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Abstract:

In this paper, the dynamics of a three species food web model consisting of
producers, primary consumers and omnivory is studied analytically as well as
numeri-cally. The existence of equilibrium points and local stability analysis
for this model is carried out together with a bifurcation analysis. The
occurrence of hopf bifurcation is also investigated. The persistence conditions
of the food web model are established by using average Lyapunov function.
The global stability analysis of the food web model is also presented with help
of Lyapunov method. Finally, in order to confirm our analytical results,
numerical simulation is carried out for suitable choices of parameters values. It
is observed that, the existence of omnivory in a food web plays a vital role in
the stability of the dynamical behavior of the system.
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Introduction:

It is well known that every organism needs to
obtain energy in order to live. For example,
plants get energy from the sun and people eat
food. A food chain is the sequence of who eats
whom in a biological community (an ecosystem)
to obtain nutrition. A network of many food
chains is called a food web. The food chain
starts with plants or other autotrophs such as
bacteria (organisms that make their own food
from light and/or chemical energy) these
organisms are called primary producers. The
primary producers are eaten by herbivores
(plant-eaters) called primary consumers. The
herbivores are eaten by carnivores (meat-eaters)
and omnivores (animals that eat both animals
and plants at different trophic levels) these
organisms are called secondary consumers.
Secondary consumers may be eaten by other
carnivores called tertiary consumers. When any
organism dies, it is eaten by tiny microbes
(detrivores) and the exchange of energy
continues.

It is well known that, ecological models provide
a way to understand the dynamical behavior of
ecosystem. The time evolution of interacting
species can be governed by mathematical
equations. These governing equations together
represent a model which dynamical behavior
can be studied using mathematical methods
analytically as well as numerically. Variety of
mathematical models for food web or food
chain, consisting of three or more species,
incorporating different factors to suit the varied
requirements is available in literature; see for
example [1-6].

On the other hand omnivory, defined as the
feeding on nonadjacent trophic levels and found
to be widespread in nature [7], is a relevant topic
of this paper. It has been studied with respect to
conditions for coexistence, nutrient enrichment,
top-down and bottom-up effects amongst others
[8-14]. Earlier empirical research led to mixed
opinions on whether omnivory is ubiquitous or
rare in natural ecosystems. Additionally,
theoretical studies suggested that the occurrence
of omnivory destabilizes certain food chains as
compared to linear food chain models [7]. This
fitted well with the general idea that complex
ecosystems tend to be unstable and would imply
that omnivory is rare in nature. For these
reasons, omnivory has long been a relatively
neglected subject of research. However,
McCann and
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Hastings [9] proposed a three-species omnivory
food web model with a fixed preference term,
and they concluding that intermediate omnivory
levels tend to stabilize the food web dynamics.
In fact, there are numerous examples of
omnivory in natural ecosystems explained that
omnivory is widespread; see [15] and the
references their in.

Keeping the above in view, in this paper
consideration is given to analyze and study the
dynamical behavior and persistence of a three
species omnivory food web model consisting of
resource — primary consumer - secondary
consumer.

Omnivory food web model

Consider a three species food web model
consisting of primary producers population or
resources population at the first level, primary
consumers population or preys at the second
level these eat the primary producers at the first
level and secondary consumers population or
predators at the third level, which in turn eat
both the primary producers at the first level and
primary consumers at the second level and
hence they called omnivores. The dynamics of
such simple food web model may be represented
by the following set of equations;

d—X=rX l—£ —aXY -bXZ

dT K

ﬂ:elaXY—cYZ—a’lY @)
dT

dz

—=e,bXZ+ecYZ—-d,Z
a2 3 2

where X, Y and Z represent the densities of
primary producers, primary consumers and
secondary consumers or omnivores at time T
respectively. It is assumed that the primary
producers grow logistically in the absence of
other consumers with intrinsic growth rate » >0
and carrying capacity K >0. The primary and
secondary consumers consume their food
according to Lotka-Volterra type of functional
response, where a>0 and b>0 are the
predation rates on the primary producers for the
primary consumers and secondary consumers
respectively; ¢ >0 is the predation rate on the
primary consumers for the secondary
consumers; e; >0 for =123 are the

