Iraqi Journal of Science, 2019, Vol. 60, No. 12, pp: 2725-2731 DOI: 10.24996/ijs.2019.60.12.23

ISSN: 0067-2904

Semi-T-maximal sumodules Inaam, M. A. Hadi¹, Alaa A.Elewi²

¹Department of Mathematics, College of Education for pure Science (Ibn-Al-haithum), University of Baghdad,

Baghdad, Iraq

² Department of Mathematics, Collage of Science, University of Baghdad, Baghdad, Iraq

Received: 6/6/2019

Accepted: 27/7/2019

Abstract

Let R be a commutative ring with identity and M be an R-module. In this work, we present the concept of semi-T-maximal sumodule as a generalization of T-maximal submodule.

We present that a submodule *K* of an *R*-module *M* is a semi-*T*-maximal (sortly *S*-*T*-max) submodule if $\frac{T+K}{K}$ is a semisimple *R*-module (where *T* is a submodule of *M*). We investigate some properties of these kinds of modules.

Key Words: T-maximal submodule, Semi maximal, T-Radical, T-cosemisimple

المقاسات الجزئيه شبه العظمى من النمط T

أقسم الرياضيات، كلية العلوم الصرفه ، جامعة بغداد، بغداد، العراق

²قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصه

لتكن Rحلقة ابداليه ذات عنصر محايد و M مقاسا معرفا على الحلقة Rفي هذا البحث قدمنا مفهوم المقاس الجزئي شبه الاعظم من النمط T كتعمييم للمقاس الاعظم من النمط T . يدعى المقاس الجزئي K من المقاس M المعرف على الحلقة R بانه مقاس جزئي شبه اعظم من النمط T اذا كان $\frac{T+K}{K}$ مقاس شبه بسيط على الحلقة R . قدمنا بعض الخصائص لهذا النوع من المقاسات.

1. Introduction

Throughout this paper, *R* is a ring with identity and every *R*-module is unitary left *R*-module, unless otherwise stated. A proper submodule *N* of *M* is called maximal if and only if there is no proper submodule of *M* different from *N* containing *N* properly **[1]**. The concept of semimaximal submodules was initially introduced [2] where a submodule *N* of an *R*-module *M* is called semimaximal submodule if and only if *M*/*N* is a semisimple *R*-module. A previous report [3] introduced the concept of *T*-maximal submodule, where a submodule *K* of *M* is called *T*-maximal submodule of *M* of $\frac{T+K}{K}$ is simple. This concept leads to introduce the following concept; if *K* and *T* are two submodules of an *R*-module *M*, *K* is said to be semi-*T*-maximal (shortly *S*-*T*-max) submodule of $\frac{T+K}{K}$ is a semisimple *R*-module.

The paper contains three parts. In part two, we investigate the concept of semi-T-maximal submodule and provide the basic properties of this concept. We observe that the intersection of two semi-T-maximal submodules is also semi-T-maximal (Prop. 2.2), and the homomerphic image of semi-T-maximal submodule is semi-T-maximal under certain conditions (Prop. 2.9).

^{*}Email: alaa.abbas.math@gmail.com

Also we define a new concept which is called semi-T- Radical and we prove some relations about it. S.2 Semi-T-maximal submodules

In this section, we present the concept of semi-T-maximal submodules as a generalization of Tmaximal submodules.

Definition 2.1: If K and T are submodules of an R-module M. K is said to be a semi-T-maximal (shortly S-T-max) submodule if $\frac{T+K}{K}$ is a semisimple R-module.

Remarks and Examples 2.2

(1) Obviously, every T-maximal submodule is a S-T-max subomdule. However, for the Z-module Q. If K = 6Z, T = 5Z then

 $\frac{T+K}{K} = \frac{5Z+6Z}{6Z} = \frac{Z}{6Z} \simeq Z_6$ which is Z-semisimple that is K is S-T-max, and K is not T- maximal because Z_6 is not simple.

(2) For any *R*-module *M*, If T = 0, then every submodule *K* of *M* is *S*-*T*-max, since $\frac{K+0}{K} = \frac{K}{K} \simeq (0)$ is semisimple.

(3) For any *R*-module M, M is S - T-max.

(4) It is clear that every semi-maximal submodule of an R-module M is S - T-max, where a submodule U of M is semimax if $\frac{M}{U}$ is semisimple [4]

On the other hand, consider $M = \langle \overline{2} \rangle \subseteq Z_{24}$ as a Z-module and $K = \langle \overline{8} \rangle \leq M$. $\frac{M}{K} \simeq Z_4$ is not semisimple, so *K* is not semimaximal.

