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Abstract

The combined effect of a transverse magnetic field and radiative heat transfer to

unsteady flow of a conducting optically third order fluid through a channel filled with
saturated porous medium and non-uniform walls temperature is investigated.lt is
assumed that the no-slip condition between the wall and the fluid remains no longer
valid. The third order fluid equations of continuity momentum and energy are obtained.
Analytical solutions for problem are established.The effect of wall slip on velocity field
is presented by figures. The basic properties of the flow are studied.
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INTRODUCTION

The magnetofluiddynamics is the study of
electrically conducting fluids in electric and
magnetic fields. It unifies in a common framework
the electromagnetic and fluid dynamic theories to
yield a description of the concurrent effects of
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magnetic field on the flow and the flow on the
magnetic field. Magneto hydrodynamics (MHD)
is specifically concerned with electrically
conducting liquids and ionized compressible
gases.
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There are many natural phenomenon and
engineering problems susceptible to
magnetofluiddynamics analysis. It is useful in
engineering problems such as
magnetohyrodnamics (MHD) generators and
many applications [8]. In the last few decades,
several simple flow problems associated with
classical hydrodynamics have received
considerable attention within the more general
context of
magnetohydrodynamics (MHD), an important
field of application is electromagnetic propulsion.
In recent years, the flow of fluids through porous
media has become
an important topic because of the recovery of
crude oil from the pores of the reservoir rocks [6].
In this paper we study the effect of slip condition
on unsteady MHD of third grade fluid. Exact
analytic solution is presented. This paper is
organized into five sections. Section two concern
with third order fluid. Section three describe the
mathematical model of the problem, and the last
two sections give the solution and results, which
we want to investigate in it the combined effects
of a transverse magnetic field and radiative heat
transfer on unsteady flow of conducting optically
thin third order fluid through a channel filled with
saturated porous medium and non uniform walls
temperature. In the following section, the problem
of the governing equation formulated, solved and
results with discussion.

Third order fluid

An incompressible simple fluid is defined as a
material whose state of present stress is determined by
the history of the deformation gradient without
preferred reference configuration [3]. Its constitutive
equation can be written in the form of a functional of
the form

T()=-p1+ Y F(s)

s=0

0))

Where p,[ is the undetermined part of the stress
tensor and F' is the deformation gradient.

Coleman and Noll [2] defined the incompressible fluid
of differential type of grade n as the simple fluid
obeying the constitutive equation

T(t)=-pI+).S,

Jj=0

()
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Obtained by asymptotic expansion of the functional in
(1) through a retardation parameter x. If n = 3, the first

three tensors S, are given by

S, = pd,

S2=a,A2+a, 4,

53= B4+ By(A A, + 4,4)+ B, (6r42 )4,

is the coefficient of viscosity and g where

are the material Pyanday, s, B, o

are kinematical tensors Aszand A, A, modules,
defined by

A, = gradV + (grad V)",

d

A, = EAH + A, (gradV)+ 3)

(grad V)" 4, ,, withn=23,-,
Where V denotes the velocity field, grad is the gradient
operator and d/dt is the material time derivative which
is defined by

d 0
E(') = 5(.) +V .grad (.), )

Where 0/¢t is the partial derivative with respect to time.
A detailed thermodynamic analysis of the model,
represented by (2.2) is given in [7]. It was shown that if
all the motions in the sense that these motions meet the
Clausius — Duhem inequality and if it is assumed that
the specific Helmholtz free energy is minimum , when
the fluid is locally at rest, then:

u=0, o =20, a1+a2|£,/24,u,83,
ﬂ1=ﬂ2=0, ﬂ320 Q)
Therefore, the constitutive relation for a

thermodynamically compatible fluid of third grade
becomes

In this paper we consider a fluid of third order whose
state equation is of the form (6).

Mathematical model of the problem

In the present paper, consideration is given to

unsteady, incompressible, viscous electrically

conducting fluid of third order saturated porous

medium with constant temperature and the
radiation effect is also taken to account.