conversion rates of predation into higher level
species and finally 4, >0 and d, >0 represent
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the natural death rates for the primary
consumers and  secondary  consumers
respectively. Clearly system (1) defined on the
space R} ={(X,7,2)eR*:X20,720, Z20)
and has ten parameters in all which make the
analysis of system (1) difficult. Therefore, in
order to simplify the system and specify which
set of parameters control the dynamics of the
system, the following set of dimensionless
variables and parameters are used:

t:rT,x:—,y—gY,z:—Z
K r r
_adk gLt @)
r b r
e,bK esc d,

then we will obtain the following dimen-sionless
system:

ﬂ:x[l_x_y_z]z fl(x,y,z)

dt ‘
dy

dt
dz

—o=Ao & —y]= i p2)

Here we have x>0,y>0 and z>0. Also the

interaction functions on the right hand side of
system (3) are continuous and have continuously
differentiable  functions on the domain
R = {(x,y,z) eR :x20,y>0,z> 0}. Therefore they
are globally Lipschitzian functions and hence
for any given initial condition x(0)>0, y(0)>0
z(0)>0 system (3) has
nonnegative solution. Further more, system (3)
is a dissipative system as shown in the following
theorem.
Theorem 1. System (3) is dissipative system on
R?.
Proof. It is well known that the dynamical
system is dissipative if and only if it is
uniformly bounded. Now according to the first
equation of system (3) we have

dx

7 <x(1-x)
So, by solving this differential inequality we get
that

tlim Sup.x(t)<1=x()<1Vet>0

—w

= y[ax— pz - 0]= 1, (x,3,2) 3)

and a unique

Consider the following function
U=x+y+z.
Then
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dUu

=x—x> —-(l-a)xy—(-o)xz
dt
—(f-0)yz-y -y
Since for any biologically feasible system the
conversion rates from a specific triphic level to
the higher triphic levels can not be accede the
corresponding attack rates, then a <1, o <1 and

6 < B . Therefore we obtain that

d—U <L2-aU0
dt
Where 7 =min. {1, 0, }/}. Therefore, by solving

the last differential inequality it is observed that
lim Sup.U(¢) SE:U(I) SE V>0
t—w T T

Thus all solutions of system (3) are uniformly
bounded, and hence the system is dissipative.
[

Stability analysis and bifurcation

In this section, the existence and locally
stability analysis of all possible equilibrium
points of system (3) are carried out. System (3)
has at most five nonnegative equilibrium points.
The vanishing equilibrium point £, = (0,0,0) and
the free consumers equilib-rium  point
E, =(1,0,0) are always exist. The secondary
equilibrium point
0) exists in the interior of xy -

consumer free

E2=(9 a=0

plane if and only if the following condition
holds

a>0 4)
The primary consumer free equilibrium point

E; =(£,0,22F) exists in the interior of xz -plane
if and only if the following condition holds

o>y (5)
Finally, the coexistence equilibrium point
E,=(x",y",z") exists in the interior of positive
octant (i.e Int.R?), where

o _S(B+0)-1B

S(B+a)-op
*:7/(ﬂ5+a)_o-(ﬂ+9) (6)
(B+a)-of
St ad + 6o —(ay +60)
- S(B+a)-of

Provided that, one set of the following sets of
conditions is satisfied

o0
—_— 0)<o
opf < ) (B+O)<o(f+a) )

ad+0c >ay+60
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or
5(,b’+a)<075(,8+9)<o-ﬂ )
ad+0c <ay+60

Now, the local stability analyses near each of the
above equilibrium points are carried out by
using the linearization technique and the
following results are obtained

The eigenvalues of the Jacobian matrix of
system (3) at the vanishing equilibrium point
E, =(0,0,0) are 4, =1, 4y, =—0 and Ay, =,
and hence E, is a saddle point with locally
stable manifold in the yz -plane and with locally

unstable manifold in the x -direction.

