Iraqi Journal of Science, 2020, Vol. 61, No. 3, pp: 620-624 DOI: 10.24996/ijs.2020.61.3.18

ISSN: 0067-2904

A Study on n-Derivation in Prime Near – Rings

Enaam Farhan Adhab

Directorate General of Education in Qadisiyah, Department of supervisory specialization, Iraq, Qadisiyah

Received: 4/6/ 2019

Accepted: 21/9/2019

Abstract

The main purpose of this paper is to show that zero symmetric prime near-rings, satisfying certain identities on n-derivations, are commutative rings.

Keywords: Prime Near-Ring, Semigroup Ideal, n-Derivations.

دراسة على الاشتقاقات-n في الحلقات المقتربة الاولية

انعام فرحان عذاب

المديرية العامة للتربية في القادسية ، قسم التخصص الأشرافي ، القادسيه ، العراق

الخلاصة

الهدف الاساسي من البحث هو اثبات انه الحلقات المقتربة الاولية تحت تاثير شروط معينة على الاشتقاقات تصبح حلقات ابدالية.

1. INTRODUCTION

A near – ring is a set A together with two binary operations (+ and .) such that (i) (A,+) is a group (not necessarily abelian),(ii) (A, .) is a semi group, and(iii) $\forall a,b,c \in A$; we have a.(b + c) = a.b + b.c. In this paper, A will be a zero symmetric near-ring (i.e., A satisfying $0.x = 0 \forall x \in A$) and $C = \{a \in A, ab = ba \text{ for all } a \in A\}$. If $I \subseteq A$, I is said to be a semigroup left ideal (semigroup right ideal) if $AI \subseteq A$ (IA $\subseteq I$) and it will be called a semigroup ideal if I is a semigroup left ideal as well as a semigroup right ideal. denote a.b by $ab, \forall a, b \in A$, [a, b] = ab-ba, and $a \circ b = ab + ba$. A is called a prime near-ring if $aAb = \{0\}$, which implies that either a = 0 or b = 0. For more information about the near-rings, we refer to a previous publication [1].

In another article [2], Ashraf defined n-derivations in the near-rings. In our work, we show that the prime near-rings involving n-derivations, as previously defined [2], with some conditions are commutative rings.

2. PRELIMINARY RESULT

Lemma 2.1. [3]. Let N be a prime near-ring, U a nonzero semigroup right ideal (resp. semigroup left ideal), and x is an element of N such that $Ux = \{0\}$ (resp. $xU = \{0\}$), then x = 0.

Lemma 2.2. [3].Let N be a prime near-ring and Z contains a nonzero semigroup left ideal or nonzero semigroup right ideal, then N is a commutative ring.

Lemma 2.3.[3].Let N be a prime near-ring and U be a nonzero semigroup ideal of N. If $x, y \in N$ and $xUy = \{0\}$, then x = 0 or y = 0.

Lemma2.4.[2].Let N be a prime near-ring, then d is n-derivation of N if and only if $d(x_1x_1', x_2, ..., x_n) = x_1 d(x_1', x_2, ..., x_n) + d(x_1, x_2, ..., x_n) x_1'$

 $\forall x_1, x_1', x_2, \dots, x_n \in N.$

Lemma 2.5[2].Let N be a near-ring and d be n-derivation of N. Then for every $x_1, x_1', x_2, \dots, x_n, y \in N$ (i) $(x_1 d(x_1', x_2, \dots, x_n) + d(x_1, x_2, \dots, x_n)x_1')y =$

 $x_1 d(x_1, x_2, ..., x_n)y + d(x_1, x_2, ..., x_n)x_1'y$,

(ii) $(d(x_1, x_2, ..., x_n)x_1' + x_1d(x_1', x_2, ..., x_n))y =$

 $d(x_1, x_2, ..., x_n)x_1'y + x_1d(x_1', x_2, ..., x_n)y.$

Lemma 2.6 [4]. Let d be n-derivation of a near ring N. Then $d(Z,N,...,N) \subseteq Z$.

Lemma 2.7 [4]. Let N be a prime near ring, d a nonzero n-derivation of N, and $U_1, U_2, ..., U_n$ are nonzero semigroup right (left) ideals of N. If $d(U_1, U_2, ..., U_n) = \{0\}$, then d = 0.

Lemma 2.8 [4]. Let N be a prime near ring, d a nonzero n-derivation of N, and $U_1, U_2, ..., U_n$ be a nonzero semigroup left ideals of N. If $d(U_1, U_2, ..., U_n) \subseteq Z$, then N is a commutative ring.