If
$$T = \langle \overline{4} \rangle \le M$$
, then $\frac{T+K}{K} = \frac{\langle \overline{4} \rangle + \langle \overline{8} \rangle}{\langle \overline{8} \rangle} \simeq \frac{\langle \overline{4} \rangle}{\langle \overline{8} \rangle} \simeq Z_2$

Which is semisimple, that is K is S-T-max submodule of M.

Beside these, if T = M, then every S-T-max submodule of M is semisimple.

(5) If A and T are submodules of M with A + T = M, then A is semimaximal if and only if A is S-Tmax.

(6) A and T are submodules of M and T is semisimple, then A is S-T-max.

Proof: Since $\frac{T+A}{A} \simeq \frac{T}{T \cap A}$ (by 2nd Fundamental theorem) and $\frac{T}{T \cap A}$ is semisimple (because T is semisimple), hence $\frac{T+A}{A}$ is semisimple and A is S-T-max.

(7) If K is an S-T-max submodule of M and $K_1 \le K$, then K_1 is not S-T-max in general as: when M be Z-module Q, T = Z, K = 6Z, $K_1 = 12Z$, $K_1 \subseteq K$, $\frac{T+K}{K} = \frac{Z+6Z}{6Z} \simeq Z_6$ which is semisimple, so that K is S-T-max, however $\frac{T+K_1}{K_1} \simeq \frac{Z+12Z}{12Z} \simeq Z_{12}$ is not semisimple and this means K_1 is not S-T-max.

(8) Let $T, K \le M$. If K is S-T-max, then K is S-A-max, for all $A \subseteq T$. **Proof**: Since K is S-T-max, then $\frac{T+K}{K}$ is semisimple. As $A \subseteq T$ impllies $\frac{A+K}{K} \le \frac{T+K}{K}$ and so $\frac{A+K}{K}$ is semisimple, that is K is S-A-max.

Proposition 2.3: If N is an S-T-max submodule of $N \le K \le M$, then K is S-T-max.

Proof: Let $f:\frac{M}{N} \to \frac{M}{K}$ defined by f(m+N) = m+K for all $m \in M$. One can easily check that f is well-define and epimorphic. Since N is S-T-max, $\frac{T+N}{N}$ is semisimple so that $f\left(\frac{T+N}{K}\right) = \frac{T+K}{K}$ is semisimple see [5, cor. (8.1.5), 2, 192]. Thus K is S-T-max.

Corollary 2.4: If N is an S-T-max submodule of M, then N + A is S-T-max, for all $A \le M$.

Corollary 2.5: Let N be an S-T-max submodule of M. Then $[N:_M I]$ is S-T-max, for each ideal I of *R*.

Proof: Since $N \leq [N:_M I]$, the result follows directly by Prop.2.3.

Proposition 2.6: Let T, Kare two submodules of an R-module M. Then $T \cap K$ is S-T-max, if and only if *K* is *S*-*T*-max.

Proof: \Rightarrow) It follows directly by Prop.2.3.

 \Leftrightarrow) Since K is S-T-max., then $\frac{T+K}{K}$ is semisimple. By 2nd iso.Th., $\frac{T+K}{K} \simeq \frac{T}{T \cap K}$ and $\frac{T}{T \cap K} =$ $\frac{T+(T\cap K)}{T\cap K}$, so that $\frac{T+(T\cap K)}{T\cap K}$ is semisimple. Thus $(T\cap K)$ is S-T-max.

Proposition 2.7: Let *M* be an *R*-module and let *A*, *B* are two submodules of *M* then $\frac{M}{A \cap B}$ isomorphic to a submodule of $\frac{M}{A} \bigoplus \frac{M}{B}$.

Proof: Define $f: \rightarrow \frac{M}{A} \oplus \frac{M}{B}$ by f(m) = (m + A, m + B), $\forall m \in M$. Then f is a well-defined R-homomorphism and

$$kerf = \{m \in M : f(m) = (0,0)\} = \{m \in M : (m + A, m + B = (0,0)\} = \{m \in M : m \in A \cap B\} = A \cap B$$

Thus by 1st Fund. Th. $\frac{M}{kerf} \simeq Imf \leq \frac{M}{A} \bigoplus \frac{M}{B}$; that is $\frac{M}{A \cap B}$ isomorphic to a submodule of $\frac{M}{A} \bigoplus \frac{M}{B}$. **Proposition 2.8:** if A and B are S-T-max submodules of an R-module M, then $A \cap B$ is an S-T-max submodule of M.