The eigenvalues of the Jacobian matrix of
system (3) at the consumers free equilibrium
point E; =(1,0,0) are 4,, =-1, 4, =a-6 and
El
asymptotically stable point if and only if the

following conditions are satisfied.
a<6 and o<y

A.=0-y, and hence is  locally

)
However if at least one of the boundary
equilibrium points E, and E; exists (that is
mean at least one of the conditions 4 and 5 hold)
then E; is saddle point.

Keeping the above in view, the occurrence of
bifurcation in system (3) near E, is studied in
the following theorem.

Theorem 2. At o=y :(=0,) the consumers free
El
nonhyperbolic equilibrium point and if a<é
then system (3) possesses transcritical
bifurcation, but no saddle-node bifurcation nor
pitch-fork bifurcation can occur.

Proof. Clearly, at o, the eigenvalue 4, =0 in

equilibrium  point transforms into a

the Jacobian matrix of system (3) at E,, say
Jy =DF(E,,0,), with F=(fi,/2. /3"
However the other two eigenvalues 4, =-1<0,
A, =a-0<0. Thus E; is a nonhyperbolic

equilibrium point for system (3).

Now, it is easy to verify that ¥ =(-v,0,v)" and
W =(0,0,w)" are the eigenvectors corresponding
to the eigenvalue 4,, =0 of the matrices J;, and

J|' respectively. Here v and w are any two non-

zero real numbers. So, according to Sotomayor
theorem [16], it is observed that;

Since W'[F, (E,,0,)]=0 the system does not
possesses any saddle-node bifurcation.
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Also since W'[DF_(E,,o;)V]=vw=0 and
W'[D*F(E,,c))V.,V)]==20,v’w=0
DF,(Ey,01)=(7;)33 With

where

otherwise and D*F(E,;,o,) is a 3x3x3 tensor,
then system (3) possesses a transcritical
bifurcation. Finally since
W'[D*F(E,,c,)V,V)]=-20c,v*w=0 the system
does not attain pitch-fork bifurcations. m

Similarly, it is easy to prove that system (3)
possesses transcritical bifurcation near E;, when

a=60 and o< y.

The eigenvalues of the Jacobian matrix of
system (3) at the secondary consumers free
2 a6 () are given by

a’ a ?

equilibrium point E, =

0++6% —40a(a - 0)
2a

_oO+o(a-0)-ay

B o

Consequently, due to the existence condition (4)

the eigenvalues, which describe the dynamic in

the x and y directions (i.e. 4,,,4,,) have

Y p—
2 2y (10)

Ay

z

negative real parts. Further, if the following
condition holds
c0+8(a—-0)<ay (11)
Then E, is locally asymptotically stable in the
R} . However it is saddle point with locally
stable manifold in xy -plane and with locally

unstable manifold in the z -direction provided
that

c0+6(a-0)>ay (12)
Moreover, the occurrence of bifurcation in
system (3) near F£, is studied in the following
theorem.

Theorem 3. At y:%g+@:(:y2) the
secondary consumers free equilibrium point £,
transforms into a nonhyperbolic equilib-rium
and if %ﬁi%+5
transcritical bifurcation, but no saddle-node

bifurcation nor pitch-fork bifurcation can occur.
Proof. Clearly, at y, the eigenvalue 4,, =0 in

system (3) possesses

the Jacobian matrix of system (3) at E,, say

J, =DF(E;.7,), with F=(f1,/2./3)".
However the other two eigenvalues are given in
Eqg. (10). Clearly 4,, and 4,, have negative

Thus E,
equilibrium point for system (3).

real parts. is a mnonhyperbolic
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Now, it is easy to verify that
V=CEv~Z+1v,v)' and W =(0,0,w)" are the
eigenvectors corresponding to the eigenvalue
2,, =0 of the J, and J,

respectively. Here v and ware any two non-
zero real numbers. So, according to Sotomayor
theorem [16], it is observed that;

Since W' [F,(E;,7,)]=0 the system does not
possesses any saddle-node bifurcation.

