.3: If N is an §- T-max submodule of N < K < M, then K is S- T-max.

Proof: Let f:% - % defined by f(m + N) = m + K for all m € M. One can easily check that f is

well-define and epimorphic. Since N is S-T-max, % is semisimple so that f(T+N) = s

K

semisimple see [5, cor. (8.1.5), 2, 192]. Thus K is S- T-max.
Corollary 2.4: If N is an S- T-max submodule of M, then N + A is S- T-max, forall A < M.
Corollary 2.5: Let N be an S- T-max submodule of M. Then [N:y, I] is S- T-max, for each ideal I of
R.
Proof: Since N < [N:y, I], the result follows directly by Prop.2.3.
Proposition 2.6: Let T, Kare two submodules of an R-module M. Then TNK is S- T-max, if and only
if K is S- T-max.
Proof:=) It follows directly by Prop.2.3.

<) Since K is S-T-max., then M is semisimple. By 2" iso.Th., e~ T and — =
T+(TNK) T+(T K) .
"~ Tnk T Tk

so that is semisimple. Thus (T N K) is S- T-max.
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Proposition 2.7: Let M be an R-module and let A4, B are two submodules of M then % isomorphic to
a submodule of % ® %.

Proof: Define f:a%@% by f(m)=(m+ A,m+B), Yme M. Then f is a well-defined R-
homomorphism and
kerf ={meM:f(m)= (0,0} ={meM:(im+A,m+ B =(0,0)}

={meM:meANB}=ANB

st M MM, ie M & i MM
Thus by 1™ Fund. Th. ol Imf < " ® = that is e isomorphic to a submodule of " ® =
Proposition 2.8: if A and B are S- T-max submodules of an R-module M, then A N B is an S- T-max
submodule of M.

Proof: Since A and B are S - T-max submodules, then LA and % are semisimple of % and % ,

respectively. By 2™ Fund. Th, M =1 and 22 = L. Now, X408 ~ T i So
T TNA B TNB AnB AanT (ANT)N(BNT)"

that by lemma (2.7) isomorphic to submodule of ) On the other hand,

(ANT)N(BNT) (AnT) (BnT)

is semisimple [ 5. Cor.8.1.5(3), 192 ] so that any submodule of it is semisimple. Thus
T+(ANB)
(ANT)

L

(ANT) (BnT)
is isomorphic semisimple, and hence

AnTINGENT) is semisimple. Therefore (AN B) is S-T-

max.
Since every T-maximal submodule of M is S-T-max, then the intersection of any two T-

maximal submodules is S-T-max.

Proposition 2.9: Let f: M — N be an R-homorphism, and K, T are two submodules of M, such that

ker f € K. If K is S- T-max, then f(K) is S- f(T)-max.

Proof: Since K is S-T-max, then % is a semi simple R—module To prove f(K)is S- f(T)-max, we

% is semisimple. Submodule of —. Define f: —e% by f(m+K) =

f(m) + f(K) for each m € M clearly f is a well defmed R homomorphism. Hence, f(T+K) is

semisimple by [5, cor.(8.1.5)(2),p.192 ] and f(T;:f)( )i semisimple. Thus f(K) S- f(T)-max.

The following result follows directly by Prop. 2.9.
T+K

Corollary 2.10: Let N be an S- T-max submodule on R-module and let K € N. Then —isan$ — —

must show that

max submodule of E'

Proposition 2.11: Let T, K and N be submodules of an R- module M. Then K is S- T-max, whenever

K<N<T+KandN is adirect summand of T + K.
T+K

Proof: To prove that K is S-T-max, we must show that =X s semisimple. Let ¥ =< Then
K <N <T+K,andso by hypothe5|s N is adirect. It summand of T+ K.HenceT + K N EB U for
some U < T + K it follows that 69 M = M and therefore — is a direct summand of T which

R R T+K . ..
implies that —Is semisimple.
Proposition 2.12: Let A, T be submodules of an R-module M with A Z T. If A is S-T-max then
A+T=xR+KforsomeK24andvVx € A+T,x ¢ A.
A+XxR A+T A+T

Proof: let x€A+T and x& A. Then ASA+xRC A+ T, and so <T As — is

A+xR A+T A+T A+xR
semisimple because A is S- T-max, it follows that ==— <® £~ Hence =— = —XEBZ , for some

A
EQT,th|S|mpI|esthatA+T:A+xR+K:xR+KthereforeA+T—xR+K,K2A.