Proof: Since *A* and *B* are *S* - *T*-max submodules, then $\frac{T+A}{A}$ and $\frac{T+B}{B}$ are semisimple of $\frac{M}{A}$ and $\frac{M}{B}$, respectively. By 2nd Fund. Th, $\frac{T+A}{A} \cong \frac{T}{T \cap A}$ and $\frac{T+B}{B} \cong \frac{T}{T \cap B}$. Now, $\frac{T+(A \cap B)}{A \cap B} \cong \frac{T}{A \cap B \cap T} = \frac{T}{(A \cap T) \cap (B \cap T)}$. So that by lemma (2.7) $\frac{T}{(A \cap T) \cap (B \cap T)}$ isomorphic to submodule of $\frac{T}{(A \cap T)} \bigoplus \frac{T}{(B \cap T)}$. On the other hand, $\frac{T}{(A \cap T) \cap (B \cap T)} \bigoplus \frac{T}{(B \cap T)}$ is semisimple [5. Cor.8.1.5(3), 192] so that any submodule of it is semisimple. Thus $\frac{T}{(A \cap T) \cap (B \cap T)}$ is isomorphic semisimple, and hence $\frac{T+(A \cap B)}{(A \cap T)}$ is semisimple. Therefore $(A \cap B)$ is *S*-*T*-max.

Since every T-maximal submodule of M is S-T-max, then the intersection of any two T-maximal submodules is S-T-max.

Proposition 2.9: Let $f: M \to N$ be an R-homorphism, and K, T are two submodules of M, such that ker $f \subseteq K$. If K is S-T-max, then f(K) is S-f(T)-max.

Proof: Since K is S-T-max, then $\frac{T+K}{K}$ is a semi simple R-module. To prove f(K) is S- f(T)-max, we must show that $\frac{f(T)+f(K)}{f(K)}$ is semisimple. Submodule of $\frac{N}{f(K)}$. Define $\tilde{f}:\frac{M}{K} \to \frac{N}{f(K)}$ by $\tilde{f}(m+K) = f(m) + f(K)$ for each $m \in M$ clearly \tilde{f} is a well-defined R- homomorphism. Hence, $\tilde{f}\left(\frac{T+K}{K}\right)$ is semisimple by [5, cor.(8.1.5)(2),p.192] and $\frac{f(T)+f(K)}{f(K)}$ is semisimple. Thus f(K) S- f(T)-max.

The following result follows directly by Prop. 2.9.

Corollary 2.10: Let *N* be an *S*-*T*-max submodule on R-module and let $K \subseteq N$. Then $\frac{N}{K}$ is an $S - \frac{T+K}{K}$ -max submodule of $\frac{M}{K}$.

Proposition 2.11: Let *T*, *K* and *N* be submodules of an *R*- module *M*. Then *K* is *S*-*T*-max, whenever $K \le N \le T + K$ and *N* is a direct summand of T + K.

Proof: To prove that *K* is *S*-*T*-max, we must show that $\frac{T+K}{K}$ is semisimple. Let $\frac{N}{K} < \frac{T+K}{K}$. Then $K \le N \le T + K$, and so by hypothesis *N* is a direct. It summand of T + K. Hence $T + K = N \bigoplus U$ for some $U \le T + K$ it follows that $\frac{N}{K} \bigoplus \frac{U+K}{K} = \frac{T+K}{K}$ and therefore $\frac{N}{K}$ is a direct summand of $\frac{T+K}{K}$, which implies that $\frac{T+K}{K}$ is semisimple.

Proposition 2.12: Let A, T be submodules of an R-module M with $A \notin T$. If A is S-T-max then A + T = xR + K for some $K \supseteq A$ and $\forall x \in A + T$, $x \notin A$.

Proof: let $x \in A + T$ and $x \notin A$. Then $A \nleq A + xR \subseteq A + T$, and so $\frac{A+xR}{A} \le \frac{A+T}{A}$. As $\frac{A+T}{A}$ is semisimple because A is S-T-max, it follows that $\frac{A+xR}{A} \le \frac{\Phi}{A} + \frac{T}{A}$. Hence $\frac{A+T}{A} = \frac{A+xR}{A} \oplus \frac{K}{A}$, for some $\frac{K}{A} \subseteq \frac{A+T}{A}$, this implies that A + T = A + xR + K = xR + K therefore $A + T = xR + K, K \supseteq A$.

Proposition 2.13: Let $M = M_1 \oplus M_2$ where M_1 and M_2 are *R*-modules, let $A \le M_1$ $B \le M_2$. Then $A \oplus B$ is an $S - T_1 \oplus T_2$ -max submodule of *M* if and only if *A* is $S - T_1$ -max in M_1 and *B* is $S - T_2$ -max in M_2 .

