
Abdul Mohsin and Harif Iraqi Journal of Science. Vol 53.No 4.2012.Pp 899-902.

 899

AGENT-BASED GRID COMPUTING LOAD BALANCING AT

 APPLICATION LEVEL

¹Husam Ali Abdul Mohsin, ²Alaa Hassan Harif

Dept. of Computer Science, College of Science, University of Baghdad, Iraq
,²alaaharif@scbaghdad.edu.iq husamali@Yahoo.com ¹

Abstract

Grids functionally combine globally distributed computers and information

systems for creating a universal source of computing power and information. Grid is

a very large scale, generalized distributed network computing system that can scale

to Internet-size environments with machines distributed across multiple

organizations and administrative domains. The emergence of new variety

applications demand that Grids support compatible efficient data and resource

management mechanisms, This paper provides an application level load balancing

for individual parallel jobs for grids data, implemented by using Borland JBuilder 7

Enterprise - WebLogic Edition.

Key words: Grids, Network Computing, Application Level, Load balancing.

���������	
�� �	
���� �� ������ ����� ������	 ��	���� ���
� �� �����

��� ��
��
���� �	� � ��
� !"#�$

�������� 	�
�	�
��� ��
������� ����� � �����–������ .

���%!&

 �������� ���� � ���� �� !"�� ������ #�! ���$��%& 	����� ����'%& ����
���� ��(� �
)�

 *�+�� #�����������������
���� �� . �������� ���������	���� � !"�� ������ 	�'% ���� ,��� �*���

���'%� *�! �� �!"�� ,-��� �� �%��%.� �-�� 	�� ���� ������ /
!������ �.��� *�! �� � . $��%

 ,� �
0�� *���� �!�%�� ��+��0��� ���������� ,& �1��� � ����� ����
�� #���� ����%���� *���2

���(��� � ����� �1� 3"�� �+��0� 4���� �0�� 5���� �67#��!8��
��� 9:% �� � ����� ��;� ���� � �

 ,� ����
�� �
0� ������������ ���� � ��0 5���� �67 �	��)���� " Borland JBuilder 7

Enterprise - WebLogic Edition"

Introduction

 The computational grid is a promising

platform that provides large resources for

distributed algorithmic processing. Such

platforms are much more cost-effective than

traditional high performance computing

systems. However, computational grid has

different constraints and requirements to those

of traditional high performance computing

systems. To fully exploit such grid systems,

resource management and scheduling are key

grid services, where issues of task allocation and

load balancing represent a common problem for

most grid systems.

Abdul Mohsin and Harif Iraqi Journal of Science. Vol 53.No 4.2012.Pp 899-902.

 900

 The load balancing mechanism aims to

approach an equal spread of the load, on each

computing node, maximizing their utilization

and minimizing the total task execution time. In

order to achieve these goals, the load balancing

mechanism should be ‘fair’ in distributing the

load across the computing nodes. This implies

that the difference between the heaviest-loaded

node and the lightest-loaded node should be

minimized [1]. In this paper, we propose an

applicable algorithm that uses agent technology

to implement scalable load balancing on Grid

environments; so workload and resource

management are two essential functions

provided at the service level of the Grid

software infrastructure. To improve the global

throughput of these environments, effective and

efficient load balancing algorithms are

fundamentally important. Most strategies were

developed in mind, assuming homogeneous set

of resources linked with homogeneous and fast

networks. However for computational Grids we

must address main new challenges, like

heterogeneity, scalability and adaptability.

 This paper addresses the issue of load

balancing grid resources in a reliable applicable

algorithm. Sections 2, describe the related works

in this approach. Sections 3, describe the

background and the details of the proposed

effective algorithm. In sections 4 and 5 we

describe the future works and conclusion.

Related Work
 Availability of grid resources is dynamic,

which raises the need to develop robust and

effective applications against changing

circumstances. This paper proposes a robust

load balancing applicable algorithm and the

control task scheduler is discussed. Based on

improving fault tolerant service on request chain

processing, the paper enhances ORBUS1.1

software with a load balancing service.