Proposition 2.13: Let M = M;®M, where M; and M, are R-modules, let A< M; B < M,. Then
A®B is an S-T; ®T,-max submodule of M if and only if A is S-T;-max in M; and B is S-T,-max in
M,.
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T, ®T,+(ADB) T,®T, +(A®B) _

Proof: =) if A®B is an S-T;®T,-max in M, then OB

ADB
—(T”Ai:gzw) which is isomorphic to T1+A @2 it follows that

cor 8.1.5(1),192]. Thus A is S-T;-max and B is S-T,-max.
<) If A is S-T;-max and B is S-T,-max, then htd g

Tl:AEBTZJrB is semisimple [ 5, cor.8.1.5(3),192]. But

Therefore A®B is S-T; ®T,-max.
“A submodule A of an R-module M is called essential (large) in M
(shortly A <,¢s M) if whenever ANC =0, C < M, thentwo C = (0)”
[4].
The next two results are characterizations of an S- T-max submodule of a module.
Theorem 2.14: Let M be an R-module and let N £ M and T < M. Then N is S- T-max if and only if
S- T-max if and only if there are A, B <T + N with B 2 N such that T + N = A@B where A is
semisimple, N <., B and N isan S — (T n B)-max submodule of B, also N is semimaximal in B.

Proof: =) Assume N is an S- T-max submodule of M ) M is semisimple. Let A be a complement

of Nin T + N. HenceAEBB<essT+N Now A = 2% W <M and so 5% <® X py [5. Th.8.1.3
=—€B forsome—<T Hence T+ N = (A®ON)+B=A+B

+N ADN
A+N

IS semisimple. Since
T1+A

T-
and -2

T1+A T,+B _ (Ti+A) ®(Ty+B) _ (T1®Ty)+(A®B)

B A®B - A®B

@

(4), p.191]. It follows that = —
(since N € B). We claim that An B = (0), if x € ANB, then x+ N € —ﬂ— = 0T+N , hence

x+N=NandsoxeN. ThusANBESN.ButAn(AnB) € AnN =0, which |mpI|esAnBC

(0), that is A N B = (0). Therefore A@B =T + N. Now, since 4 = AELN < %

Hence 2% s semisimple and so A is semisimple. To prove N <, B.
N

LetC <Band CNN =0. As A is a complement of N, so C < A. It follows that C € ANB (since
C <B). ThusC =0and N <. B.

To show that N is S- TNB-max: we have ANB)AN TN M is

< — but N s sem|3|mple
N N

semisimple and N is an S- TNB-max submodule of B. Moreover 2 ¥ S T’ SO E is sem|3|mple (ie. N
is semimax in B).

<) SinceT + N = AEBB, where A is semisimple, N <, B.

T+N _ A+N
Hence, — = — + —
A+N . .. A . .. A+N . . . .
But — =~ ﬁ and since A is semisimple, so 5 18 semisimple thus — s semisimple. Also N is

. B . .. A+N B . .. . T+N . .. .
semlmaX|maI in B, s0 ~is semisimple. Thus — txis semisimple, that is —Is semisimple and N is
an S- T-max submodule of M.

Theorem 2.15: Let N < M and T < M. Then N is S- T-max if and only if foreach A < T + N, there

exists B< M, B 2 N, BCT+NsuchthatA+B T+NandANnB < N.
A+N T+N

Proof: =) Since N is S- T-max, — Nis semisimple and as — < —— for each A < T + N. Hence
A;N_@TJ'N and OM—MGB for some B<T+N and B DN It follows that T+ N = A +

N+ B = A+ B. Now, IethAﬂB Then +Neﬂn—_0m sothatx € N. ThusANnB S N.

N
<) Let £ < = then A < T + N. By hypothesis, there is B< T+ N, B 2 N such that A+ B =T +

NandAntN Hence

£+E:¥. But ANB 2 N (since A 2 N and B 2 N), henceAﬂB:Nand%ﬂ%=$=0M.
®T+N N

Thus ~ and % is semisimpore therefore N is S- T-max.

As we mentioned in Rem. & exp. 2.2, every T-maximal submodule is an S- T-maximal submodule,
but not conversely. However the know definition are nedeed “A proper submodule N of M is said to
be prime if wheneverrx e N,r € R, x € M,thenx € N orr € (N: M)” [6].

“An R-module M is called prime if (0) is a prime submodule of M”
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Proposition 2.16: If N is an S- T-max submodule of M and P be a prime submodule of M containing
N, then P is a T-maximal submodule.