The fluid disjoint by two parallel plates by a
space as shown in Fig.1.
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(Figure-1)Geometry of the proble
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In this problem, the following assumptions
have been made:-
1.A uniform magnetic ( g, ) field of S strength
Ba=(ppHp)is applied perpendicular to the plates.
2.The electromagnetic induction is small,and
the electromagnetic force produced is very
small.
3.1t is assumed that both walls temperatureTy, Ty
arehigh enough to induce radiative heat transfer.
4. It is assumed that the fluid is optically thin with
a relatively low density and the radiative heat flux
[5] is given by :

oq

=40 (T, - T) @)
Oy
Where ¢ is the radiative heat flux, o the mean

coefficient, 7, the
temperature at y = 0, T the temperature at y = «

radiation  absorption

The Governing equations
Under the above assumptions,
equations can be written as:

2 2
BT it

the governing

ot p&;( 8)
62
e {@]( )
of _ x 0T 1 0q .(9)
ot pc, oy* pc, Oy
With
y——=0,0=0, ony=0...... 10)
u=0,0=1, ony=1 (11
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where u is the axial velocity, t the time, p the
fluid density, P the pressure, x the axial distance ,
v the kinematic viscositycoefficient, y
transversevdistance, K the porous medium

permeability coefficient, K the conductivity of

the fluid, g the gravitational force,S the
coefficient of volume expansion due to
temperature, the coecostic parameter, is the
material modal, k the thermal conductivity,

the specific heat at constant pressure.

The following dimensionless variables and

parameters are introduced:-

r =Y x=2y=2u=L o= T_TO,
v a a U T, -T,
2 2
w90 W AP p K 12)
pv a pyvU a
Gr = 8P, nya* , _Uape, . _4a’a
oo ko k-
=% p, = /33
where U is the flow mean velocity,§ the non

dimensional temperature R _H, 0, ,Gr, N

are Reynolds number, Hartmann number, Darcy
number, Grashoff number, Pe’cle number,
Radiation parameter respectively.

The governing equations for this flow geometry
together with the appropriate boundary conditions,
in dimensionless form can be written as

=t ——u—Hu
a oy » m
Ju ou ’ S u
GO —— 468 RE|— || —
+GO+q 8y28t+ B, (@J (@Zj 13)
060 06 )
P—= - N0
o oy (14

With associated boundary conditions are
u-y=0,06=0 ony=0, u=0,6=l,ony=1 (15)

It is clear that if we set @/ = B, = 0 in equation
(13), we obtain the corresponding equations in the
case of second order fluid as obtained by [1].

Solution of the problem
For purely an oscillatory flow we take

_oP
/1 it 1 6
. (16)
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Where A is a constant and o is the frequency of
the scillation.

Due to the selection from of pressure gradient we
assume the solution of the equations (13), (14) of
the form:

u@ ) =uy+pu, 0@ =26, (e (A7)
Substituting these expressions into equation (13)
and equating the coefficients of equal power in
fzwe obtain:

Zero order in fy:

Quy __OP Oy 1

e - + 2 uO
ot ox 0Oy pa
0’ (18)
H’u, +G,H+ali
oy ot
With boundary conditions:
0
uo—yﬂ=0, ony=0
oy
ug=0, ony=1
First order in ff5 is:
0’ 0’
ei: L;l ——Lul - H’u, +al#
ot Oy pa oy~ ot
2
0 0’
+6Re?| 2o | [ S (19)
)\
where:
ou

ul—ygl =0,ony=0

1,=0, on y=1
Putting the second part of equation (17)into
energy equation (14), we get:

06,

2 +m’0 =0... 20)
And the associated boundary conditions are:
6,=1 on y=0
6,=1 on y=1
The solution of (20) is given by

sinm
0, =— 1 here
sinm,
m, =/N> —iwpa 1)

Putting the last expression of &, into (17), we
have
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sinm,y
6 — - ly eza}t (22)
sinm,
To solve equations (18)and(19), we assume that
Ug=Ugy U =u, e, (23)

Substitute expressions (16, 22, and 23) into

equation (18),(19) and eliminating e'’, e we
obtain:
62”00 2 sinm,y
—Kjuy =-K, - K;— . (29
y sinm,
1%}
Uy — 7 Ugo -0, ony=0
oy
Ugg =0, on y=1
1
R +—+Hd
~m A Gr
K=" P
Tiwo, I+ioag l+ioa
tyy = Cuatyy + gy gy =0 25)
ou
uy, —y—+ =0, ony=0
dy
u; =0, on y=1
where:
1
—+ Ha” -3iwRe . ,
_pa _ 6iwRe
1 1+3iwa,  °  1+3iocq,

The solution of equations (24) and (25) is found to
be:

. A
coshK|y+D, smhK1y+P +
u =eiat D 1
») ) G ,
s’ K

+ﬂ eSi(ut
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(i & —(12RE(Hd +i"Rers)'w cosh