3. MAIN RESULTS

Theorem 3.1.Let A be a prime near ring and $I_1, I_2, ..., I_n$ be semigroup ideals of A. If there exists a nonzero n-derivation d of A satisfying one of the following :

(i) $d([a, b], i_2, ..., i_n) = a^k [a, b] a^t \forall a, b \in I_1, i_2 \in I_2, ..., i_n \in I_n$, or

(ii) d([a, b], $i_2, ..., i_n$) = - $a^k[a, b]a^t \forall a, b \in I_1, i_2 \in I_2, ..., i_n \in I_n$,

for some k, t $\in \mathbb{N}$, then A is a commutative ring.

Proof. (i)Suppose that:

$$d([a, b], i_2, \dots, i_n) = a^k[a, b]a^l \forall a, b \in I_1, i_2 \in I_2, \dots, i_n \in I_n.$$
(1)

By replacing b by ab in (1), we obtain:

 $d([a,ab],i_2,...,i_n) = a^k[a, ab]a^t \forall a, b \in I_1, i_2 \in I_2,...,i_n \in I_n.$

So we have:

 $d(a[a,b], i_2, ..., i_n) = a^{k+1}[a, b]a^t \forall a, b \in I_1, i_2 \in I_2, ..., i_n \in I_n.$

By defining the property of d, the previous equation becomes:

 $d(a,i_2,...,i_n)[a,b] + ad([a,b],i_2,...,i_n) = a^{k+1}[a,b]a^t \forall a,b \in I_1, i_2 \in I_2,...,i_n \in I_n.$

By using (1) again in the last equation we have:

$$d(a,i_{2},...,i_{n})ab = d(a,i_{2},...,i_{n})ba\forall a,b\in I_{1}, i_{2}\in I_{2},...,i_{n}\in I_{n}.$$
(2)

By substituting b by br, where $r \in A$ in (2) and using (2)again, it implies that: $d(a,i_2,...,i_n)y[a,r] = 0$ for all $\forall a, b \in I_1$, $i_2 \in I_2,...,i_n \in I_n$, $r \in A$. Therefore

 $d(a, i_2, ..., i_n)I_1[a, r] = 0 \forall a \in I_1, i_2 \in I_2, ..., i_n \in I_n, r \in A$ (3)

By using Lemma 2.3 in the previous equation, we conclude that, for each $a \in I_1$, either $a \in C$ or $d(a,i_2,...,i_n) = 0$ for all $i_2 \in I_2,...,i_n \in I_n$. In both cases, by using Lemma 2.6, we obtain $d(a,i_2,...,i_n) \in C$ for all $a \in U_1, i_2 \in I_2,..., i_n \in I_n$, i.e., $d(I_1, I_2, ..., I_n) \subseteq C$. Now, by using Lemma 2.8, we find that Ais acommutative ring. (ii)By using the same techniqu

Corollary 3.2Let Abe a prime near ring. If there exists k, $t \in \mathbb{N}$ such that Aadmits a nonzero n-derivation d, satisfying either

(i) $d([a, b], a_2, ..., a_n) = a^k [a, b] a^t$

 $\forall a, b, a_2, \dots, a_n \in A$, or

(ii) $d([a, b], a_2, ..., a_n) = -a^k[a, b]a^t$

 $\forall a, b, a_2, \dots, a_n \in \mathbf{A},$

Then A is a commutative ring.

Theorem 3.3.Let A be a prime near ring and $I_1I_2,...,I_n$ be semigroup ideals of A. If there exists a nonzero n-derivation d of A satisfying one of the following:

⁽ⁱ⁾ $d(a \circ b, i_2, ..., i_n) = a^k (a \circ b) a^t \forall a, b \in I_1, i_2 \in I_2, ..., i_n \in I_n, \text{ or}$

⁽ⁱⁱ⁾ $d(a \circ b, i_2, ..., i_n) = -a^k(a \circ b)a^t \forall a, b \in I_1, i_2 \in I_2, ..., i_n \in I_n,$

for some k, t $\in \mathbb{N}$, then A is a commutative ring.