Also since W '[DF,(E,,y,)V]1=-vw=0 and

W' D*F(Ey,y )V, ) =2AL - L -5 w0
provided that the given condition holds, where
DF,(Ey,7,)=(7;)3s With 7y =-1; 7,=0

otherwise and D*F(E,,y,) is a 3x3x3 tensor,

matrices

then system (3) possesses a transcritical
bifurcation. Finally since
W'[D*F(E,,y,)(V,V)]#0 the system does not
attain pitch-fork bifurcations. ]

The eigenvalues of the Jacobian matrix of
system (3) at the primary consumer free

equilibrium point  E; =(£,0,%-%) are given by

_—yE\y? —4yo(o-y)
- 20
_ay—plo-y)-ob

y o
Consequently, due to the existence condition (5)
the eigenvalues, which describe the dynamic in
the x and z directions (i.e. 4;,,4;,) have
negative real parts. Further, if the following
condition holds

ay < p(oc—y)+o6

Asyr Ass
3x> 743 (13)

A

(14)
Then E; is locally asymptotically stable in the
R} . However it is saddle point with locally

stable manifold in xz-plane and with locally

unstable manifold in the y -direction provided
that

ay > B(oc—y)+ob (15)
Similarly as shown in theorem (3), the following
theorem that presents the occurrence of

bifurcation in system (3) near E, can be proved
easily.

Theorem 4. At 0:%—@:(: 0,) the
primary consumer free equilibrium point E;
transforms into a nonhyperbolic equilibrium and
if ”‘7‘5+%¢1 system (3) possesses transcritical

bifurcation, but no saddle-node bifurcation nor
pitch-fork bifurcation can occur.
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Note that, according to the forms of eigenvalues
of the Jacobiam matrix of system (3) near each
of the above equilibrium points, there is no
possibility to have pure imaginary eigenvalues.
Therefore system (3) can not have hopf
bifurcation near them.

Finally the eigenvalues of the Jacobian matrix of
system (3) at the coexistence equilibrium point

E,=(x",y",z") are the roots of the following
characteristic equation.

Here
4, =x"

Ay =ax"y " +ox"z" + pyz”

Ay =x"y "z (ad + S - Bo)
Moreover

A=A A, - A,

= x*(ax*y* +ox"z" +(0'ﬂ—a5)y*z*)

According to the Routh-Hurwitz criterion, all
the eigenvalues of the Jacobian matrix at E,
have negative real parts and hence E, is locally
asymptotically stable in the /nz.R} if and only if
A4; >0 for i=13 and A>0. Consequently, it is
easy to verify that E, is locally asymptotically
stable in the Int.R} provided that the set of

existence conditions (7) with the following
condition are hold

(" +oz") > (ad-of)y z" (17)
Otherwise it is unstable point.
Recall that, the mnecessary and sufficient

conditions for a hopf bifurcation to occur is that,
there exists a value of a certain bifurcation

parameter &, namely &., such that [17]
A(é‘*)=A1(5*)A2(5*)_A3(5*)=0 (18)
£ Re(20))] _, #0 (19)

Here A() is a root of the characteristic equation

(16).
Consequently, according to condition (17) it is
clear that condition (18) holds if and only if

5s :ﬁ(ax*y* +ox'z +ofy’zT) (20)
Therefore for & = 6., which may or may not be

a hopf bifurcation parameter, Eq. (16) can be
written as

P(A)=(A+4,)(A+4,)=0 (21)
Note that Eq. (21) has the three roots
141 = +l A2 s 2/42 = _l A2 5 al’ld 143 = _Al .
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Clearly for all values of &, the roots are in
general of the following roots
A41(6) = @,(6) +iw, (J)
242(6) = 0, ()~ i, (&)
A43(6) == 4,(9)
So, in order to check the occurrence of hopf
bifurcation around E,, we have to verify the
trasversality condition (19), that is

L (Re(ay, 0], #0; j=12
Substituting A,,(8) = w, () +iw,(5) into the Eq.