Proof: By hypothesis, N is S- T-max, so % is semisimple. Also P 2 N implies P is S- T-max by
Prop (2.3) , and hence T%P is semisimple. Since P is a prime submodule of M, then T%P is a prime

submodule of M /P can be obtained as follows:
If r(x + P) = P = Op+r, 7 €R, x € T, then rx € P which implies either x € P or r € (P: M). Hence

P
either x +P=P or rM C P. If X+ P = P, we are done, if rM < P, then r(P +T) S P which

impliesr € [P:P +T],iere ann(T:fP). Therefore TP%P is a prime module. But T%P is semisimple,

T+P . . . .
—— Is simple. Thus P is a T-maximal submodule.

Corollary 2.17: If N is S- T-max and prime submodule, then N is T-maximal.
Proof: It follows directly by Prop. (2.15).
“A module M over an integral domain is called Torsion free if T(M) = 0, where T(M) = {m €
M:there existsr € R,r # 0,mr = 0} 7 [ 4]
“A submodule U of M is pure if MI n U = UI for each ideal I of R” [7].
Corollary 2.18: Let M be a torsion free module over integral domain. If N < P < M such that N is S-
T-max, and P is pure, then P is S- T-maximal.
Proof: Since P 2 N and N is S- T-max, then by (Prop. 2.3), P is S- T-max. Now we can show that P
is a prime submodule as follows:
Letxr e P,r € R, x € M. Then xr € Mr n P = Pr, so that xr = wr for some wr € P. It follows that
(x —w)r = 0 and hence x —w = 0 since M is torsion free. Thus x = w € P and therefore P is prime.
Then P is T-maximal by (Cor. (2.17)).
Corollary 2.19: Let M be a module over integral domain and let N < T(M) < M and N is S-T-max.
Then T (M) is a T-maximal.
Proof: T(M) 2 N, so T(M) is an S-T-max by Prop. 2.3. On the other hand, since T(M) < M, T(M) is
a prime submodule, thus T (M) is a T-maximal submodule of M, by Cor (2.17).
“It is known that every primary submodule N with (N:z M) is a prime ideal, is a prime submodule ”
[8, prop.(2.10) ], where “ a submodule N of M is prime if whenever r € R, x € M , rx € N implies
x€Norr®™ e (N:M) forsomen € Z, “[9].
Corollary 2.20: Let N be a primary submodule of M with (N:; M) is a prime ideal. If N 2 W and W
is S-T-max, then N is T-maximal.
S3 Semi- T-Redical
Authors of a previous work [3] denoted the intersection of T-maximal submodule in an R-module M
(where T < M) by Rad M.

We introduce the following:
Definition 3.1: let M be an R-module and T < M. The intersection of all S-T-max submodules of M
by S—Rad;M.

Note that, forany T < M, M is S-T-max.
Examples 3.2:
1- Consider the Z- module Z,o0. If T = Z,00, then for each proper submodule A of Z, o, AA%T =
A+Zpoo - Zp

~ 2 o Zpo0 is not semisimple, so A is not S-T- max. Hence S — RadyZ,% = Z,. Also
A A

RadyZ,w = Z,00 by [ 10, Ex. 1.3.18].

2- Consider M = Z;, as a Z-module. Let T = (4) since O+ _ @O+®

= i (4) which is semisimple, so
that (0) is S-T- max. Thus S — Rad;Z;, = (0) on the other (0) is not T- maximal sice @T+T is not
simple. Now it is easy to notice that N; = (2) is not T- maximal, N, = (3) is T- maximal, N; = (4) is
not T-maximal, N, = (6) is T-maximal, Ny = M is not T-maximal. Thus Rad;M = (3) N (6) = (6)
and hence S — RadrM < Rad;M.
To prove the next result, we need the following:
Proposition 3.3: Let M and N be R-modules, let f: M — N be an epimorphism, let T < M and K <
N.If K isan S — f(T)-max submodule of N then f~1(K) is an S — T-max submodule of M.
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Proof: Since K is S — f(T)-max, then f(T)+K is semisimple. To prove that f~1(K) is S — T-max, we
fTHE)+T fE)+T c -1 c
must show that ——— 10 is semisimple. Let 1(1<) === then A< f~(K)+ T and so f(A) <

fFHE) + (1) =K + f(T).
But £~ (K) € A implies K = ff~*(K) < f(4). Hence %
tat L2 <9 50 ang 0 K490 D for some . < K49, ence ke + £7) = £)+ W,

This implies that f~*(K + f(T)) = fY(f(A) +w) and so f~Y(K)+ f~1f(T)) =f~1f(A) +
f~Y(w) (since f is epi.) Thus f~Y(K) + T + kerf = A+ker f + f~1(W), but kerf = f~1{0} <

T (which is semisimple). It follows

FLUK), kerf =f"H0}< f-i(W), then FY(K)+T =A+f- (W). Therefore L ;1_(1’2: -
A 7w 7w

=) f =T . Moreover, we can see that: mn = = (0)

as follows:-

Let a+f K e 1(1<) n’; 7ol ) Thena € A Nnf (W) and f(a) € f(A) N W, hence f(a) +K €
A -

Y= (0) s0 that f(a) €K; that is a € F71(K). Thus a+ f~2(K) = f7(K) = (0)4/p-10x)-

7w _ <@ [~ (K)+T 1
Therefore 1(1<) nZ =1 = (0) and 1(1<) < ,thatis f~(K) is S — T-max.

