

Electromagnetic Transition Strengths in¹¹⁰Cd Nucleus

Fatima Abdul Amir Jassim

Department of Physics, College of Education Ibn Al-Haithem, University of Baghdad,Baghdad,Iraq. drfatima24@yahoo.com.

Abstract

Pure transition strengths $[M(E1)]^2_{W,u}$, $[M(E2)]^2_{W,u}$ and $[M(M1)]^2_{W,u}$ for γ -transitions from four excited states in ¹¹⁰Cd populated in the ¹⁰⁸Pd (α ,2n) reaction have been studied through the mean life times with relative intensities of γ - transitions measurements. Good information describes the main features of the transition modes for electric quadrupole $[M(E2)]^2_{W,u}$ and electric dipole $[M(E1)]^2_{W,u}$ in addition to magnetic dipole $[M(M1)]^2_{W,u}$ are concluded.

PACS:- 27.60-j, 23.20-g, 23.20.Ck, 23.20.Gq.

Keywords: Pure transition strengths $[M(E1)]^2_{W.u}$, $[M(E2)]^2_{W.u}$ and $[M(M1)]^2_{W.u}$

قوى الانتقال الكهرومغناطيسي في نواة الكادميوم ¹¹⁰Cd

فاطمة عبد الأمير جاسم

قسم الفيزياء- كلية التربية (أبن الهيثم) -جامعة بغداد، بغداد- العراق.

الخلاصة

تم حساب قوى الانتقال لانتقالات رباعي القطب الكهربائي وثنائي القطب الكهربائي والمغناطيسي النقية من بعض المستويات المتهيجة لنواة ¹¹⁰Cd المتولدة من التفاعل ¹⁰⁸Pd (α,2n) وذلك بالاستعانة بمعدل أعمار المستويات المتهيجة والشدة النسبية لأشعة كاما المنتقلة .أ ن القيم المحسوبة لكل من ²[(M(E1)] _{w.u}, [M(E1)]]²_{w.u}

Introduction

The transition strengths for gamma transitions are important parameters which use to determine the relative importance

of the collective and single-particle effect to describe the level structure of the nucleus and transitions modes .

The study for electromagnetic transitions in ¹¹⁰Cd nucleus by Kostov et.al.[1]is provided additional experimental information about the existing levels structure , where the present calculations for the absolute

Electromagnetic transitions $[M(EL,ML)]^2$ _{W.u} in¹¹⁰Cd nucleus are giving an accurate results for transition modes structure to theoretical physicists for their transition modes predictions

Theory

The WeissKoph single-particle transition probability B(EL,ML) is defined [2] as the ratio of the single-particle half-life time to the experimental half-life time for gamma transition

Where L is the multi polarities L=1,2,3, L $\neq 0$ The half –life $t_{1/2}$ and mean life T are related by the following relation

For the K_{th} γ -ray of n γ -rays de exciting a level ,the partial half –life for γ -ray emission $t_{1/2}(\gamma)$ is

related to the level half –life $t_{1/2}$ by [2]

$$t_{\frac{1}{2}}(\gamma) = t_{\frac{1}{2}\sum_{i=1}^{n}} (I_i)^{\gamma} \left(\frac{1+\alpha_i}{I_k}\right) \dots \dots (3)$$

Where the summation is over the intensity of all γ -ray de exciting the level, correcting for the internal conversion coefficient α_i .

 I_k is the intensity of $K_{th}\gamma$ -ray. For γ -transition with mixed multi polarities L and L+1 the γ -ray half-life time become

$$\tau_{\frac{1}{2}}(\gamma)^{L} = \tau_{\frac{1}{2}}(\gamma) (1+\delta^{2})....(4)$$

$$\tau_{\frac{1}{2}}(\gamma)^{L+1} = \tau_{\frac{1}{2}}(\gamma) \frac{(1+\delta^{2})}{\delta^{2}}....(5)$$

Where δ is mixing ratio

Then
$$\delta^2 = \frac{\tau_{\frac{1}{2}}(\gamma)^L}{\tau_{\frac{1}{2}}(\gamma)^{L+1}}$$
 (6)
Since $\Gamma_{\gamma} T \approx \hbar$ (7)

 Γ_{γ} is the total width

$$h = \frac{h}{2\pi} = 0.65822 x \ 10^{-15} eV.s$$
 h is Plank

constant.