(21) and calculating the derivative with respect
to the bifurcation parameter &, that is

4 Py(2) = P3l (1)=0, and then comparing the

two sides of this equation and equating their real
and imaginary parts, it is obtain that

QS)w, (6)-Z(d)w, (8) = -D(S)

2(5)501' () +Q(5)w2, (6)=-Y(9)
where

Q(8) =3w,> —3w," + A, + 24,0,

2(0) = 6w w, +24,0,

(22)

D)= Ay @+ A, 0> — 4, @,
A Ay A,
PY(S) = Ay @, +24, @0,
Solving the linear system (22) for the unknown
col,(é) and a)zl(&) it is obtain that

oy (8) =L Re(4y;(5)) = —L2IE

Q%432
Hence the transversality condition (19) will be
reduces to verifying that

D(5.)QUSx) + P (5:)Z(5.) % 0 (23)
Straight forward computation shows that
4 (8)=0, 4, (B)=p'z,  o(8)=0,

@, (8:) =+[4,(5) , Q(8.) = 24,(5.) ,
2(84) =24, (WA, (82), DB.)=p"y"z" and

V(S =B 2 A, (5.) .

Therefore we get that

D(5.)QS) + P (5:)2(5.) =0
Hence system (3) dose not undergo a hopf
bifurcation around E, .

Persistence

In general persistence is a global property of
a dynamical system; it is not dependent upon
interior solution space structure but is dependent
upon solution behavior near extinction
boundaries (boundary planes). From the
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biological point of view, Persistence of a system
means the survival of all population of the
system in future time. However, mathematically
it means that strictly positive solutions do not
have omega limit set on the boundary of the
non-negative cone [18]. Accordingly, if the
dynamical system dose not persists then the
solution have omega limit set on the boundary
of the nonnegative cone, and hence the
dynamical system faces extinction. Now before
examine the persistence of the food web model
given by system (3) by using the method of
average Lyapunov function as given in [19], we
need to study the global dynamics in the
boundary planes xy and xz as shown bellow.

It is easy to verify that system (3) has two
subsystems given by

%w(l—x—y) = Iy (2. )
y (24)
d—f=y(wc—9) = hy(x, )
And
dx
—=x(1-x-2)=k;(x,2)

%:Z(@C—}’):kz(?@z)

Clearly subsystem (24) is obtained in the
absence of secondary consumer =z, while
subsystem (25) is obtained in the absence of
primary consumer y. Also the subsystem (24)

has  three equilibrium points namely
Po = (050)9 P = (170) and Py = (i 0{_—9) b Whlle

subsystem (25) has three equilibrium points
Yy o-r

T Yo’ o

given by ¢, =(0,0),q, =(1,0) and ¢,

Moreover, these subsystems have the same local
stability conditions as those of system (3) in the
boundary planes xy and xz respectively.

Keeping the above in view, the following two
theorems established the global dynamics in the
interior of positive quadrants of each subsystem.

Theorem 5. The subsystem (24) has a globally
asymptotically stable positive equilibrium point
py = (£,%2) whenever it exists.

Proof. Consider the
H,(x,) =X—ly for all
H,(x,y)>0is
function in the interior of xy -plane.
Now, since

following function
x>0,y>0. Obviously,

a continuously differentiable

Vzi(h1H1)+i(h2H1)=—l<0
ox oy y
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For all the values of x>0,y >0. Clearly V(x, y)
does not change sign and is not identically zero
in the positive quadrant of xy -plane. Then by
using Bendixson-Dulac criterion subsystem (24)
has no periodic dynamic in the interior of
positive quadrant of xy -plane. Further, since p,
is the only positive equilibrium point of
subsystem (24) in the interior of positive
quadrant of xy-plane. Hence according to
Poincare- Bendixson theorem p, is a globally
asymptotically stable in the interior of positive
quadrant of xy -planc =

Theorem 6. The subsystem (25) has a globally
asymptotically stable positive equilibrium point
g, = (£,7F) whenever it exists.

