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Abstract 
     The combined effect of a transverse magnetic field and radiative heat transfer to 
unsteady flow of a conducting optically third order fluid through a channel filled with 
saturated porous medium and non-uniform walls temperature is investigated.It is 
assumed that the no-slip condition between the wall and the fluid remains no longer 
valid. The third order fluid equations of continuity momentum and energy are obtained. 
Analytical solutions for problem are established.The effect of wall slip on velocity field 
is presented by figures. The basic properties of the flow are studied. 
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INTRODUCTION 

     The magnetofluiddynamics is the study of 
electrically conducting fluids in electric and 
magnetic fields. It unifies in a common framework 
the electromagnetic and fluid dynamic theories to 
yield a description of the concurrent effects of  

 
magnetic field on the flow and the flow on the 
magnetic field. Magneto hydrodynamics (MHD) 
is specifically concerned with electrically 
conducting liquids and ionized compressible 
gases.  
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     There are many natural phenomenon and 
engineering problems susceptible to 
magnetofluiddynamics analysis. It is useful in 
engineering problems such as 
magnetohyrodnamics (MHD) generators and 
many applications [8]. In the last few decades, 
several simple flow problems associated with 
classical hydrodynamics have received 
considerable attention within the more general 
context of 
magnetohydrodynamics (MHD), an important 
field of application is electromagnetic propulsion. 
In recent years, the flow of fluids through porous 
media has become 
an important topic because of the recovery of 
crude oil from the pores of the reservoir rocks [6]. 
In this paper we study the effect of slip condition 
on unsteady MHD of third grade fluid. Exact 
analytic solution is presented. This paper is 
organized into five sections. Section two concern  
with  third order fluid. Section three describe the 
mathematical model of the problem, and the last 
two sections give the solution and results, which 
we want to investigate in it the combined effects 
of a transverse magnetic field and radiative heat 
transfer on unsteady flow of conducting optically 
thin third order fluid through a channel filled with 
saturated porous medium and non uniform walls 
temperature. In the following section, the problem 
of the governing equation formulated, solved and 
results with discussion. 
 

Third order fluid    
An incompressible simple fluid is defined as a 
material whose state of present stress is determined by 
the history of the deformation gradient without 
preferred reference configuration [3]. Its constitutive 
equation can be written in the form of a functional of 
the form 
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Where Ip1  is the undetermined part of the stress 

tensor and F is the deformation gradient. 
Coleman and Noll [2] defined the incompressible fluid 
of differential type of grade n as the simple fluid 
obeying the constitutive equation 
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Obtained by asymptotic expansion of the functional in 
(1) through a retardation parameter x. If n = 3, the first 

three tensors jS are given by 
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whereµis the coefficient of viscosity and 

2121 ,,, ββααand3βare the material 

modules,21, AAand 3Aare kinematical tensors 

defined by        
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Where V denotes the velocity field, grad is the gradient 
operator and d/dt is the material time derivative which 
is defined by 

(.), grad.(.)(.) V
tdt

d
+
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∂

=
                             

(4)  

Where ∂/∂t is the partial derivative with respect to time. 
A detailed thermodynamic analysis of the model, 
represented by (2.2) is given in [7]. It was shown that if 
all the motions in the sense that these motions meet the 
Clausius – Duhem inequality and if it is assumed that 
the specific Helmholtz free energy is minimum , when 
the fluid is locally at rest, then: 

,0,0 1 ≥≥ αµ ,24 321 µβαα ≤+

0,0 321 ≥== βββ
                                      

(5) 

Therefore, the constitutive relation for a 
thermodynamically compatible fluid of third grade 
becomes 
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(6) 

In this paper we consider a fluid of third order whose 
state equation is of the form (6). 