Proof: \Rightarrow) if $A \oplus B$ is an $S - T_1 \oplus T_2$ -max in M, then $\frac{T_1 \oplus T_2 + (A \oplus B)}{A \oplus B}$ is semisimple. Since $\frac{T_1 \oplus T_2 + (A \oplus B)}{A \oplus B} = \frac{(T_1 + A) \oplus (T_2 + B)}{A \oplus B}$ which is isomorphic to $\frac{T_1 + A}{A} \oplus \frac{T_2 + B}{B}$ it follows that $\frac{T_1 + A}{A}$ and $\frac{T_2 + B}{B}$ are semisimple by [5, cor 8.1.5(1),192]. Thus A is $S - T_1$ -max and B is $S - T_2$ -max.

 $\Leftrightarrow \text{ If } A \text{ is } S - T_1 \text{-max and } B \text{ is } S - T_2 \text{-max, then } \frac{T_1 + A}{A} \text{ and } \frac{T_2 + B}{B} \text{ are semisimple modules. Hence}$ $\frac{T_1 + A}{A} \bigoplus \frac{T_2 + B}{B} \text{ is semisimple } [5, \text{ cor.} 8.1.5(3), 192]. \text{ But } \frac{T_1 + A}{A} \bigoplus \frac{T_2 + B}{B} \approx \frac{(T_1 + A) \oplus (T_2 + B)}{A \oplus B} = \frac{(T_1 \oplus T_2) + (A \oplus B)}{A \oplus B}.$ Therefore $A \oplus B$ is $S - T_1 \oplus T_2$ -max.

"A submodule A of an R-module M is called essential (large) in M

(shortly $A \leq_{ess} M$) if whenever $A \cap C = 0$, $C \leq M$, then two C = (0)" [4].

The next two results are characterizations of an S-T-max submodule of a module.

Theorem 2.14: Let M be an R-module and let $N \not\subseteq M$ and $T \leq M$. Then N is S-T-max if and only if S-T-max if and only if there are A, $B \leq T + N$ with $B \supseteq N$ such that $T + N = A \oplus B$ where A is semisimple, $N \leq_{ess} B$ and N is an $S - (T \cap B)$ -max submodule of B, also N is semimaximal in B.

semisimple, $N \leq_{ess} B$ and N is an $S - (T \cap B)$ -max submodule of B, also N is semisimple. Let A be a complement of N in T + N. Hence $A \oplus B \leq_{ess} T + N$. Now $A \cong \frac{A \oplus N}{N} \leq \frac{T + N}{N}$, and so $\frac{A \oplus N}{N} \leq \frac{\Phi T + N}{N}$ by [5. Th.8.1.3 (4), p.191]. It follows that $\frac{T + N}{N} = \frac{A \oplus N}{N} \oplus \frac{B}{N}$ for some $\frac{B}{N} \leq \frac{T + N}{N}$. Hence $T + N = (A \oplus N) + B = A + B$ (since $N \subseteq B$). We claim that $A \cap B = (0)$, if $x \in A \cap B$, then $x + N \in \frac{A+N}{N} \cap \frac{B}{N} = 0_{\frac{T+N}{N}}$, hence x + N = N and so $x \in N$. Thus $A \cap B \subseteq N$. But $A \cap (A \cap B) \subseteq A \cap N = 0$, which implies $A \cap B \subseteq (0)$, that is $A \cap B = (0)$. Therefore $A \oplus B = T + N$. Now, since $A \simeq \frac{A \oplus N}{N} \le \frac{T + N}{N}$.

Hence $\frac{A+N}{N}$ is semisimple and so A is semisimple. To prove $N \leq_{ess} B$.

Let $C \leq B$ and $C \cap N = 0$. As A is a complement of N, so $C \leq A$. It follows that $C \subseteq A \cap B$ (since $C \leq B$). Thus C = 0 and $N \leq_{ess} B$.

To show that N is $S - T \cap B$ -max: we have $\frac{(T \cap B) + N}{N} \le \frac{T + N}{N}$, but $\frac{T + N}{N}$ is semisimple, so $\frac{(T \cap B) + N}{N}$ is semisimple and N is an $S - T \cap B$ -max submodule of B. Moreover $\frac{B}{N} \le \frac{T + N}{N}$, so $\frac{B}{N}$ is semisimple (i.e. N is semimax in B).

 \Leftarrow) Since $T + N = A \oplus B$, where A is semisimple, $N \leq_{ess} B$.

Hence, $\frac{T+N}{N} = \frac{A+N}{N} + \frac{B}{N}$ But $\frac{A+N}{N} \simeq \frac{A}{A \cap B}$ and since A is semisimple, so $\frac{A}{A \cap B}$ is semisimple thus $\frac{A+N}{N}$ is semisimple. Also N is semimaximal in B, so $\frac{B}{N}$ is semisimple. Thus $\frac{A+N}{N} + \frac{B}{N}$ is semisimple, that is $\frac{T+N}{N}$ is semisimple and N is an S-T-max submodule of M.