Proof. Similar to proof of pervious theorem
except the use of the following Dulac function
Hy(x,z)=-L forall x>0,z>0. m

Note that, since the boundary equilibrium points
E, and E; of system (3) in the interior of the
boundary planes xy and xz respectively are
coincide with p, and ¢, of subsystems (24) and

(25) respectively. Hence system (3) has no
periodic dynamic in the interior of boundary
planes. In fact E, and E; of system (3) are

globally asymptotically stable with the basins of

attractions 0,= {(x, y,0)eR? x>0,y >0,
220},  ©,={x0,2)eR}:x>0,y=0,2>0]
respectively.

Theorem 7. Assume that the boundary
equilibrium points E, and E; of system (3)
exist. Then system (3) is uniformly persistent if
and only if conditions (12) and (15) are hold.

Proof. Consider the following average

Lyapunov function ¥(x,y,z)=x"y"?2z"
each r;;i=123
Obviously

, Where
is assumed to be positive.
Y(x,y,2) is continuously
differentiable positive function defined in R?.

Now, since

- V'(x,»,2)
E(x,y,2) :—\P(x, )
=n(l-x-—y-z)
+r(ox—fz—-06)
+ry(ox+dy—7y)

Also, we have already proved that the solutions
of system (3) are uniformly bounded in the R®

(see theorem 1), and the vanishing equilibrium
point E, is an unstable saddle point with locally

unstable manifold in the x-direction. So to
proof the uniformly persistence of system (3) it
is enough to show that Z(x,y,z)>0 at the

equilibrium points E,,E, and E,, which are

belong to Ri , for any r, >0 and i=1,2,3. Note

that, for E, =(1,0,0) we have
2(,0,0)=r(a-0)+r(c-y)

Thus =(1,0,0)>0 for any r,>0 and i=23

whenever E, and E; exist.

For E, =(£,420) we have

(0 a-0 0 o 0
{22t o))
o o
Clearly = (‘9 af 0)>0 for any r; >0 provided
that condition (12) holds.

For E; =(£,0,Z%) we have
5[1, ,ﬂj: ,z(al_ﬂﬂ_gj
o o o o
Thus =(£,0,~%)>0 for any r, >0 provided

that condition (15) holds.

Therefore, since there is no periodic dynamics in
the boundary planes as shown in theorems 3-4
and E;; i=0,1,23 is the only possible omega
limit sets in the boundary planes. Hence system
(3) is uniformly persists if £, and E; exist and
conditions (12) with (15) hold. ]
Global stability analysis.

In this section, the global dynamics of
system (3) is studied with the help of method of
Lyapunov function. In the following theorems
we present conditions for each of the
equilibrium points E,, E,, E; and E, of
system (3) to be globally asymptotically stable
respectively.

Theorem 8. Assume that the consumers free
equilibrium point £, =(1,0,0) of system (3) is
locally asymptotically stable. Then if

fo =S (26)

E, is globally asymptotically stable in R?.
Proof. Consider the following positive definite
Lyapunov function about E,;

Nix,y,z)= (x—l—ln(x))-i-l_,_i
a o

Clearly, 7, is a continuously differentiable real
valued function defined on R’. Further, we

have
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a2 (8=
7 =—(x-1) ((ij
()
O

Clearly, it is easy to verify that under the local
stability condition (9) of E, and the above given

po —oa
aoc

condition (26) we obtain that %<O for any
point in R}, and hence E, is globally
asymptotically stable in R?. m
Theorem 9. Assume that the secondary
consumers free equilibrium point
E, = (£,22 0) of system (3) exists with

ad < off (27a)

o0+ (a-0)<ay (27b)

(04

Then E, is globally asymptotically stable in
R?.