According to eq.(2) and eq.(7) equation (6) may be written as:

Where

 $\Gamma_{\gamma L} = \Gamma(L) + \Gamma(L+1)$ (9) Partial width ($\Gamma_{\gamma L}$) of each γ -ray can be calculated as .[3] suggested

 $\Gamma_{\gamma L} = BR_i x \Gamma_{\gamma}$ (10) BR_i is the branching ratio of (γ_i) can be calculated from

BR(
$$\gamma_i$$
) = $\frac{I_{\gamma_i}}{I_{tot}} x 100\%$ (11)

Where

 $I_{\gamma i}$ is the relative intensity of γ_i

 $I_{tot} = \sum I_{\gamma i}$ (12) (Summation for all γ de excited from certain level) While the γ -ray transition strength $[M(EL,ML)]^2$ is defined in [4] as the ratio of gamma width to gamma width in Weiss Kopf unit (W.u)

On the basis of an extreme single particle model

the following values for the γ - widths in W.u. for

nuclear of mass nomber. A may be obtained ($E\gamma$ in KeV. Γγw in eV).[2] $\Gamma(E1)_{W.u} = 6.7469 x A^{\frac{2}{5}} E_{\gamma}^{3} \dots \dots (17)$ $\Gamma(E2)_{W.u} = 4.7907 X \ 10^{-23} \ A^{\frac{4}{3}} E_{\gamma}^{5} \dots \dots (18)$

Results and Calculations

1-Mean life times (τ_m) for the excited states calculated by using eq. (2) from half life times ($\tau_{\frac{1}{2}}$) related to these states measuring in [1] are present in table-2 with the total gamma widths (Γ_{γ}) calculated by eq.(7)

2-The partial gamma width ($\Gamma_{\gamma L}$)was calculated for each γ -transition by eq.(10) Where branching ratio can be calculated from eq. (11) .The transition strengths $[M(ML)]^2$, $[M(EL)]^2$

then calculated by dividing partial gamma width $\Gamma(EL)$ by corresponding partial $\Gamma(ML)$ and gamma width in W.u.

3- the final results thus obtained by step2 are presented and compared where possible with reduced transitions probabilities B(EL,ML)_{W.u} values extracted from half -lives corrected for internal conversion coefficient α_{tot} . [1] as showing in two last columns of table-3.

Eqs.
$$|M(ML)|^2_{W.u.} = \frac{\Gamma(ML)_{exp}}{\Gamma(ML)_{W.u}}$$
 and

$$|M(El)|_{W.u.}^{2} = \frac{\Gamma(El)_{exp}}{\Gamma(El)_{W.u}}$$
 were used . $\Gamma(ML)$ and

 $\Gamma(EL)$ are presented in table-2.

Possible with reduced transitions probabilities B(EL,ML)_{W.u}

Table-1:	$\tau_{\frac{1}{2}}$ (W.u)	$\tau_{\frac{1}{2}}$ (exp.) (Recommended upper
		limits) [2]

Multipolarity	91≤A≤150		
E1	0.01		
E2	300		
M1	3		

Table-2: Experimental values(Initial energies, half lives, initial and final spin for excited levels , relative intensities for gamma transitions) in ¹¹⁰Cd nucleus are reported in [1] and used in present work

