

CHARACTERIZATIOS and PROPERTIES of b-T_{1/2}-SPACES

Adea Khaleafa Hussain and Ali Saadi Abd Alatif

Department of Maths. College of Basic Education, Al- Mustansiriyah University, Baghdad-Iraq. alobiadi@yahoo.com

Abstract.

In this paper we introduce a new class of spaces, namely $b-T_{1/2}$ -space, which is strictly between $b-T_0$ and $b-T_1$ spaces, and weaker than T_{gs} -space. Several properties and characterizations for this space are investigated.

Key words: gb-open sets bg- open sets, gb-continuous functions, $b-T_{1/2}$ -space.

تمييزات وخواص فضاءاتb-T_{1/2}

عذية خليفة حسين ، على سعدى

قسم الرياضيات، كلية التربية الاساسية، الجامعة المستنصرية،بغداد ،العراق.

الخلاصة

 $b-T_{1/2}$ الهدف من هذا البحث تقديم نوع جديد من الفضاءات أضعف من الفضاءات $T_{1/2}$ وهي فضاءات $b-T_{1/2}$ ودراسة العلاقات بينها وبين بديهيات الفصل من النمطb ومن جهة اخرى دراسة العلاقة بينها وبين الفضاءات T_{es} كما أعطينا العديد من التمييزات لهذا النوع من الفضاءات.

Introduction.

In 1996, Andrijevic [1] introduce a new class of generalized open sets into field of the topology, the so-called b-open sets. A subset A of a topological space (X,τ) is said to be b-open if $A \subseteq$ $cl(int(A)) \cup int(cl(A))$. The complement of b-open set is said to be b-closed. Thus A is b-closed if $int(cl(A)) \cap cl(int(A)) \subseteq A$. The family of all bopen (resp. b-closed) subsets of X is denoted by BO(X) (resp. BC(X)).

By using this notion, several research papers in different respects came to existence. If A is a subset of a topological space (X, τ) , then the b-closure of A (abbreviated bcl(A)) is the smallest b-closed set containing A.

Definition 1.2 [2]

Let (X, τ) be a topological space. Then X is said to be:

- 1- $b-T_0$ if for each pair of distinct points x, y of X, there exists a b-open set containing one of the two points but not the other.
- 2- b-T₁ if for each pair of distinct points x, y of X, there exists a pair of b-open sets, one contains x but not y and the other contains y but not x.
- 3- b-T₂ if for each pair of distinct points x, y of X, there exists a pair of disjoint b-open sets,

one contains x and the other contains y.

Theorem 1.3 [2]

A topological space (X, τ) is b-T₁ if and only if the singletons are b-closed sets.

Definition 1.4 [3]

A subset A of a topological space (X, τ) is said to be b-generalized closed set (abbreviated bgclosed) if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is bopen. The complement of b-generalized closed set is said to be b-generalized open (abbreviated bgopen). The family of all bg-closed (resp. bg-open) subsets of X is denoted by BGC(X) (resp. BGO(X)).

Definition 1.5 [4]

A subset A of a topological space (X, τ) is said to be generalized b-closed set (abbreviated gbclosed) if bcl(A) \subseteq U wherever A \subseteq U and U is open. The complement of generalized b-closed set is said to be generalized b-open (abbreviated gbopen). The family of all gb-closed (resp. gb-open) subsets of X is denoted by GBC(X) (resp. GBO(X)).

Remark 1.6

For any topological space (X, τ) , we have $\tau^{c} \subseteq$ BC(X) \subseteq BGC(X) \subseteq GBC(X) (resp. $\tau \subseteq$ BO(X) \subseteq BGO(X) \subseteq GBO(X)).

The following example shows that gb-closed set is not necessarily bg- closed.

Example 1.7

Let X = {a, b, c} and $\tau = \{\emptyset, X, \{a\}\}$, then BGC(X) = { $\emptyset, X, \{b\}, \{c\}, \{b, c\}\}$ and GBC(X) = { $\emptyset, X, \{b\}, \{c\}, \{b, c\}, \{a, b\}, \{a, c\}\}$. It is clear that {a, b} is gb-closed subset of X, but it is not bg-closed.