Proof. (i)Assume that:

 $d(a \circ b, i_2, \dots, i_n) = a^k (a \circ b) a^t \forall a, b \in I_1, i_2 \in I_2, \dots, i_n \in I_n(4)$

Replacing b by abin (4) we get

 $d(a \circ ab, i_2, \dots, i_n) = a^k (a \circ ab) a^t \forall a, b \in I_1, i_2 \in I_2, \dots, i_n \in I_n.$

So we get:

 $d(a(a \circ b), i_2, \dots, i_n) = a^{k+1}(a \circ b)a^t \forall a, b \in I_1, i_2 \in I_2, \dots, i_n \in I_n.$

By defining the property of d, the previous equation implies that: k + 1

 $d(a,i_2,...,i_n)(a\circ b) + ad(a\circ b,i_2,...,i_n) = a^{k+1}(a\circ b)a^t \forall a,b \in I_1, i_2 \in I_2,...,i_n \in I_n.$

By using (4) again in the previous equation, it implies that: $d(a, i_2, ..., i_n)ba = - d(a, i_2, ..., i_n)ab \forall a, b \in I_1, i_2 \in I_2, ..., i_n \in I_n.$ (5) Bu putting bc for b, where $c \in A$, in (5) and using it again, it leadsto: $d(a, i_2, ..., i_n)bca = - d(a, i_2, ..., i_n)abc$ $= d(a, i_2, ..., i_n)ab(-c)$ $= d(a, i_2, ..., i_n)b(-a)(-c)$ $\forall a, b \in I_1, i_2 \in I_2, ..., i_n \in I_n, c \in A$. Thus, we obtain: $d(a, i_2, ..., i_n)b(ca + (-a)c) = 0 \forall a, b \in I_1, i_2 \in I_2, ..., i_n \in I_n, c \in A.$ Therefore: $d(a, i_2, ..., i_n)I_1(-c(-a) + (-a)c) = \{0\} \forall a, b \in I_1, i_2 \in I_2, ..., i_n \in I_n, c \in A.$ For each fixed a \in I₁, Lemma 2.3 leads to: $-a \in C$ or $d(a, i_2, ..., i_n) = 0 = d(-a, i_2, ..., i_n) \quad \forall i_2 \in I_2, ..., i_n \in I_n$. (6) If there is an element $a_1 \in I_1$ such that $-a_1 \in C$, then by Lemma 2.4 and the definition of dwe obtain \forall $r \in A, i_2 \in I_2, \dots, i_n \in I_n$ $d((-a_1)r, i_2, \ldots, i_n) = (-a_1)d(r, i_2, \ldots, i_n) + d(-a_1, i_2, \ldots, i_n)r$ $= d(r(-a_1), i_2, \ldots, i_n)$ $= d(r, i_2, \ldots, i_n)(-a_1) + rd(-a_1, i_2, \ldots, i_n).$ This implies that: $d(-a_1, i_2, ..., i_n)r = rd(-a_1, i_2, ..., i_n)$ for all $r \in A, i_2 \in I_2, ..., i_n \in I_n$. (7)From (6) and (7), we secure that: $d(-a, i_2, ..., i_n)r = rd(-a, i_2, ..., i_n)$ for all $r \in A, a \in I_1, i_2 \in I_2, ..., i_n \in I_n$. (8) So d(- a, i_2, \ldots, i_n) $\in C \forall a \in I_1, i_2 \in I_2, \ldots, i_n \in I_n$. (9) Now, by replacing by (-a)b, where $b \in I_1$, in (9), we obtain $d(-((-a)b), i_2, ..., i_n) = d((-a)(-b), i_2, ..., i_n) \in C \forall a, b \in I_1, i_2 \in I_2, ..., i_n \in I_n.$ Which means that: $d((-a)(-b), i_2, ..., i_n)m = md((-a)(-b), i_2, ..., i_n)\forall a, b \in I_1, i_2 \in I_2, ..., i_n \in I_n, m \in A.$ By using Lemma 2.5(ii) weobtain $d(-a, i_2, ..., i_n)(-b)m + (-a)d(-b, i_2, ..., i_n)m =$ $md(-a, i_2, ..., i_n)(-b) + m(-a)d(-b, i_2, ..., i_n)$ $\forall a, b \in I_1, i_2 \in I_2, ..., i_n \in I_n, m \in A.$ (10)Bu taking (-a) instead of m in (10) and using (9)we obtain $d(-a, i_2, ..., i_n)A[(-a), (-b)] = \{0\} \forall a, b \in I_1, i_2 \in I_2, ..., i_n \in I_n.$ By primeness of A we get $\forall a \in I_1$ $d(-a, i_2, \ldots, i_n) = 0 \forall i_2 \in I_2, \ldots, i_n \in I_n$ or $(-a)(-b) = (-b)(-a) \forall b \in I_1.$ If d(- a, i_2, \ldots, i_n) = 0 $\forall a \in I_1, i_2 \in I_2, ..., i_n \in I_n$, we secure that $d(I_1, I_2, ..., I_n) = 0$ and by using Lemma 2.7, we have that d is a zero derivation, and this result contradictsour hypothesis. Therefore, there exist $z_1 \in I_1, z_2 \in I_2, ..., z_n \in I_n$ with all being nonzero, such that: $d(-z_1, z_2, ..., z_n) \neq 0$ and $(-z_1)(-y) = (-y)(-z_1) \forall y \in I_1$. (11)By replacing y by -yx, where $x \in N$ in (11), we obtain $(-z_1)yx = yx(-z_1)\forall y \in I_1, x \in A.$ (12)By putting (-s)y, where $s \in I_1$, instead of y and $d(-z_1, z_2, ..., z_n)$ instead of x in (12), we obtain $(-z_1)(-s)yd(-z_1,z_2,...,z_n) = (-s)yd(-z_1,z_2,...,z_n)(-z_1) \forall s, y \in I_1.$ By using (11) and (9) in the last equation, we btain $(-s)[(-z_1),y]Ad(-z_1,z_2,...,z_n) = \{0\}$ for all s, $y \in I_1$. Since d(- $z_1, z_2, ..., z_n$) $\neq 0$, As A is a prime ring, we obtain(-s)[(- z_1), y] = 0 \forall s, y \in I₁. (13). By putting -sa, where $a \in A$, instead of s in (13), we obtain $sA[(-z_1), y] = \{0\}$ for all s, $y \in I_1$. (14)Since $I_1 \neq 0$, As A is a prime ring, we obtain $(-z_1)y = y(-z_1)$ for all $y \in I_1$. (15)By replacing y by yq, where q \in A, in (15) and using it again, we obtain $y[(-z_1), q] = 0$ for all $y \in I_1$, $q \in A$. Which means that:

 $U_1[(-z_1), q] = \{0\}$ for all q \in A. By Lemma 2.1, we secure that $-z_1 \in C$. Returning to If we put z_1 instead of ain(10), we obtain

 $d(-z_1, i_2, ..., i_n)[m, -y] = 0 \forall y \in I_1, i_2 \in I_2, ..., i_n \in I_n, m \in N.$ In particular,

 $d(-z_1, z_2, \dots, z_n)A[m, -y] = 0$ for ally $i_1, m \in N$. Since $d(-z_1, z_2, \dots, z_n) \neq 0$, the primeness of A implies that $-y \in C$ for all $y \in I_1$. Which means that $-I_1 \subseteq C$. But $-I_1$ is a semigroup left ideal, then we conclude that A is a commutative ring by Lemma 2.2.

(ii)We can prove it similarly

Corollary 3.4.Let d be a nonzero n-derivation defined on a prime near-ring A, satisfying either

 $d(x \circ y, x_2, \dots, x_n) = x^k (x \circ y) x^t \forall x, y, x_2, \dots, x_n \in A$, or (i)

 $d(x \circ y, x_2, \dots, x_n) = -x^k (x \circ y) x^t \forall x, y, x_2, \dots, x_n \in A,$ (ii)

for some k, t \in N, then A is a commutative ring.

Theorem 3.5.Let d be a nonzero n-derivation defined as prime near ring A and $I_1, I_2, ..., I_n$ be semigroup ideals of A. If d is satisfying either

 $d([x, y], i_2, \dots, i_n) = x^k (x \circ y) x^t \forall x, y \in I_1, i_2 \in I_2, \dots, i_n \in I_n, \text{ or } i_1 \in I_2, \dots, i_n \in I_n, \text{ or } i_n \inI_n, \text{ or } i_n \inI_n,$ (i)

 $d([x, y], i_2, \dots, i_n) = -x^k (x \circ y) x^t \forall x, y \in I_1, i_2 \in I_2, \dots, i_n \in I_n,$ (ii)

for some k, t $\in \mathbb{N}$, t, hen A is a commutative ring.