 
Mathematical model of the problem  
In the present paper, consideration is given to 
unsteady, incompressible, viscous electrically 
conducting fluid of third order saturated porous 
medium with constant temperature and the 

radiation effect is also taken to account.           
 The fluid disjoint by two parallel plates by a 

space as shown in Fig.1.                                  
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Figure-1)Geometry of the proble(  

 
     In this problem, the following assumptions 
have been made:-                                         

1.A uniform magnetic (   ) field of  strength 

=( )is applied perpendicular to the plates. 
       2.The electromagnetic induction is small,and 
        the electromagnetic force produced is very 
       small. 

3.It is assumed that both walls temperature ,  
arehigh enough to induce radiative heat transfer. 
4. It is assumed that the fluid is optically thin with 
a relatively low density and the radiative heat flux 
[5] is given by : 
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Where q is the radiative heat flux, α the mean 

radiation absorption coefficient, 0T  the 

temperature at y = 0, T the temperature at y = α 
. 

The Governing equations 
Under the above assumptions, the governing 
equations can be written as: 
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With  

u-γ
y

u

∂

∂
 = 0,  θ = 0  ,  on y = 0……            (10) 

u = 0  ,θ = 1,   on y = 1                                  (11) 
 

where u  is the axial velocity, t the time, ρ the 
fluid density, P the pressure, x the axial distance , 
v the kinematic viscositycoefficient, y     
transverse distance, K  the porous medium 

permeability coefficient,     the conductivity of 

the fluid, g the gravitational force,β  the 
coefficient of volume expansion due to 
temperature, the coecostic parameter,  is the 
material modal,  k  the thermal conductivity,  

the specific heat at constant pressure.                                                                                                                  

The following dimensionless variables and 
parameters are introduced:- 
 

 

 

(12)  

 
 
 
 
 
where      is the flow mean velocity,     the non 
dimensional temperature ,H ,  ,Gr , ,N 
 are Reynolds number, Hartmann number, Darcy 

number, Grashoff number,   P cle  number, 
Radiation parameter respectively.                        
The governing equations for this flow geometry 
together with the appropriate boundary conditions, 
in dimensionless form can be written as 
 
 
 
 
                                                                        (13) 
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With associated boundary conditions are 

u-γ=0, θ =0  on y=0,    u = 0,θ=1,on y =1     (15) 

It is clear that if we set α1 =       = 0 in equation 
(13), we obtain the corresponding equations in the 
case of second order fluid as obtained by [1]. 
 

 Solution of the problem 
For purely an oscillatory flow we take 
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Where λ is a constant and ω is the frequency of 
the  scillation. 
Due to the selection from of pressure gradient we 
assume the solution of the equations (13), (14) of 
the form: 

u (y, t) = 0u  + β 1u , θ (y, t) = 
o

θ  (y) 
tie ω
     (17) 

Substituting these expressions into equation (13) 
and equating the coefficients of equal power in 

we obtain: 

Zero order in : 
 
 
 
                                                                       (18) 

 
 
With boundary conditions: 

y

u
u

∂

∂
− 0

0 γ  = 0, on y = 0 

= 0,   on y = 1 

First order in  is: 

ty

u
uHu

ay

u

t

u
Re ∂∂

∂
+−−−

∂

∂
=

∂

∂
2

2

3

11

2

12

1

2

1 1
α

ρ
 










∂

∂









∂

∂
+

2

0

22

02Re6
y

u

y

u

                              

(19) 

where: 
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Putting the second part of equation (17)into 
energy equation (14), we get: 
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And the associated boundary conditions are: 

o
θ = 1  on  y = 0 

o
θ = 1  on  y = 1 

The solution of (20) is given by 
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The solution of equations (24) and (25) is found to 
be: 
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 Results and discussion 

     In this section we study the effect of each of 
the dimensionless parameter that appear in the 
above motioned equation, upon the velocity 
distribution considering the real part of the 
solution given by eq. (26),if we set =0  we cover 
all the results that obtained by[4],in addition to 
that. If we set = =0 , all the results  obtained 
by [1] can be coverd. 
Also,to see the effect of any parameter we keep all 
other parameters fixed. The following results are 
obtained 
• For As Re  increase there is decreases in the 
velocity distribution, see figure (2). 
•  For As β  increase we observe that there is 
oscillatory velocity distribution about  β=0.03, see 
figure (3).   