Theorem 2.15: Let N < M and $T \leq M$. Then N is S-T-max if and only if for each $A \leq T + N$, there exists $B \leq M, B \supseteq N, B \subseteq T + N$ such that A + B = T + N and $A \cap B \subseteq N$.

Proof: \Rightarrow) Since *N* is *S*-*T*-max, $\frac{T+N}{N}$ is semisimple and as $\frac{A+N}{N} \leq \frac{T+N}{N}$ for each $A \leq T + N$. Hence $\frac{A+N}{N} \leq \frac{\oplus}{N} \frac{T+N}{N}$ and so $\frac{T+N}{N} = \frac{A+N}{N} \oplus \frac{B}{N}$ for some $B \leq T + N$ and $B \supseteq N$. It follows that T + N = A + N + B = A + B. Now, let $x \in A \cap B$. Then $+N \in \frac{A+N}{N} \cap \frac{B}{N} = O_{\frac{T+N}{N}}$, so that $x \in N$. Thus $A \cap B \subseteq N$.

 \Leftarrow) Let $\frac{A}{N} < \frac{T+N}{N}$ then A < T+N. By hypothesis, there is $B \leq T+N$, $B \supseteq N$ such that A+B=T+N and $A \cap B \subseteq N$. Hence

 $\frac{A}{N} + \frac{B}{N} = \frac{T+N}{N}.$ But $A \cap B \supseteq N$ (since $A \supseteq N$ and $B \supseteq N$), hence $A \cap B = N$ and $\frac{A}{N} \cap \frac{B}{N} = \frac{A \cap B}{N} = O_{\frac{T+N}{N}}.$ Thus $\frac{A}{N} \leq \bigoplus \frac{T+N}{N}$ and $\frac{T+N}{N}$ is semisimpore therefore N is S-T-max.

As we mentioned in Rem. & exp. 2.2, every T-maximal submodule is an S-T-maximal submodule, but not conversely. However the know definition are nedeed "A proper submodule N of M is said to be prime if whenever $rx \in N$, $r \in R$, $x \in M$, then $x \in N$ or $r \in (N:M)$ " [6].

"An R-module M is called prime if (0) is a prime submodule of M"

Proposition 2.16: If N is an S-T-max submodule of M and P be a prime submodule of M containing *N*, then *P* is a *T*-maximal submodule.

Proof: By hypothesis, N is S-T-max, so $\frac{T+N}{N}$ is semisimple. Also $P \supseteq N$ implies P is S-T-max by Prop (2.3), and hence $\frac{T+P}{P}$ is semisimple. Since P is a prime submodule of M, then $\frac{T+P}{P}$ is a prime

submodule of M/P can be obtained as follows: If $r(x + P) = P = O_{\frac{P+T}{P}}$, $r \in R$, $x \in T$, then $rx \in P$ which implies either $x \in P$ or $r \in (P:M)$. Hence either x + P = P or $rM \subseteq P$. If X + P = P, we are done, if $rM \subseteq P$, then $r(P + T) \subseteq P$ which implies $r \in [P:P + T]$, i.e $r \in ann(\frac{T+P}{P})$. Therefore $\frac{T+P}{P}$ is a prime module. But $\frac{T+P}{P}$ is semisimple,

 $\frac{T+P}{P}$ is simple. Thus P is a T-maximal submodule.

Corollary 2.17: If *N* is *S*-*T*-max and prime submodule, then *N* is *T*-maximal.

Proof: It follows directly by Prop. (2.15).

"A module M over an integral domain is called Torsion free if T(M) = 0, where $T(M) = \{m \in M\}$ *M*: there exists $r \in R, r \neq 0, mr = 0$ " [4]

"A submodule U of M is pure if $MI \cap U = UI$ for each ideal I of R" [7].

Corollary 2.18: Let M be a torsion free module over integral domain. If $N \le P \le M$ such that N is S-T-max, and P is pure, then P is S-T-maximal.

Proof: Since $P \supseteq N$ and N is S-T-max, then by (Prop. 2.3), P is S-T-max. Now we can show that P is a prime submodule as follows:

Let $xr \in P$, $r \in R$, $x \in M$. Then $xr \in Mr \cap P = Pr$, so that xr = wr for some $wr \in P$. It follows that (x - w)r = 0 and hence x - w = 0 since M is torsion free. Thus $x = w \in P$ and therefore P is prime. Then P is T-maximal by (Cor. (2.17)).

Corollary 2.19: Let *M* be a module over integral domain and let $N \le T(M) < M$ and *N* is *S*-*T*-max. Then T(M) is a T-maximal.