Simulation results show that the implementation

is able to obtain high system performance with

control task scheduling and MAX_PERFORM

policy [2]. Load balancing is a key concern

when developing parallel and distributed

computing applications. The emergence of

computational grids extends this problem, where

issues of cross-domain and large-scale

scheduling must also be considered. In this work

an agent-based grid management infrastructure

is coupled with a performance-driven task

scheduler that has been developed for local grid

load balancing. Each grid scheduler utilizes

predictive application performance data and an

iterative heuristic algorithm to engineer local

load balancing across multiple processing nodes.

At a higher level, a hierarchy of homogeneous

agents is used to represent multiple grid

resources. Agents cooperate with each other to

balance workload in the global grid environment

using service advertisement and discovery

mechanisms. A case study is included with

corresponding experimental results to

demonstrate that both local schedulers and

agents contribute to overall grid load balancing,

which significantly improves grid application

execution performance and resource utilization

[3]. To be mentioned that the applicable

algorithm proposed in this paper works in the

local nodes in the same grid rather than the

global grid environment.

Grid Load Balancing

 This section describes issues related to our

applicable algorithm. This algorithm mainly

consists of a GBalancer in each node that

manages system related tasks and nodes that join

the Grid and provide resources. A GBalancer

role in the system is to manage tasks, including

maintenance of load balancing, schedule the

status of each node in the Grid, selecting nodes

for task execution and to participate in the load

balancing operation. To make a GBalancer

accomplish its mission in the most efficient way,

a GBalancer has the mechanisms of calculating

the most effective node. Each GBalancer in each

node in grid environment sends messages

describing its status to each GBalancer at other

nodes in the grid in a fixed period of time, so

each node in the grid will have a status table

describing the status of all the nodes in the grid.

Now, if any node in the grid is over loaded in

that moment and has exceeded the CPU load

threshold of the algorithm(in our case, the

threshold is 75% of the CPU usage), that node

can chose the best node in the grid that can load

balance its load with, using the status table.

When the loaded node chooses the idle or low

loaded state node, a node that can provide its

resource, a “join” message will be sent from the

loaded node to the unloaded one, after the join is

accepted, related hardware information will be

transmitted to the GBalancer of the loaded node

and the process of the load balancing will be

launched by using the COBRA approach in the

JAVA language, else, when the unloaded node

can no longer provide resource, it has to transmit

an “exit” message to the GBalancer of the

Abdul Mohsin and Harif Iraqi Journal of Science. Vol 53.No 4.2012.Pp 899-902.

 901

loaded node, that in turn will search for other

nodes to load balance with. The process of

calculating the nodes load, is measured by

simple static load methods by calculating CPU

LOAD, MEMORY UTLIZATION and other

factors specified by the administrator [4], but

before that, we have to perform the is reachable

function, that returns the true value when the

node is online, and a false value if the node is

offline. The process of static load balancing

stage is described as:

I)When a request for executing a task is

proposed, GBalancer dispatches an agent to

collect related information of each node

participating in this Grid by receiving a broad

casting message from each node.

II)Agents collect related information of nodes

used in the load balancing method [4].

III)Nodes sent calculated information to agent.

IV)Agent provides all node related information

to GBalancer as a table generated by MS-Access

connected with Java agent code using ODBC

Driver.

V)GBalancer builds a table of effective nodes by

mechanism of calculation of effective nodes

(lowest load).

VI)GBalancer selects effective nodes set from a

table of effective nodes by mechanism of node

selection (by SQL selection method using java

compiler).

VII)GBalancer assigns subtasks to selected

nodes, using the COBRA mechanism.

 In a Grid environment, the effectiveness of

nodes may vary with time. Thus, the assignment

of tasks has to be dynamically adjusted in

accordance with the fluctuation of node status.

The variation of the node status can be identified

in condition by checking the status of each node

at threshold time (in our system at each 3

minutes), when the GBalancer receives the

message that a certain node can no longer

provide resources “exit”. So the process of

dynamic load balancing stage, as follows:

1)When state of node changes, GBalancer

dispatches agent to collect related data of each

node in the table of effective nodes, for time

consuming.

2)Agent collects related information of node in

the table of effective nodes, by sending a

message to that node requiring its status.

3)Nodes sent their own information to agent.

4)Agent provides collected data to GBalancer.

GBalancer compares the collected data with

historic data in order to confirm if the node is

still effective and to see if there is a dramatically

change in the load of the overall grid.

