

Applications of Camera Total Station System (CTSS) in the Construction Surveying

Abbas Zedan Khalaf^{*1}, Muntaha kassim Haidir¹, Luma Khalid Jasim²

¹Department of Building And Construction Engineering, University of Technology, ²Department of Surveying Engineering, University of Baghdad, Baghdad, Iraq

Abstract:

Engineering structures in general require at implementation conducting engineering surveys of the implementation stages of work to keep up with identical implementation of the technical specifications, on the other hand most of the facilities task (large structures, towers, dams, bridges, etc...) require the conducting of periodic monitoring to determine any change could happen with time in the three-dimension(X,Y,Z).

The traditional approach in this proposal for this business is by conducting a field survey using ground surveying devices in addition to the photogrammetry survey, regardless of the manner of the work requires the provision of a number of well distributed ground control points for the purpose of the above required survey work. This research includes the application of (CTSS)system for a structural survey above as well as monitoring facilities **disregarding the control points** to provide cost, time and effort. The results using this technique(CTSS)are very promising (RMS in $X = \pm 1.7$ mm, $Y = \pm 1.7$ mm, $Z = \pm 0.9$ mm).which gives an overall precision of (RMS=\pm 2.6 mm).

KEYWORDS: Digital close range photogrammetry; camera TotalStation; control system.

تطبيقات نظام كاميرا-جهاز المحطة الكاملة (CTSS) في المسح الانشائي

عباس زيدان خلف¹، منتهى قاسم حيدر¹، لمى خالد جاسم²

¹قسم البناء والإنشاءات، الجامعة التكنلوجيا، ²قسم هندسة المساحة، جامعة بغداد، بغداد، العراق

الخلاصة

المنشآت الهندسية بشكل عام تتطلب عند التنفيذ إجراء أعمال المسح الهندسي لمراحل تنفيذ العمل لمواكبه مطابقه تنفيذ للمواصفات الفنية, هذا من ناحية ومن ناحية أخرى معظم المنشآت الهندسية المهمة (المنشآت الضخمة, الأبراج, السدود, الجسور ... الخ). تتطلب فيها إجراء أعمال مراقبة دورية لتحديد أي تغير قد يحصل في شكل منشأ مع الوقت في البعد الثلاثي .(X,Y,Z)

الأسلوب النقليدي المتبع في هذا المقترح لهذه الأعمال يتم من خلال إجراء مسح ميداني باستخدام أجهزة المسح الأرضي إضافة إلى المسح التصويري وبغض النظر عن الأسلوب المتبع يتطلب العمل توفير عدد لابأس به من نقاط الضبط الأرضي control points لغرض إجراء أعمال المسح المطلوبة أعلاه.

هذا البحث يتضمن تطبيق منظومة (CTSS) لإجراء المسح الإنشائي أعلاه وكذلك مراقبة المنشآت **بالاستغناء** عن نقاط السيطرة لتوفير الكلفة والوقت والجهد.أظهرت النتائج لهذه المنظومة دقه عالية للنقاط المحسوبة. وكانت النتائج واعدة جداً (Z=±0.9 mm, Y=±1.7 mm,X=±1.7 mm).

1. **INTRODUCTION**

Generally speaking in the construction survey 3D coordinates of a number of certain points are determined which are generally made by two approaches:

• approach one: construction survey can be made through the use of land surveying instruments such as Level, Theodolite and Total Station for the purpose of determining the 3D coordinates of a certain construction points through the use of land surveying instruments requires a number of well-defined and precise (3D)[horizontal and vertical ground control points(GCP)].

• approach two: construction survey can be done through the use of close range photogrammetric technique simply by taking a minimum of two photos to the construction from two stations.

The precision of processing in this approach depend on the number and distribution of the ground control points.

The advantage of approach two as compared with approach one is time and effort.

This research represent using an approach of Camera Total Station System(CTSS) which represent an integration between approach one and approach two above without the need of specific ground control points in the object space.

Close range photogrammetry offers the possibility of obtaining the three-dimensional (3D) coordinates of an object from two-dimensional (2D) digital images in a rapid, accurate, reliable, flexible and economical way. This makes it an ideal tool for precise industrial measurement [1], [10].

2. Digital Close Range photogrammetry

Digital close range photogrammetry is a technique for accurately measuring objects directly from photographs or digital images captured with a camera at close range. Multiple, overlapping images taken from different stations, produces measurements that can be used to create accurate 3D models of objects. [5],[9],[3].

Know a day digital analytical close range photogrammetric projects are generally done through the use of a digital non metric camera through the implantation of the well known collinearity equations [7].

Each point having two collinearity equation, one for the (x) photo coordinate and the other for the (y) photo coordinate [2].