Proof: $T(M) \supseteq N$, so T(M) is an S-T-max by Prop. 2.3. On the other hand, since T(M) < M, T(M) is a prime submodule, thus T(M) is a T-maximal submodule of M, by Cor (2.17).

"It is known that every primary submodule N with $(N_R M)$ is a prime ideal, is a prime submodule " [8, prop.(2.10)], where "a submodule N of M is prime if whenever $r \in R, x \in M, rx \in N$ implies $x \in N$ or $r^n \in (N:M)$ for some $n \in Z_+$ "[9].

Corollary 2.20: Let N be a primary submodule of M with $(N_R M)$ is a prime ideal. If $N \supseteq W$ and W is S-T-max, then N is T-maximal.

S3 Semi- T-Redical

Authors of a previous work [3] denoted the intersection of T-maximal submodule in an R-module M(where $T \leq M$) by $Rad_T M$.

We introduce the following:

Definition 3.1: let M be an R-module and $T \leq M$. The intersection of all S-T-max submodules of M by $S-Rad_T M$.

Note that, for any $T \leq M$, M is S-T-max.

Examples 3.2:

1-Consider the Z- module $Z_p \infty$. If $T = Z_p \infty$, then for each proper submodule A of $Z_p \infty$, $\frac{A+T}{A} =$ $\frac{A+Z_p\infty}{A} \simeq \frac{Z_p\infty}{A} \simeq Z_p\infty \text{ is not semisimple, so } A \text{ is not } S-T- \text{ max. Hence } S - Rad_T Z_p\infty = Z_p\infty. \text{ Also}$ $Rad_T Z_p \infty = Z_p \infty$ by [10, Ex. 1.3.18].

2- Consider $M = Z_{12}$ as a Z-module. Let $T = \langle \bar{4} \rangle$ since $\frac{(\bar{0})+T}{T} = \frac{(\bar{0})+\langle \bar{4} \rangle}{(\bar{0})} \simeq \langle \bar{4} \rangle$ which is semisimple, so that $(\overline{0})$ is S-T- max. Thus $S - Rad_T Z_{12} = (\overline{0})$ on the other $(\overline{0})$ is not T- maximal size $\frac{(\overline{0})+T}{T}$ is not simple. Now it is easy to notice that $N_1 = \langle \bar{2} \rangle$ is not T- maximal, $N_2 = \langle \bar{3} \rangle$ is T- maximal, $N_3 = \langle \bar{4} \rangle$ is not *T*-maximal, $N_4 = \langle \overline{6} \rangle$ is *T*-maximal, $N_6 = M$ is not *T*-maximal. Thus $Rad_T M = \langle \overline{3} \rangle \cap \langle \overline{6} \rangle = \langle \overline{6} \rangle$ and hence $S - Rad_T M \subsetneq Rad_T M$.

To prove the next result, we need the following:

Proposition 3.3: Let M and N be R-modules, let $f: M \to N$ be an epimorphism, let $T \leq M$ and $K \leq M$ N. If K is an S - f(T)-max submodule of N then $f^{-1}(K)$ is an S - T-max submodule of M.

Proof: Since *K* is S - f(T)-max, then $\frac{f(T)+K}{K}$ is semisimple. To prove that $f^{-1}(K)$ is S - T-max, we must show that $\frac{f^{-1}(K)+T}{f^{-1}(K)}$ is semisimple. Let $\frac{A}{f^{-1}(K)} \leq \frac{f^{-1}(K)+T}{f^{-1}(K)}$, then $A \subseteq f^{-1}(K) + T$ and so $f(A) \subseteq ff^{-1}(K) + f(T) = K + f(T)$. But $f^{-1}(K) \subseteq A$ implies $K = ff^{-1}(K) \subseteq f(A)$. Hence $\frac{f(A)}{K} \leq \frac{K+T}{K}$ (which is semisimple). It follows that $\frac{f(A)}{K} \leq \frac{\Phi}{K} + \frac{K+f(T)}{K}$ and so $\frac{K+f(T)}{K} = \frac{f(A)}{K} \oplus \frac{W}{K}$ for some $\frac{W}{K} \leq \frac{K+f(T)}{K}$. Hence K + f(T) = f(A) + W. This implies that $f^{-1}(K + f(T)) = f^{-1}(f(A) + w)$ and so $f^{-1}(K) + f^{-1}f(T)) = f^{-1}f(A) + f^{-1}(W)$ (since *f* is epi.) Thus $f^{-1}(K) + T + kerf = A + ker f + f^{-1}(W)$, but $kerf = f^{-1}\{0\} \subseteq f^{-1}(K)$, $kerf = f^{-1}\{0\} \subseteq f^{-1}(W)$, then $f^{-1}(K) + T = A + f^{-1}(W)$. Therefore $\frac{f^{-1}(K)+T}{f^{-1}(K)} = \frac{A}{f^{-1}(K)} + \frac{f^{-1}(W)}{f^{-1}(K)}$. Then $a \in A \cap f^{-1}(W)$ and $f(a) \in f(A) \cap W$, hence $f(a) + K \in A \cap F^{-1}(W)$.