Proof. Consider the following positive definite
Lyapunov function about E, :

Vy(x,y,2)= ao{x 9.0 IH(ED
a «a 0

+a[y—a_0—a_€1n(a0?/9j]+az

o (04
Clearly, V, is a continuously differentiable real

valued function defined on R?. Further, we
have
2
W _ —ao{x —gj —(opp—ad)yz
dt a
—(ay—o-@—o-ﬁ 0(—9]2
(24
According to the above, conditions (27a)-(27b)

guarantee that % <0 for any point in R?, and

hence E, is globally asymptoti-cally stable in
R’ m
Theorem 10.
consumers

E; =(£,0,77) of system (3) exists with

ad <o (28a)
(28b)

that the
equilibrium

Assume
free

primary
point

ay < 0'6’+%5(0'—;/)

Then E, is globally asymptotically stable in
R?.

Proof. Consider the following positive definite
Lyapunov function about E;:

873

Iraqi Journal of Science. Vol 53.No 4.2012.Pp866-876.

Vﬂ%%ﬂ=aa&—l—lmpgn+m
o O V4
+a(z— ln( oy J]
o-y

Clearly, V5 is a continuously differentiable real

o-y o-y
(o2 (e

valued function defined on R?. Further, we

have
v,
dr

—[0'9+a50-—_7—a;/jy
o

2
= —ao{x —lj —(of—ad)yz
o

dVy . . 3 .
Clearly, —><0 for any point in R; provided
that conditions (28a)-(28b) are hold. Hence E,

is globally asymptotically stable in R . m

Finally the global stability of the coexistence
equilibrium point of system (3) is investigated in
the following theorem.

Theorem 11. Assume that the coexistence

equilibrium point E, =(x",y",z") of system
(3) exists with

off =as (29)
Then E, is globally asymptotically stable in
R?.
Proof. Consider the following positive definite
Lyapunov function about £, :

V4(x,y,z):[x7x*fx*ln[i*jJ
x
+1[y—y*—y*1n[y*D
a y
1[ x x (ZD
+—|z—-z —z In|—
e

o
Clearly, ¥, is a continuously differentiable real

valued function defined on R?. Further, we
have

o (v_+y*¥)2
0 (x—x")

-ao . .
—[“ﬂ—](y—y Mz-z)
ao
dav, L 5
Consequently, —+<0 for any point in R;
provided that condition (29) holds. Hence the
coexistence point £, is globally asymptotically

stable in R’ . m

Numerical Simulation

In this section the global dynamics of
system (3) is investigated numerically. The
system is solved numerically for different sets of
parameters values and for different sets of initial
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conditions. The objectives are first to confirm
our analytical results in the pervious sections
and second understanding the effect of
omnivory on the stability and coexistence of
food web model.

It is observed that, for the following
hypothetical set of biologically feasible
parameters values

a=0.154=1.0,0=0.2,

5=0.156=04,7=02
System (3) approaches asymptotically to
consumers free equilibrium point E, as shown
in the (Figure-1).

Clearly at the above set of data the global
stability condition (26) of E, is satisfied and

boundary equilibrium points do not exist.

(30)

Initial point

(.95,.95,.95)
Initial point
(.75,75,.75)

Initial point
(.55,.55,.55)

w 0.5

Initial point
(35,35,35)

—_

00

¥y X

(Figure-1) System (3) approaches asymptotically
to £, from different sets of initial points.
For the following set of parameters values
a=05,=10,=0.2,
4 G1)
0=0250=04,y=04
(Figure-2) shows clearly the approaching of the
solutions of system (3), which started from
different sets of initial points, to the secondary

consumers free equilibrium point
E, =(0.4,0.6,0) .
1
é ’ -
= 0.5\ 1 @
3 4\ Secondary consume
a
L 0 Resource
0 500 1000
g ! Primary consumer
g 0.5 4 ®)
2
L o Resource
0 500 1000
1 T
@ : -
g anar); consumer
k<] E
g_ 0.5 Secondary consume ©
L el Resource

0 500 1000
Time

(Figure-2) The time series of system (3); (a) the
solution approaches to £, from (.75,.75,.75) . (b)

the solution approaches to £, from (.95,.75,.55).
(c) the solution approaches to £, from
(.55,.75,.95) .