The general form of the collinearity equation for (x,y) in close range photogrammetry having the following general forms: [4].

$$\begin{aligned} \mathbf{x} - \mathbf{x}_{0} &= -c \frac{\left[\mathbf{m}_{14}(\mathbf{X} - \mathbf{X}_{L}) + \mathbf{m}_{18}(\mathbf{Y} - \mathbf{Y}_{L}) + \mathbf{m}_{18}(\mathbf{Z} - \mathbf{Z}_{L}) \right]}{\left[\mathbf{m}_{34}(\mathbf{X} - \mathbf{X}_{L}) + \mathbf{m}_{32}(\mathbf{Y} - \mathbf{Y}_{L}) + \mathbf{m}_{33}(\mathbf{Z} - \mathbf{Z}_{L}) \right]} &= \\ -c \frac{\mathbf{v}}{\mathbf{w}} & \dots \dots (1) \end{aligned}$$
$$\begin{aligned} \mathbf{y} - \mathbf{y}_{0} &= -c \frac{\left[\mathbf{m}_{24}(\mathbf{X} - \mathbf{X}_{L}) + \mathbf{m}_{22}(\mathbf{Y} - \mathbf{Y}_{L}) + \mathbf{m}_{23}(\mathbf{Z} - \mathbf{Z}_{L}) \right]}{\left[\mathbf{m}_{84}(\mathbf{X} - \mathbf{X}_{L}) + \mathbf{m}_{82}(\mathbf{Y} - \mathbf{Y}_{L}) + \mathbf{m}_{83}(\mathbf{Z} - \mathbf{Z}_{L}) \right]} &= \\ -c \frac{\mathbf{v}}{\mathbf{w}} & (2) \end{aligned}$$

(x,y)....photo coordinates of the point

Where (x_0, y_0, c) interior orientation parameters (I.O.P)

(m11,m12,m13,...,m33)...elements of the rotation matrix which are a function of rotation angles(ω, φ, κ) as shown in figure(2)

 $(X_{\rm L}\ ,\ Y_{\rm L}\ ,\ Z_{\rm L}\)....three dimensional coordinates of the camera station$

(X,Y,Z).....the 3D coordinates of the object points as shown in figure (1)

The parameters involved in the collinearity equation (1&2) above are shown geometrically in figures (1&2): [6].

Figure 1- Central Perspective Of Point A In Close Range Photogrammetry [1].

Figure 2- Rotation Angles On The Three Axes (X,Y,Z) [1].

3. Data Processing

In (CTSS)approach the data processing were done through the use of Leica Photogrammetry Suite (LPS) software, which is mainly consist of camera calibration, resection and the computation of the adjusted 3D coordinates of the required construction points[8].

Furthermore the data processing using the(LPS)software used in this research will be demonstrated numerically in the case study presented in the next section.

4. Case study

In this research one story building at the University of Technology are chosen at which a number of well defined points were selected thirteen check points.

Four close range photogrammetric photos were taken to the building from different stations using a digital no metric camera (cannon EOS500D)with 15mega pixel resolution and zoom (18-200)mm as shown below: [11].

4.1 Case One: for Calibrating the System The 3D coordinates of the camera station as well as the control system were determined through the use of the Total Station which connected with the camera as shown in figures below:

Figure 4- Leica Total Station System With Cannon Camera.

Figure 5- The Control System.

Figure 6- The Photos Of The Building With Control System.

The following table represent the 3D coordinates of the control system as well as the check points measured through the use of the Total Station for calibration.

ID	Туре	X(m)	Y(m)	Z(m)
1	Check	102.485	108.095	101.79
1	Спеск	2	7	26
2	Check	101.348	109.581	102.51
		/	/	34
3	Check	101.469	109.413	102.92
		102 851	4	103.86
4	Check	102.001	2	89
~	C1 1	103.212	107.943	103.32
5	Check	9	3	14
6	Check	102.865	107.639	100.48
0	CHECK	2	5	23
7	Check	105.091	109.680	101.47
		1	3	08
8	Check	107.707	0 0	103.98
		0	0	$\frac{36}{102.42}$
9	Check	4	6	103.42 64
		111.577	115.036	104.54
10	Check	5	8	44
11	Chaolr	110.632	114.741	100.86
11	Спеск	6	8	66
12	Check	99.815	111 656	100.51
12	Cheek	<i>yy</i> .015	111.000	81
13	Check	99.8062	111.663	103.95
	Cantus	102 422	4	34 101 45
14	Contro	103.423	107.085	101.45
	1 Contro	102.014	129	101.02
15	1	932	046	9101.92
	Contro	103 635	107.036	101 46
16	1	818	951	2857
17	Contro	104.174	106.893	102.03
1/	1	457	632	8123
18	Contro	103.543	107.900	101.38
10	1	919	951	7297
19	Contro	102.864	108.058	101.45
	1	873	776	1273
20	Contro	103.753	107.840	102.18
		258	23	8619
21	Contro	104.559	107.590	101.35
	1	0/3	201	/443