Let $a + f^{-1}(K) \in \frac{1}{f^{-1}(K)} \cap \frac{1}{f^{-1}(K)}$. Then $a \in A \cap f^{-1}(W)$ and $f(a) \in f(A) \cap W$, hence $f(a) + K \in \frac{f(A)}{K} \cap \frac{W}{K} = (0)$, so that $f(a) \in K$; that is $a \in f^{-1}(K)$. Thus $a + f^{-1}(K) = f^{-1}(K) = (0)_{M/f^{-1}(K)}$. Therefore $\frac{A}{f^{-1}(K)} \cap \frac{f^{-1}(W)}{f^{-1}(K)} = (0)$ and $\frac{A}{f^{-1}(K)} \leq \bigoplus \frac{f^{-1}(K) + T}{T}$, that is $f^{-1}(K)$ is S - T-max.

Theorem 3.4: Let *M* and *N* be *R*-modules, $f: M \to N$ be an epimorphism such that ker $f \leq S - Rad_T M$. Then $f(S - Rad_T M) = S - Rad_{f(T)} N$

Proof: Since $S-Rad_T M = \bigcap_{i \in \Lambda} A_i$, A_i is S-T-max, $\forall i \in \Lambda$, $f(S-Rad_T M) = f(\bigcap_{i \in \Lambda} A_i) \subseteq \bigcap_{i \in \Lambda} f(A_i)$. But $kerf \subseteq A_i$, $\forall i \in \Lambda$ by hypothesis,

 $\bigcap_{i \in \Lambda} f(A_i) = f(\bigcap_{i \in \Lambda} A_i), \text{ that is } f(S - Rad_T M) = \bigcap_{i \in \Lambda} f(A_i). \text{ By (Prop.(3.3)) and (Prop. 2.9), } A \text{ is } S - T - \max, \text{ implies } f(A) \text{ is } S - f(T) - \max \text{ and } B \text{ is } S - f(T) - \max, \text{ implies } f^{-1}(B) \text{ is } S - T - \max. \text{ Therefore } f(S - Rad_T M) = \bigcap_{i \in \Lambda} f(A_i) = S - Rad_{f(T)} N.$

Proposition 3.5: Let $M = M_1 \oplus M_2$ where M_1 and M_2 are submodules of M, with $annM_1 + annM_2 = R$ and $T = T_1 \oplus T_2 \leq M$ then $S - Rad_T M = S - Rad_{T_1} M_1 \oplus S - Rad_{T_2} M_2$.

Proof: $S - Rad_T M = \bigcap_{i \in I} A_i$, A_i is S - T-max submodule of M. since $annM_1 + annM_2 = R$, then $A_i = B_i \bigoplus W_i$ for some $B_i \leq M_1$ and $C_i \leq M_2$. Hence $S - Rad_T M = \bigcap_{i \in I} B_i \bigoplus \bigcap_{i \in I} W_i$. Moreover, for each $i \in I$, A_i is an S - T-max submodule of $M = M_1 \bigoplus M_2$, implies B_i is an $S - T_1$ -max submodule of M_1 and C_i is an $S - T_2$ -max submodule of M_2 . $\forall i \in I$, by Prop. 2.12, $S - Rad_T M = S - Rad_{T_1} M_1 \bigoplus S - Rad_{T_2} M_2$.

Let M be an R-module and T be a nonzero submodule of M. "M is said to be T-cosemisimple if every submodule of M is the intersection of T-maximal submodules" [3].

We state that M is semi T-cosemisimple if every submodule is the intersection of S - T-max submodules.

Remarks 3.6: Let *M* be an *R*-module and *T* is a semisimple submodule of *M*. Then $S - Rad_T M = 0$. **Proof:** By [3, Prop. 39], $Rad_T M = 0$. But $S - Rad_T M \subseteq Rad_T M$ by [Ex.3.2(2)]. Thus $S - Rad_T M = 0$.

We conclude the paper with the following proposition.

Proposition 3.7: Let *M* be an *R*-module and *T* be a nonzero submodule of *M*, Then:

1- If *M* is semi-*T*-cosemisimple, then every submodule of *M* containing *T* is semi-*T*-cosemisimple module and $\frac{M}{N}$ is semi- $\frac{T+K}{-K}$ -cosemisimple.

2- If *M* is semi-*T*-cosemisimple if and only if $S-Rad_{\frac{T+K}{K}} = 0$.