5)If the node is confirmed ineffective, a node

with the highest value will be selected from the

wait aggregate, and the subtask is re-executed

by new effective node.Therefore, by using the

previous stages in our system these will provide

the ability to distribute the load of jobs through

the grid environment with high performance.

Experimental Results

 This experiment is achieved according to the

specifications of our simulated environment.

This simulated GBalancer environment includes

heterogeneous servers that are loaded with jobs.

The number of servers tested in this simulated

environment is 5 servers, each with a different

operating system, and hardware specifications as

shown in (Table-1).

 (Figure-1) shows the status of the

experimental environment before performing the

load balancing procedure. The figure below

shows that the loads of the 5 servers are limited

between 10% and 96% of the CPU usage. At

that point, the system needs to be balanced, to

distribute the load on the overall system, and to

reach for a stable status and limiting the load of

the servers in the Grid between 45% and 75% of

the CPU usage. (Figure-2), show the status of

the Grid after performing the load balancing. It

is obvious, that the load average of the overall

system CPU usage reached to the status this

research is seeking for

 (Table-1) The Simulated Heterogeneous Environment

Server

name

Memory

size

CPU

speed

Operating

System

Server#1 2 GB 2.3 GHz Windows XP

Server#2 4 GB 2.6 GHz Server 2003

Server#3 2 GB 2.6 GHz Windows 7

Server#4 4 GB 2.3 GHz Server 2000

Server#5 4 GB 2.3 GHz Windows XP

Abdul Mohsin and Harif Iraqi Journal of Science. Vol 53.No 4.2012.Pp 899-902.

 902

(Figure -1)Line chart that sketches the information of the table below, those information represent the CPU load of

each node in our heterogeneous environment in each time interval.

(Figure-2)Line c sketches the average CPU load of our heterogeneous environment in each time interval.

Conclusions

 We presented our architecture to design Grid

Computing Services. We also proposed a two-

level load balancing algorithm, which minimizes

the overall tasks response time and maximizes

the grid system utilization and throughput at

steady-state, by combined between the effective

usage load balancing on each node for it self and

load balancing the overall grid system this

increase the scalability, and availability of load

distribution, also the heterogeneousty of our

system supported by JAVA2 compiler these

increase the platform Independents in our

system.

Future works

1- There are, of course, several open issues that

need to be addressed in load balancing for Data

Grids. First, the performance of our load-

balancing strategy in Data Grids (global usage

of storage resources) depends to some extent on

data movements. Reducing overhead incurred

by data movements can ultimately improve

performance of Data Grids.

2- This research proposes an GBalancer that one

of its duties is to collect information from each

node in the grid and send it to all nodes, and

then each loaded node will use this information

to decide where to distribute its load, in this case

more than one node can distribute its load to the

same unloaded node, that can cause some

temporary saturation to that node, not

mentioning that this strategy will not disserve

the system as shown in the results, nevertheless ,

we can add a new strategy to enhance this

algorithm, that is, to change the time schedule of

each node so that all the nodes will send their

information via the GBalancer in different times,

in order for each to distribute their load to

different nodes

References

[1]. Subrata,R, A Y.Zomaya, and Landfeldt,B ,

2007,“Artificial life Techniques for Load

Balancing in Computational Grids”,

Journal of Computer and System Sciences,

Volume 73 Issue 8, December, Pages

1176-1190 ,Academic Press,Inc. Orlando,

FL,USA

[2]. Cao1,J. Spooner D P., Jarvis,S A.;Saini,S

and Nudd,G.R, 2003 ,“Agent-Based Grid

Load Balancing Using Performance-

Driven Task Scheduling”, International

Proceedings on Parallel and Distributed

Processing Symposium, Germany, pp 10,

22-26 April

[3]. Wang,J and Wang,Y ,2005,”A Robust

Load Balancing Pattern for Grid

Computing”, IEEE First International

Conference on Semantics, Knowledge and

Grid SKG , Beijing-China, pp 52, 27-29-

Nov.

[4]. Hassan,S.S,2010, “Web Load Balancing

By Routing Agents”, 2
nd
 Scientific

Conference on Information Technology-IT

Applications and Horizons, University of

Technology, Baghdad-Iraq, April.

C
P
U

L
o
ad