2. $b-T_{1/2}$ -Space

In this section we introduce and study the b- $T_{1/2}\ \mbox{space}.$

Definition 2.1

A topological space (X, τ) is said to be $b-T_{1/2}$ if every bg-closed subset of X is a b-closed.

Definition 2.2 [5]

A topological space (X, τ) is said to be T_{gs} if every gs-closed subset of (X, τ) is a sg-closed.

Lemma 2.3 [4]

Every gb-closed set is a b-closed if and only if (X,τ) is a $T_{\rm gs.}$

Next, we show that $T_{\rm gs}$ –space is stronger than $b\text{-}T_{1/2}\text{-}\text{space}$

Theorem 2.4

Every T_{gs} -space is a b- $T_{1/2}$.

Proof: Let A be a bg-closed subset of (X, τ) , then A is gb-closed. Since (X, τ) is T_{gs} , so by Lemma 2.3, A is b-closed. Hence (X, τ) is $b-T_{1/2}$.

The converse of the above theorem need not be true as seen from the following example.

Example 2.5

Let X = {a, b, c} with $\tau = \{\emptyset, X, \{a\}\}$, then BC(X) = BGC(X) = { $\emptyset, X, \{b\}, \{c\}, \{b, c\}\}$ and GBC(X) = { $\emptyset, X, \{b\}, \{c\}, \{b, c\}, \{a, b\}, \{a, c\}\}$. So (X, τ) is b-T_{1/2}-space, but it is not T_{es}.

Lemma 2.6 [2]:

A topological space (X, τ) is b-T₁ if and only if the singletons are b-closed sets.

Lemma 2.7 [3]

Let A be a bg-closed subset of (X, τ) . Then bcl(A) - A dose not contain any non-empty bclosed.

The next results show that $b-T_{1/2}$ -space is placed strictly between $b-T_1$ -space and $b-T_0$ -space. **Theorem 2.8**

Every b- T_1 -space is a b- $T_{1/2}$.

Proof: Suppose that A is not b-closed subset of (X, τ) and let $x \in bcl(A) - A$. Then $\{x\} \subseteq bcl(A) - A$. Since (X, τ) is b-T₁. So, by Lemmas 2.6, $\{x\}$ is b-closed. Thus A is not bg-closed, by Lemma 2.7.

The converse of the above theorem is not true in general as shown by the following example. **Example 2.9**

Let X = {a, b, c} with $\tau = \{\emptyset, X, \{c\}\}$, so BC(X) = BGC(X) = { $\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Then (X, τ) is b-T_{1/2}-space, but it is not b-T₁.

Next, we give example about space which is T_{gs} but it is not b- T_{I} .

Example 2.10

Let X = {a, b, c} and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$, so BC(X) = { \emptyset , X, {a}, {c}, {a, c}, {b, c}} and GBC(X) = { \emptyset , X, {a}, {c}, {a, c}, {b, c}}

c}}. Then (X, τ) is T_{gs}-space, but it is not b-T₁.

Theorem 2.11

Every b- $T_{1/2}$ -space is a b- T_0 .

Remark 2.12

It seems that a $b-T_0$ -space need not to be $b-T_{1/2}$, but we could not prove or disprove it.

Corollary 2.13

Every T_{gs} -space is a b- T_0 .

Proof: This is a direct consequence of Theorem 2.4 and Theorem 2.11.

Definition 2.14 [6]

A subset A of a topological space (X, τ) is said to be g-closed if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set.

Definition 2.15 [6]

A topological space (X, τ) is said to be $T_{1/2}$ if every g-closed subset of (X, τ) is a closed or equivalently if every singleton is open or closed.

Lemma 2.16 [7]

Let A be a gb-closed subset of (X, τ) . Then bcl(A) - A does not contain any non-empty closed sets.