 Table 1- Measured 3D coordinates Of The Control

 System And The Check Points

Table 2-The Computed 3Dcoordinates Of The

 Selected Points Resulted From(LPS)

ID	X(m)	Y(m)	Z(m)
	104.21114	109.151308	103.260876
1	223365	195175	70337
2	104.31529	109.186608	102.173981
2	7702779	203556	359476
2	105.38004	109.942397	103.362611
5	7311624	84386	980108
Λ	105.36859	109.940431	102.125878
-	2326922	981399	344034
5	106.73327	111.519909	101.546300
5	1320095	673156	638295
6	107.65846	112.058731	100.626824
0	863455	909384	393022
7	107.51622	112.218683	101.523443
'	3186048	727495	269619
8	110.26694	114.779671	102.256117
0	4445103	857025	38405
9	106.07006	110.569010	103.924783
	7583538	098737	864559
10	107.52170	112.242662	104.000085
10	3490458	672646	398541
11	109.42168	113.637020	100.838551
11	4526557	470316	392426
12	102.82647	107.021701	104.310747
12	2913634	787786	524577
13	106.04441	110.583337	100.639432
15	6311092	45959	763663
14	107.98937	112.338509	102.159242
	2649165	048788	418453
15	105.22263	110.035629	102.186735
10	3171609	960211	984646
16	105.21492	110.022068	103.288111
10	3652913	539685	746162

 Table 3-the root mean square error(RMSE) of the check points shown in table below:

RMSE X mm	RMSE Y mm	RMSE Z mm
±0.9	±0.9	±0.0

Figure 6-The RMSE From LPS Software.

The	results	of the	data	processing	using	(LPS)
softv	ware are	show	n in ta	ble below:		

From the result of the data processing using (LPS) software the shift between data required from total station and exposure station coordinate were compute as shown as in table below.

Table 4-	The	Shift	Of Between	Total	Observation
۸.	d En	tomion	Orientation	Doron	antara

Shif t X	Shif t Y	Shif t Z	Shift Omeg	Shift Dhi	Shift Kapp
m	m	m	a	Г Ш	a
0.00	0.00	0.30	50	Horizont	0.5%

4.2 Case two:

The second exposure station coordinates were measured by Total Station and computed shift from case one. Two photos expose and (13) check points measured by the system (CTSS) as shown in figures below:

Figure 7- The Photos Of The Building Without The Control System.

The following table represent the 3D coordinates of the check points measured for construction surveying of building .

Tuble of measured selection and the encor point	Table 5- measured 3D coordinates of the check point
---	---

ID	Туре	X (m)	Y (m)	Z (m)
1	Check	104.9086	108.248 7	101.558 6
2	Check	104.378	108.804 7	101.610 6
3	Check	101.6057	107.510 4	102.422 2
4	Check	101.6931	107.688 7	102.794 4
5	Check	102.6422	109.481 1	101.885 9

6	Check	102.878	109.890 1	102.312 6
7	Check	100.9019	105.743 6	102.959
8	Check	100.9011	105.746 6	101.134 8
9	Check	103.1928	110.308	104.615 1
10	Check	103.1705	110.220 5	100.230 4
11	Check	105.7449	106.471 7	103.097
12	Check	106.1623	105.257 5	102.458 4
13	check	103.5703	110.005 4	103.784 4

The result of the data processing using (LPS) software are shown in table below:

Table 6-The Computed 3Dcoordinates Of The

 Selected Points Resulted From(LPS)

ID	X(m)	Y(m)	Z(m)
1	103.29387	111.2837194	105.733623
	230678	92896	208594
2	104.30734	108.7966263	103.291762
	9781964	48102	63012
3	104.39292	108.7620402	103.287042
	612196	42926	247046
4	104.28103	108.7842246	101.299354
	8229032	70308	215087
5	103.85382	109.2561457	101.249005
	1060845	51126	825567
6	104.38590	108.7463107	102.225528
	7311053	53714	288259
7	105.03265	108.0078593	102.114385
	938595	9616	979773
8	104.88745	108.0035773	102.163051
	2928514	35613	250923
9	105.04353	108.0040756	103.156803
	8092916	26015	767107
10	104.88495	108.0079629	103.082616
	7538018	87168	086162
11	105.61119	106.5164547	103.098090
	4172734	20667	797487
12	106.33485	104.9392996	102.841934
	4952541	43423	318805
13	106.04342	105.3947820	101.975047
	0023736	81691	82046
14	106.02942	105.7165682	101.326013