[ Hd +i*Rets’y](-5(Hd +i"Rets)+

1 +Hd +3iwRe

A +(Hd +i"Rets”_
1+3iwex

1 +Hd +3iwRe

A \coshp Hd +i"Rers’y])
1+3iwex
>+ AGH N +ipaw

- *
Hd +i"Rets

(-Hd +N* —i"Re-5" +ipawCs§| N° +ipav}+........ >

A Grm
D =——=+y| D, K, +— S
K, sinm,(m,” —K,")

>J

Results and discussion

In this section we study the effect of each of
the dimensionless parameter that appear in the
above motioned equation, upon the velocity
distribution considering the real part of the
solution given by eq. (26),if we setyy=0 we cover
all the results that obtained by[4],in addition to
that. If we setf3=a;=0, all the results obtained
by [1] can be coverd.
Also,to see the effect of any parameter we keep all
other parameters fixed. The following results are
obtained
eFor As Re increase there is decreases in the
velocity distribution, see figure (2).
e For As f increase we observe that there is
oscillatory velocity distribution about £=0.03, see
figure (3).
e For As Ha increase there is decreases in the
velocity distribution, see figure (4).
e For As Gr increase there is decreases in the
velocity distribution , see figure (5).
e For As § increase there is decreases in the
velocity distribution, see figure (6).

(26)

1
P sinhK, + K, coshk

L coshk,
sinm,

A Gr
(coshk; _1)72_ 2 2 a
K~ (m -K)
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e For As w increase there is decreases in the
velocity distribution , see figure (7).
e For As Pa increase there is oscillatory in the

velocity  distribution  about Pa=0.002, see
figure(8)
eFor As N increase there is decreases in the

velocity distribution , see figure (9).

eFor Asd increase there is decreases in the
velocity distribution , see figure (10).

® For AsA increase there is decreases in the
velocity distribution, see figure (11)

® For As y increase there is decreases in the
velocity distribution , see figure (12).

® For As ¢ increase there is decreases in the
velocity distribution , see figures (13).
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Fig.2 .Velocity curves for
Re=0.01,0.3,0.5 Ha=1 y =1 N=1s=1
w=1 t=§D Pa=0.7 f=1
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Fig.3. Velocity curves for
Re=1, Ha=1 ¥ =1 N=1s=1
Pa=0.7 § =0.1,0.03,0.07
Gr=1

w=1 =

=1 a=1
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Fig.4. Velocity curves for
Re=1, Ha=0.01,0.05,0.07y =1 N=1s=1

w=l1 t=§ﬂ Pa=0.7 =1
=1 Gr=l a=1
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Fig.5. Velocity curves for

Re=1, Ha=1 ¥ =1 N=1s=1
w=1 t=% Pa=0.7 f=1
=1 Gr=0.1,03,0.50 = 1
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Fig.6. Velocity curves for
Re=1, Ha=1 y=1 N=1s=0.1,0.01,0.05
w=1 t=% Pa=0.7 S =1

=1 Gr=1 g=1
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Fig.7. Velocity curves for

Re=1, Ha=1 y =1 N=1s=1
w=0.01,0.03,0.05 t=%: Pa=0.7 f=1
J=1 Gr=l a=1
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Fig.8. Velocity curves for
Re=1, Ha=1 ¥ =1 N=1s=1
w=l t=— Pa=0.01,0.002,0.003 5 = 1

=1 Gr=1

a=1
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Fig.9. Velocity curves for
Re=1, Ha=1 ¥ =1 N=0.01,0.2,0.3 s=1

w=1 t=;1D Pa=0.7 f =1

=1 Gr=lg=1
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Fig.10. Velocity curves for
Re=1, Ha=1 ¥ =1 N=1s=1
Pa=0.7 f=1

mw
w=1 t=TF
=1 Gr=1 a=0.01,0.1,0.4
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Fig.11. Velocity curves for
Re=1, Ha=1 { =1 N=1s=1
Pa=0.7 F=1

w=1 t=d;—1TE
2=0.1,0.4,0.6 Gr=la =1
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Fig.12. Velocity curves for
Re=1, Ha=1 ¥ =0.1,0.02,0.05 N=1s=1
Pa=0.7 =1
=1 Gr=1

w=1l t= =
an

a=1
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t =3n/2

Fig.13. Velocity curves for
Re=1, Ha=1 ¥ =1 N=1s=1
Im w1
= =5 Pa=07 f=1
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