Theorem 2.17 [7]

Every $T_{1/2}$ -space is a b- $T_{1/2}$

The converse of the above theorem need not be true as shown in [7].

Remark 2.19

From preceding theorems, remarks and examples, we have the following diagram in which no other implications hold.

Definition 2.20

A map f: $(X, \tau) \longrightarrow (Y, \sigma)$ is said to be (1) b-continuous **[8]** if for each open set U of Y, the inverse image $f^{-1}(U)$ is a b-open set in X.

(2) generalized b-continuous (abbreviated gbcontinuous) [7] if for each closed set F of Y, the inverse image $f^{-1}(F)$ is a gb-closed set in X.

A sufficient condition for a bg-continuous map to be b-continuous is given in the following. **Theorem 2.21**

If a map $f: (X, \tau) \longrightarrow (Y, \sigma)$ is bg-continuous and (X, τ) is a b-T_{1/2}, then f is b-continuous.

Proof: Let $f : (X, \tau) \longrightarrow (Y, \sigma)$ be a bgcontinuous and let $A \subseteq Y$ be a closed, then $f^{-1}(A)$ is bg-closed subset of (X, τ) . Since (X, τ) is $b \cdot T_{1/2}$, so $f^{-1}(A)$ is b-closed. Hence f is b-continuous.

4. Characterizations of b-T_{1/2}-Space.

In this section several characterizations of b- $T_{1/2}$ -space are given.

In the following definition, we introduce a new version of b-closure operator of a set and a new version of b-openness which includes the collection BO(X).

Definition 3.1

For any subset A of a topological space (X, τ) , bcl^{*}(A) = \cap {F \subseteq X : F \in BGC(X); A \subseteq F} and BO(X, τ)^{*} = {U \subseteq X: bcl^{*}(U^c) = U^c}.

Proposition .3.2

For any topological space (X, τ) , we have $BO(X, \tau) \subseteq BO(X, \tau)^*$.

Proof: Let $U \in BO(X, \tau)$, then U^c is b-closed subset of X. Since every b-closed set is a bg-closed, so U^c is bg-closed and thus $bcl^*(U^c) = U^c$. Then $U \in BO(X, \tau)^*$. Hence $BO(X, \tau) \subseteq BO(X, \tau)^*$.

Theorem 3.3

A topological space (X, τ) is b-T_{1/2} if and only if BO(X, τ) = BO(X, τ)^{*} holds.

Proof: Necessity. Since the b-closed sets and the bg-closed sets coincide by the assumption, $bcl(A) = bcl^*(A)$ holds for every subset A of (X, τ) . Therefore, we have that $BO(X,\tau) = BO(X, \tau)^*$.

Sufficiency. Let A be a bg-closed set of (X,τ) . Then, we have $A = bcl^*(A)$ and hence $A^c \in BO(X, \tau)$. Thus A is b-closed. Therefore, (X, τ) is b-T_{1/2}.

Theorem 3.4

A topological space (X, τ) is a b-T_{1/2} if and only if the singletons are b-open or b-closed.

Proof: Necessity. Suppose that for some $x \in X$, $\{x\}$ is not b-closed. Since X is the only b-open set containing $\{x\}^c$, the set $\{x\}^c$ is bg-closed and so it is b-closed in the b-T_{1/2}-space. Therefore, $\{x\}$ is b-open.

Sufficiency. Since BO(X, τ) \subseteq BO(X, τ)^{*} holds, by Proposition 3.2, it is enough to prove that BO(X, τ)^{*} \subseteq BO(X, τ). Let A \in BO(X, τ)^{*}. Suppose that A \notin BO(X, τ). Then bcl^{*}(A^c) = A^c and bcl(A^c) \neq A^c hold. There exists a point x of X such that x \in bcl(A^c) and x \notin A^c = bcl^{*}(A^c). Since x \notin bcl^{*}(A^c), there exists a bg-closed set F such that x \notin F and A^c \subseteq F, by Definition 3.1. By the hypothesis, the singleton {x} is b-open or bclosed. We have two cases:

Case (1). {x} is b-open: Since $\{x\}^c$ is b-closed set $A^c \subseteq \{x\}^c$, we have $bcl(A^c) \subseteq \{x\}^c$, i.e., $x \notin a$

 $bcl(A^c)$. This contradicts the fact that $x \in bcl(A^c)$. Therefore, $A \in BO(X, \tau)$.