Theorem 34 Let M and N be R- modules f:M — N be an epimorphism such that ker f < S —
Radr M. Then f(S—Radr M) = S—Radsry N
Proof: Since S—Rady M = Niep 4, A; IS S-T-max, Vi€ A, f(S—Radr M) = f(Niep4;) S
Niea f(4;). But kerf € A;, Vi € A by hypothesis,
Niep f(A;) = f(Niep A)), that is f(S—Rady M) = Nea f(4;). By (Prop.(3.3)) and (Prop. 2.9), A is
S-T-max, implies f(A) is S-f(T)-max and B is S-f(T)-max, implies f~1(B) is S-T-max. Therefore
f(S—RadT M) = niEAf(Ai) = S—Radf(T) N.
Proposition 3.5: Let M = M;®M, where M, and M, are submodules of M, with annM; + annM, =
R and T = T,®T, < M then S — Rad;M = S — Radr, M, ®S — Rad,M,.
Proof: S — Rad;yM = N 4;, A; is S — T-max submodule of M. since annM; + annM, = R, then
A; = B;®W, for some B; < M; and C; < M,. Hence S — Rad+M = N1 B;® Nier W;. Moreover, for
each i €1, 4; is an § — T-max submodule of M = M;®M,, implies B; is an S — T;-max submodule
of M,; and C; is an S — T,-max submodule of M,. Vi €l, by Prop. 2.12, S —Rad;M =S —
Radr, M @S — Rady,M,.

Let M be an R-module and T be a nonzero submodule of M. “M is said to be T-cosemisimple if
every submodule of M is the intersection of T-maximal submodules” [3].

We state that M is semi T-cosemisimple if every submodule is the intersection of S — T-max
submodules.
Remarks 3.6: Let M be an R-module and T is a semisimple submodule of M. Then S — Rad+M = 0.
Proof: By [3, Prop. 39], RadrM =0. But S —Rad;M S RadrM by [Ex.3.2(2)]. Thus S —
Rad+M = 0.

We conclude the paper with the following proposition.

Proposition 3.7: Let M be an R-module and T be a nonzero submodule of M, Then:
1- If M is semi- T-cosemisimple, then every submodule of M containing T is semi- T-cosemisimple

M . . T+K ..
module and — is semi——cosemisimple.
2- If M is semi-T-cosemisimple if and only if S'Radﬂ% = 0.

K
Proof (1): Suppose T € N € M and M is semi-T-cosemisimple. If L < N, then L =L n N. Since
L<M,L=nyS,where A is aset of S-T-maximal submodule of M. Hence L = (N4, S) NN =Ny (SN
N).
But 8o+, T . T o ﬂ which is sem|5|mple Thus S N N is an S-T-max submodule of M
SNN SNNNT sNT

and N is semi-T-cosemisimple. Now, let ﬁ < ﬁ. Then L <M and L =ny4 S, where A is a set of S-T-
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max submodules of M. Thus% = OT =Ny (N) But each S is S-T-max, hence =isan S-— -max, by
cor. 2.10, therefore % is a semi TT cosemisimple module.

(2) Suppose that M is semi-T-cosemisimple and K <M. S-Radr+kM = Ny % where A =
K

{i <Z.2 isans — X — max submodule of M}

K K K K K

Since % isanS — % max if S is an S-T-max submodule of M, by (cor. (2.10)).
Hence% € A*ifand only if S € 4, where

A*={S2K:S<MandSisS—T — maxsubmodule of M}
Now K < M implies K =ng S where B is a set of S-T-max submodule of M, so B € A*. Hence

Ny =242 = 0, that - RadraxM = 0.
Conversely, suppose that S- Radm{;— 0 for all K <M then S- Radnx( ) nAK n’;;s 0,
K K
where
Ao S <M S S T+K bimodul M
{K Eﬁlsan —T—maxsu mo ueofK}

A={S2K:S<MandSisan$§—T — maxsubmodule of M}
Therefore N4 S = K and so M is semi-T-cosemisimple.
Next, the Z-module Z,, is semi -T-cosemisimple where = (4) , since every submodule is an S-T-max.
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