	3772846	21766	255047
15	106.16229	105.2808813	101.391065
15	4942565	17796	875987
16	106.18278	105.6491227	101.189086
16	848587	0016	43079
17	106.02762	105.7157492	101.215376
1/	3027917	0535	24653
10	106.07721	105.3372031	101.522663
18	2434478	18624	351285
10	105.61911	106.5366797	101.646097
19	6695993	4738	477778
20	105.42624	106.9358382	101.644703
20	5040244	71886	735398
21	105.40861	106.9674291	101.642918
21	3288571	76018	70607
22	105.73414	106.5064978	101.614134
22	9601476	31168	886435
22	105.52482	106.7419863	101.111111
23	3135685	21362	504918
24	105.51871	106.7361754	101.358820
24	1727749	19536	723232
25	105.43564	106.9500098	101.343344
25	9207992	09446	988798
26	105.43477	106.9601685	101.078439
26	0837976	06304	859619
	105.62337	106.5380897	101.375447
27	8570501	85565	04734
	105 73420	106 512930	101 112215
28	990997	234922	426639
• •	106.00768	106.837640	104.587242
29	3175119	123076	78863
	101.19238	106.576499	102.611689
30	6293881	032107	40011
	103.58848	110.002363	103.860725
31	471049	26649	371573
	106.19218	105.136482	102.654847
32	0343641	302258	456032
22	105.95346	105.734140	102.518372
33	0374996	500487	779424
	105.87808	106.127335	102.667893
34	1009768	752586	369218
2.5	104.60434	108.406927	102.203405
35	1920423	283655	211325
26	104.63190	108.339632	103.175976
36	8696402	35013	515469

Table 7-The Root Mean Square Error(RMSE)OfThe Check Points Shown In Table Below:

RMSE X(mm)	RMSE Y(mm)	RMSE (mm)	Ζ
±1.7	±1.7	±0.9	

Check Point RMSE:		Update
Ground X:	0.0017 (12)	Accept
Ground Y:	0.0017 (12)	Report
Ground Z:	0.0009 (12)	Review

Figure 8-The RMSE From LPS Software.

5. Conclusion

Reduction cost, effort and time when you use the Total Station with the camera and dispensing with the control points which usually installed constitute two-thirds of the cost of any engineering project.

✤ The ground coordinates of the building were obtained through photogrammetry and thus can be used in the production of 3D coordinates of the building.

• Through this research was to prove the possibility of re-formation of any missing pieces through images.

✤ The results of the program used in photogrammetry were accurate where RMSE was calculated for the (13) check points , Randomly distributed on the building was:

RMSE in $X=\pm 1.7 \text{ mm}$ $Y=\pm 1.7 \text{ mm}$ $Z=\pm 0.9 \text{ mm}$

And the total mean square $[RMSE] = \pm 2.6 \text{ mm}$

6. Refrensces:

- Aguilar, M.A. Aguilar, F.J. Agüera, F. and Carvajal, F. 2005. The Evaluation of Closerange Photogrammetry for the Modelling of Mouldboard Plough Surfaces, Biosystems Engineering, 90 (4):397–407.
- [2] Ghoch, S. K. **1979**. Analytical Photogrammetry. Pergamon Press,New York.
- [3] Slama, C. C. **1980**.The Manual of Photogrammetry. 4th Edn. American Society of Photogrammetrists, Falls Church ,VA.

- [4] Wolf, P.R and Dewitt, B.A. **2000.** Elements of photogrammetry with applications in GIS. EEUU: McGraw-Hill.
- [5] Atkinson, K.B. **1996** Close range Photogrammetry and machine vision. Caithness: Whittlesn Publishing.
- [6] Arias, P. Herraez, J. Lorenzo, H. and Ordonez, C. **2005**.Control of structural problems in cultural heritage monuments using close-range photogrammetry and computer methods, Computers and Structures,83, 1754-1466.
- [7] Cooper, M and Robson, S. **2001**. Theory of close range photogrammetry. In: Atkinson KB, editor. Close range photogrammetry and machine vision. Caithness, Scotland, UK: Whittles Publishing: pp.9-51.
- [8] ERDAS, Inc. **1999.** ERDAS IMAGINE Version 8.4 OrthoBASE Tour Guide, Atlanta, Georgia USA.
- [9] Easa, S.M. **1988**.Estimating Pit Excavation Volume Using Nonlinear Ground Profile Journal of Surveying Engineering, 114(2) 71-83.
- [10] Fraser, C. S. **1993**. A resume of some industrial applications of photogrammetry. ISPRS Journal of Photogrammetry and Remote Sensing, 48(3): 12–23.
- [11] Canon EOS 500D EF-S (18-55) mm, Instruction Manual.