Case (2). {x} is b-closed: Since {x}^c is b-open set containing the bg-closed set $F(\supset A^c)$, we have $bcl(A^c) \subseteq bcl(F) \subseteq \{x\}^c$. Therefore, $x \notin bcl(A^c)$. This is a contradiction. Therefore, $A \in BO(X, \tau)$.

Hence in both cases, we have $A \in BO(X, \tau)$, i.e., $BO(X, \tau)^* \subseteq BO(X, \tau)$. Thus $BO(X, \tau) = BO(X, \tau)^*$ and so (X, τ) is b-T_{1/2}, by Theorem 3.3.

As a consequence of Theorem 3.4, we have the following characterization.

Corollary 3.5

A topological space (X, τ) is a b-T_{1/2} if and only if every subset of X is the intersection of all b-open sets and all b-closed sets containing it.

Proof: Necessity. Let (X, τ) be a b-T_{1/2}-space with $A \subset X$ arbitrary. Then, by Theorem 3.3.4, $A = \bigcap \{\{x\}^c; x \notin A\}$ is an intersection of b-open sets and b-closed sets. The result follows.

Sufficiency. For each $x \in X$, $\{x\}^c$ is the intersection of all b-open sets and all b-closed sets containing it. Thus $\{x\}^c$ is either b-open or b-closed and hence (X, τ) is $b-T_{1/2}$.

In order to obtain more characterization of b- $T_{1/2}$ -space, we introduce the following new concepts.

Definition 3.6

A map $f : (X, \tau) \longrightarrow (Y, \sigma)$ is said to be approximately-b-continuous (abbreviated ap-bcontinuous) if $bcl(A) \subseteq f^{-1}(U)$ whenever $A \subseteq f^{-1}(U)$ where $A \in BGC(X)$ and $U \in BO(Y)$.

Example 3.7

Let X = {a, b, c} with $\tau = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}$, so BO(X) = { \emptyset , X, {b}, {c}, {b, c}, {a, b}, {a, c}} and BGC(X) = { \emptyset , X, {a}, {b}, {c}, {a, b}, {a, c}} and BGC(X) = { \emptyset , X, {a}, {b}, {c}, {a, b}, {b}, {c}, {a, c}} Let f : (X, τ) \longrightarrow (X, τ) be the identity map. Then f is ap-b-continuous, since every bg-closed set is a b-closed in this example.

Definition 3.8

A map $f : (X, \tau) \longrightarrow (Y, \sigma)$ is said to be approximately-b-closed (abbreviated ap-b-closed) if $f(F) \subseteq bint(A)$ whenever $f(F) \subseteq A$ where $F \in$ BC(X) and $A \in BGO(Y)$.

Example 3.9

Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a\}\}$, then BC(X) = $\{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}$. Let $Y = \{a, b, c\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{a, b\}\}$, so BGO(Y) = $\{\emptyset, Y, \{a\}, \{a, b\}\{a, c\}\}$. Let $f: X \longrightarrow Y$ be the identity map. Then f is ap-b-closed, since the only bg-open subset of (Y, σ) containing the image of b-closed F in X is Y.

Theorem 3.10

For a topological space (X, τ), the following statements are equivalent:

(1) (X, τ) is b-T_{1/2}.

(2) For every space (Y, σ) and every map f: $(X, \tau) \longrightarrow (Y, \sigma)$, f is ap-b-continuous.

Proof: (1) \Rightarrow (2). Suppose that $A \subseteq f^{-1}(U)$, where $A \in BGC(X)$ and $U \in BO(X)$. Since (X, τ) is b-T_{1/2}, then A is b-closed. Therefore, $bcl(A) = A \subseteq f^{-1}(U)$. Then f is ap-b-continuous.