Proof (1): Suppose $T \subseteq N \subseteq M$ and M is semi-T-cosemisimple. If $L \leq N$, then $L = L \cap N$. Since $L \leq M, L = \bigcap_A S$, where A is a set of S-T-maximal submodule of M. Hence $L = (\bigcap_A S) \cap N = \bigcap_A (S \cap N)$.

But $\frac{(S\cap N)+T}{S\cap N} \simeq \frac{T}{S\cap N\cap T} \simeq \frac{T}{S\cap T} \simeq \frac{S+T}{T}$ which is semisimple. Thus $S \cap N$ is an S-T-max submodule of M and N is semi-T-cosemisimple. Now, let $\frac{L}{N} \le \frac{M}{N}$. Then $L \le M$ and $L = \bigcap_A S$, where A is a set of S-T-

max submodules of *M*. Thus $\frac{L}{N} = \frac{\bigcap_A S}{N} = \bigcap_A \left(\frac{S}{N}\right)$. But each *S* is *S*-*T*-max, hence $\frac{S}{N}$ is an $S - \frac{T+N}{N}$ -max, by cor. 2.10, therefore $\frac{M}{N}$ is a semi $\frac{T+N}{N}$ cosemisimple module.

(2) Suppose that M is semi-T-cosemisimple and $K \le M$. $S - Rad_{\frac{T+K}{K}}M = \bigcap_A \frac{S}{N}$, where $A = \begin{cases} \frac{S}{K} \le \frac{M}{K} : \frac{S}{K} \text{ is an } S - \frac{T+K}{K} - \max \text{ submodule of } \frac{M}{K} \end{cases}$ Since $\frac{S}{K}$ is an $S - \frac{T+K}{K} - \max \text{ submodule of } \frac{M}{K} \end{cases}$ Hence $\frac{S}{K} \in A^*$ if and only if $S \in A$, where

 $A^* = \{S \supseteq K : S \le M \text{ and } S \text{ is } S - T - \max \text{ submodule of } M\}$

Now $K \le M$ implies $K = \bigcap_B S$ where B is a set of S-T-max submodule of M, so $B \subseteq A^*$. Hence $\bigcap_A \frac{S}{N} = \frac{\bigcap_A S}{\bigcap_B S} = 0$, that $S - Rad_{\frac{T+K}{K}}M = 0$.

Conversely, suppose that $S - Rad_{\frac{T+K}{K}}\frac{M}{K} = 0$ for all $K \le M$ then $S - Rad_{\frac{T+K}{K}}(\frac{M}{K}) = \bigcap_A \frac{S}{K} = \frac{\bigcap_A S}{K} = 0$, where

$$A = \left\{ \frac{S}{K} \le \frac{M}{K} : \frac{S}{K} \text{ is an } S - \frac{T+K}{K} - \max \text{ submodule of } \frac{M}{K} \right\}$$
$$\hat{A} = \left\{ S \supseteq K : S \le M \text{ and } S \text{ is an } S - T - \max \text{ submodule of } M \right\}$$

Therefore $\bigcap_{\hat{A}} S = K$ and so *M* is semi-*T*-cosemisimple. Next, the *Z*-module Z_{12} is semi-*T*-cosemisimple where = $\langle \bar{4} \rangle$, since every submodule is an *S*-*T*-max.

References

- 1. Burton, D.M. 1971. Abstract and Linear Algebra. Univ. of New Hamphire.
- 2. Hatem, Y. K. **2007.** Semimaximal submodules, Ph.D. Thesis, College of Education-Ibn-Haithem, Univ, of Baghdad.
- 3. Beyranvand, R. and Moradi, F. **2015.** Small Submodule with respect to a arbitrary Submodules , *Journal of Algebra and Related Topics*, **.3**(2): 3-5.
- 4. Goodearl, K. R. 1976. Ring theory, Nonsingular Rings and Modules, Marcel Dekker, New York.
- 5. Kasch, F. 1982. Modules and Rings, Acadmic press, London.
- 6. Lu, C.P. 1984. Prime Submodules of modules, Comm. Math. Univ. st. paul., 33: 61-69.
- 7. Anderson, F.W. and Fuller, K.R. 1974. *Rings and Categories of Modules*, Springer Vel., New York.
- 8. Athab, E.A. **1996**. Prime submodules and semiprime submodules, Msc. Thesis college of science, Uinv. Of Baghdad.
- 9. Lu, C. P. 1989. M radicals of submodules in modules. Math Japon, 34: 211-214.
- 10. Al-Redeen, H.S. **2017.** On (G^*-) T- lifting modules and T-H-Supplemented Modules, Msc. Thesis College of Science, Univ. of Baghdad.