•  For AsHa   increase there is decreases in the 
velocity distribution, see figure (4). 

•  For As Gr  increase there is decreases in the 
velocity distribution , see figure (5). 

•  For As s increase there is decreases in the 
velocity distribution, see figure (6).                  

•  For As w increase there is decreases in the 
velocity distribution , see figure (7).                    

•  For As Pa  increase there is oscillatory  in the 

velocity distribution aboutPa =0.002, see 
figure(8)  

• For As N  increase there is decreases in the 
velocity distribution , see figure (9).              
• For Asa  increase there is decreases in the 
velocity distribution , see figure (10).          

• For Asλ  increase there is decreases in the 
velocity distribution, see figure (11)                
•  For As γ  increase there is decreases in the 

velocity distribution , see figure (12). 

•  For As t  increase there is decreases in the 
velocity distribution , see figures (13). 

 
 
 
 
  
  

 
  

 

  
  

Fig.2 .Velocity curves for 

Re= 0.01,0.3,0.5   Ha=1  =1  N=1 s=1 

w=1    t=      Pa=0.7    

 λ=1     Gr=1      
 
  

 

 

 

 

 

 

 

 

 
Fig.3. Velocity curves for 

Re=1,   Ha=1     =1  N=1 s=1 

w=1    t =      Pa=0.7    

λ=1     Gr=1      
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Fig.4. Velocity curves for 

Re=1,   Ha=0.01,0.05,0.07  =1  N=1 s=1 

w=1    t =      Pa=0.7    

λ=1     Gr=1      

 

 

 

 

 

  
  
  
  
  
  

Fig.5. Velocity curves for 

Re=1,   Ha=1     =1  N=1 s=1 

w=1    t =      Pa=0.7    

λ=1     Gr=0.1,0.3,0.5  

 
  
  
  
  
  

  
  
  
  
  
 
  
  

Fig.6. Velocity curves for 

Re=1,   Ha=1     =1  N=1 s=0.1,0.01,0.05 

w=1    t =      Pa=0.7    

λ=1     Gr=1      

 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.7. Velocity curves for 

Re=1,   Ha=1     =1  N=1 s=1 

w=0.01,0.03,0.05    t =       Pa=0.7    

,λ=1     Gr=1   

 
 
  
  

 

 

 

 

 

 

  

 

 
Fig.8. Velocity curves for 

Re=1,   Ha=1     =1  N=1 s=1 

w=1  t =      Pa=0.01,0.002,0.003    

λ=1     Gr=1      

 

 
  
  
  
 
  
  
  
  
  

Fig.9. Velocity curves for 

Re=1,   Ha=1     =1  N=0.01,0.2,0.3  s=1 

w=1    t =      Pa=0.7    

λ=1     Gr=1  
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Fig.10. Velocity curves for 

Re=1,   Ha=1     =1  N=1 s=1 

w=1  t =       Pa=0.7    

λ=1     Gr=1    a= 0.01,0.1,0.4 
  
  

 

  
 
 
 
 
  
  
  
  
  

Fig.11. Velocity curves for 

Re=1,   Ha=1     =1  N=1 s=1 

w=1  t =       Pa=0.7    

λ=0.1,0.4,0.6     Gr=1  

  
  

  
  
  
  
  
 
 
 
 
 

Fig.12. Velocity curves for 

Re=1,   Ha=1     =0.1,0.02,0.05   N=1 s=1 

w=1   t =      Pa=0.7    

λ=1    Gr=1      

 

 
 
 
  
  
  
  
  
  
  

Fig.13. Velocity curves for 

Re=1,   Ha=1     =1  N=1 s=1 

w=1  t =      Pa=0.7    

λ=1     Gr=1      
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