(2) \Rightarrow (1). Let B \subseteq X be a bg-closed and let Y be the set X with the topology $\sigma = \{\phi, Y, B\}$. Let f : X \longrightarrow Y be the identity map. By assumption, f is ap-b-continuous. Since B is bgclosed in X and b-open in Y and B \subseteq f⁻¹(B), it follows that bcl(B) \subseteq f⁻¹(B) = B. Thus B is bclosed in X and hence (X, τ) is b-T_{1/2}-space.

Theorem 3.11

For a topological space (Y, σ), the following statements are equivalent:

- (1) (Y, σ) is b-T_{1/2}.
- (2) For every space (X, τ) and every map f : $(X, \tau) \longrightarrow (Y, \sigma)$, f is ap-b-closed.

Proof: (1) \Rightarrow (2). Suppose that $\widehat{f}(F) \subseteq A$, where $F \in BC(X)$ and $A \in BGO(X)$. Since (Y, σ) is b-T_{1/2}, then A^c is b-closed. Thus, A is b-open. Therefore, $f(F) \subseteq A = bint(A)$. Then f is ap-b-closed.

(2) \Rightarrow (1). Let B \subseteq Y be a bg-closed and let X be the set Y with the topology $\tau = \{\emptyset, X, B\}$. Let f : X \longrightarrow Y be the identity map. By assumption, f is ap-b-closed. Since B^c is bg-open in Y and b-closed in X and f(B^c) \subseteq B^c. It follows that f(B^c) = B^c \subseteq bint(B^c). Then B^c is b-open in Y. Thus, B is b-closed and hence (Y, σ) is b-T_{1/2}space.

Next we recall the following.

Definition 3.12 [2]

A topological space (X, τ) is said to be bsymmetric-space if for x and y in X, $x \in$ bcl({y}) implies $y \in$ bcl({x}).

Theorem 3.13 [2]

Let (X, τ) be a b-symmetric-space. Then the following are equivalent:

- (1) (X, τ) is b-T₀.
- (2) (X, τ) is b-T₁.

Corollary 3.14

Let (X, τ) be a b-symmetric-space. Then the following statements are equivalent:

- (1) (X, τ) is b-T₁.
- (2) (X, τ) is b-T_{1/2}.
- (3) (X, τ) is b-T₀.

Proof:

- $(1) \Rightarrow (2)$. Theorem 2.8.
- $(2) \Rightarrow (3)$. Theorem 2.11.
- $(3) \Rightarrow (1)$. Theorem 3.13.

Refrences

- [1]Andrijevic,D.,1996 "On b-Open Sets", Matema. Bech., Vesnisk, 48, 59-64.
- [2]Jamal M. Mustafa, 2005, "Some Separation Axioms By B- open Sets" *Mu'tah Lil- Buhuth Wad- Dirasat*, Volume 20, No.3., 57- 64.
- [3]Al-Obaidi, A. K, "On b-Open Sets and Certain Forms of Continuity, Preprint
- [4]Ganster, M. and Steiner, M., **2007**, "On b*T*-Closed Sets", *Applied General Topology*, 8 No.2, 243-247.
- [5]Maki, H., Balachandran, K. and Devi, R., 1996 "Remarks on Semi-Generalized Closed Sets and Generalized Semi-Closed Sets", *Kyunpook Math. J.*, 36, 155-163.
- [6]Levine, N., 1970 "Generalized Closed Sets in Topology", *Rend. Circ. Mat.Palermo*(2)19,89-96.
- [7]Al-Omari, A.and Noorani, M. S., 2009, "On Generalized b-Closed Sets", Bull. Malays. Math. Sci. Soc. (2) 32 (1), 19-30.
- [8]E.Ekici and M. Caldas, **2001**, Slightly γ -continuous functions, *Bol.Mat.*(**3**),22,no.2,63-74.