Proof. (i)Suppose that:

$$d([\mathbf{x}, \mathbf{y}], \mathbf{u}_2, ..., \mathbf{u}_n) = \mathbf{x}^k (\mathbf{x} \circ \mathbf{y}) \mathbf{x}^t \ \forall \ \mathbf{x}, \mathbf{y} \in \mathbf{I}_1, \mathbf{i}_2 \in \mathbf{I}_2, ..., \mathbf{i}_n \in \mathbf{I}_n$$
(16)

If we replace y by xy in (16), we imply that:

 $d([x,xy],i_2,...,i_n) = x^k(x \circ xy)x^t \forall x,y \in I_1, i_2 \in I_2,...,i_n \in I_n.$

So

 $d(x[x,y],i_2,...,i_n) = x^{k+1} (x \circ y) x^t \forall x, y \in I_1, i_2 \in I_2,...,i_n \in I_n.$

By defining the property of d, we obtain:

 $d(x,i_2,...,i_n)[x,y] + xd([x,y],i_2,...,i_n) = x^{k+1}(x \circ v)x^t$

By using (16) again in the previous equation, it implies that:

$$d(x, i_2, ..., i_n) xy = d(x, i_2, ..., i_n) yx \forall x, y \in I_1, i_2 \in I_2, ..., i_n \in I_n.$$
(17)

which is identical with equation (2) in Theorem 3.1. Following the same way, we secure that A is a commutative ring.

(ii)We can prove it similarly.

Corollary 3.6.Let d be a nonzero n-derivation of a prime near ringA, satisfying either

 $d([x, y], x_2, ..., x_n) = x^k (x \circ y) x^t$ (i)

for all $x, y, x_2, \dots, x_n \in A$, or

 $d([x, y], x_2, ..., x_n) = -x^k (x \circ y) x^t$ (ii)

for all $x, y, x_2, \dots, x_n \in A$,

for some k, t $\in \mathbb{N}$, then A is a commutative ring.

Theorem 3.7.Letd be a nonzero n-derivation of a prime near ring A and $I_1, I_2, ..., I_n$ be semigroup ideals of A. If d is satisfying either

 $d(x \circ y, i_2, \dots, i_n) = x^k [x, y] x^t \forall x, y \in I_1, i_2 \in I_2, \dots, i_n \in I_n, or$ (i)

 $d(\mathbf{x} \circ \mathbf{y}, \mathbf{u}_2, \dots, \mathbf{u}_n) = -\mathbf{x}^k [\mathbf{x}, \mathbf{y}] \mathbf{x}^t \forall \mathbf{x}, \mathbf{y} \in \mathbf{I}_1, \mathbf{i}_2 \in \mathbf{I}_2, \dots, \mathbf{i}_n \in \mathbf{I}_n,$ (ii)

For some k, t $\in \mathbb{N}$, then A is a commutative ring.

Proof.(i) Assume that:

$$d(x \circ y, i_2, ..., i_n) = x^k [x, y] x^t \forall x, y \in I_1, i_2 \in I_2, ..., i_n \in I_n$$
If we replace y by xy in (18), we have
$$(18)$$

 $d(x \circ xy, i_2, \dots, i_n) = x^k [x, xy] x^t \forall x, y \in I_1, i_2 \in I_2, \dots, i_n \in I_n.$

So

 $d(x(x \circ y), i_2, ..., i_n) = x^{k+1} [x, y] x^t \forall x, y \in I_1, i_2 \in I_2, ..., i_n \in I_n.$

By defining the property of d, we obtain:

 $d(x,i_2,...,i_n)(x \circ y) + xd(x \circ y,i_2,...,i_n) = x^{k+1}[x, y]x^k$

By using (18) again in the previous equation, it implies that:

(19)

 $d(x,i_2,...,i_n)xy = - d(x,i_2,...,i_n)yx \forall x,y \in I_1, i_2 \in I_2,...,i_n \in I_n.$ which is identical with equation (5) in Theorem 3.3., and following the same step leads to the result (ii) We can proveit similarly.

Corollary 3.8.Let d be a nonzero n-derivation of a prime near ring A. If d is satisfying either

(i) $d(x \circ y, x_2,...,x_n) = x^k[x, y]x^t$ for all $x, y, x_2,..., x_n \in A$, or (ii) $d(x \circ y, x_2,...,x_n) = -x^k[x, y]x^t$ for all $x, y, x_2,..., x_n \in A$, for some k, t $\in \mathbb{N}$, then A is a commutative ring.

REFERENCE

- 1. Pilz, G. 1983. Near-Rings. Second Edition.North Holland /American Elsevier. Amsterdam
- 2. Asraf, M. and Siddeeque, M. 2013. On permuting n-derivations in near-rings. *Commun. Kor. Math. Soc.* 28(4): 697–707.
- 3. Bell, H. 1997. On Derivations in Near-Rings II.Near-rings, Near-fields and k-loops. Kluwer Academic Publishers. *Dordrecht*. 426 : 191–197.
- **4.** Ashraf, M., Sideeque. M. and Parveen. N. **2015**. Onsemigroup ideals and n-derivations in nearrings, Science Direct, *Journal of Taibah University for Science*, **9**: 126–132.