It is easy to verify that at the data given by (31),
the global stability condition (27) of E, is

satisfied, while E;

investigations for the dynamical behavior of
system (3) show that, for the range o <0.4 with
the rest of parameters as in (31), system (3)
approaches to £E,, while for 04<0<0.5

system (3) approaches to coexistence
equilibrium point E, as shown in(Figure-3),
and hence the system persist. However, for the
values of o > 0.5, it is observed that system (3)
approaches  asymp-totically to  primary
consumers free equilib-rium point E;.

do not exist. Further

0.9

0.6 producer

primary consumer

Populations

secondary consumer

0
0 4000 8000

Time
(Figure-3) System (3) approaches asymptotically
to coexistence point £, .
Moreover, for the following set of
parameters:

a=05,£=10,0=0.2,
0=03,0=04,y=02

Both the equilibrium points £, and E; are exist

(32)

and system (3) has a globally asymptotically
stable point £;, as shown in (Figure-4).

Resource

Secondary Consumer | (@

Populations
(=]
W

—— Primary Consumfzr

0 250 500

z2 Resource
S kN
._"‘50_5* Secondaryycansumer 1 ®)
& 4/Pﬂmary Consumer
-
0 .

0 250 500
w12
_g Rei‘ource
‘é 0.6 Secondary Consumer 1 (¢)
a2
£ 0 —<—— Primary Consumer

0 250 500

Time
(Figure-4) The time series of system (3); (a) the
solution approaches to E; from (.75,.75,.75) . (b)
the solution approaches to £; from (.95,.75,.55).
(c) the solution approaches to E; from
(.55,.75,.95) .
However for the data given by (32) with
=02, system (3) has a globally
asymptotically stable coexistence equilib-rium
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point E, =(0.7,0.15,0.15) as shown in the
following figure.
1
initial point
(0.75,0.75,0.75)
05
L initial point
015050%) (095.0505)
04

stable point

0.5 (0.7,0.15,0.15)

0 0.5 !

(Figure-5) System (3) approaches asymptotically
to £, from different sets of initial points.
Further investigations show that, for the set of
parameters given by (32) with ¢ <0.25 system
(3) has a globally stable coexistence equilibrium
point E,. However system (3) has a globally

asymptotically stable equilib-rium point at £,
for o >0.25.

Discussion and conclusion

In this paper, the role of omnivory on the
dynamical behavior and coexistence of the food
web model is considered. The local as well as
global stability analysis along with bifurcation
analysis is carried out. The conditions at which
the food web model persists are found. Finally
numerical simulation for suitable sets of
parameters values is used to investigate the
global dynamics of the system. It is observed
that existence of omnivory in a simple food web
plays a vital role on the persistence and the
stability of the food web model. In fact it is
observed that the system has no periodic
dynamics, instead of that the system approaches
asymptotically to one of its equilibrium points as
the control parameter varying its values, this is
due to the occurrence of transcritical bifurcation.
Further, when the solution of system approaches
to boundary equilibrium point £, in the interior

of xy-—plane, then slightly increases the value of

parameter o that responsible on the omnivory
in a food web model makes the system coexists
and the solution approaches to positive
equilibrium point. However, when the solution
of system approaches to boundary equilibrium
point E; in the interior of xz-plane, then
slightly decreases the value of parameter o

makes the system coexists and the solution
approaches to positive equilibrium point too.
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