Ref.[1]			Т	$\Gamma_{\gamma} \times 10^{-6}$	B.R.%	Γ(EL,ML)X10			
E _i Ke	$\tau_{1/2}$ ns	$I_{I\rightarrow}^{\pi}J_{f}^{\pi}$	Eγ	I_{γ}	EL,ML	ns	eV		-11 eV
v.	12								
361	0.45(10)	10 ⁺ →				0.6494	1.0136±0.2253		
1		<u>a</u> t	171.3	14.2	E2	±0.1443		12.40	12571±2790
		03	265.2	4.3	E1			3.76	3806±846
		91	335.6	93.9	E2			82.01	83128 ± 18473
		87	423.5	2.1	E2			1.83	1859 ± 413
		81							
305	2.25(10)	01 →				3.2467	0.20273 ±		
6		- 6-	159.7	23.9	E2	±0.14430	0.00901	29.69	6019±268
		<u>v1</u> 5-	176.5	56.6	M1			70.31	14254±268
		/ ₁							
302	0.30(10)	$7_2^- \rightarrow$				0.4329±0.	1.52047±0.506		
9		71	149.9	4.8	M1	14430	82	7.67	11659±3886
		5-	369.2	4.4	E2			7.03	10687±3562
		- 2 -	489.4	22.9	E2			36.58	55621±18540
		51	549.1	30.5	EI			48.72	74080±24694
		6 <u>1</u>							
287	0.60(10)	71 →				0.8658±0.	0.76024±0.126		
9		5-	219.3	3.5	E2	1443	71	1.45	1102 ± 184
		- 5 .	339.5	57.9	E2			23.99	18234±3039
		31 c+	399.2	180	E1			74.57	56687±9448
		o _i		1	1				

E _i Kev.	$I_{I\rightarrow}^{\pi}J_{f}^{\pi}$	Eγ	EL ,ML	$[M(EL,ML)]^2$ _{W.u}	B(EL,ML) _{W.u}
		Kev.		Present Work	Ref.[1]
3611	10+→				
	8±	171.3	E2	33.8(7.5)	33.5(8.5)
	0 <u>7</u>	265.2	E1	$1.3(3) \times 10^{-6}$	$1.3(3) \times 10^{-6}$
	*1 o+	335.6	E2	7 7(17)	7.7(1.8)
	0 <u>2</u>	423.5	E2	$54(12) \times 10^{-2}$	$54(1.8) \times 10^{-2}$
	oi	123.3		5. I(1.2) ATO	5. 1(1.0) 110
3056	8_1 →				
	6	159.7	E2	22.9(1.0)	20(1)
	7-	176.5	M1	$1 3(1) \times 10^{-3}$	$51(2.6) \times 10^{-4}$
		- / • • •			()
3029	7 ₂ →				
	71	149.9	M1	$1.7(6) \times 10^{-3}$	1.6(7) x10 ⁻³
	52	369.2	E2	0.6(2)	0.6(3)
	5.	489.4	E2	0.78(0.26)	0.8(3)
	6.	549 1	E1	$2.9(1.0) \times 10^{-6}$	$2.9(1.0) \times 10^{-6}$
		0 19.1	21	2.9(1.0) 110	2.9(1.0) 110
2879	7_ →				
	- 57	219.3	E2	0.9(1)	0.9(2)
	57	339.5	E2	1 6(3)	1 6(3)
	6†	399.2	F1	$5.8(1.0) \times 10^{-6}$	$5.8(1.0) \times 10^{-6}$
	¥1	577.4	1.1	5.0(1.0) ATO	5.0(1.0) A10

Table-3:Transition strengths [M(EL,ML)]²_{W.u} values from some excited levels in ¹¹⁰Cd nucleus are compared with reduced transition probabilities B(EL,ML)_{W.u} reported in [1]

Discussion

The results of our analysis to table -3 is that; 1- Transitions strengths for all γ - transitions in the present work are in excellent agreement with that of experimental of .[1] excepted B(M1)_{W,u} value reported in .[1] for 176.5 KeV. $\$_1 \rightarrow 7_1$ transition from 3056 KeV level is unaccurate it may be equal to 1.14(5) x10⁻³ by using eqs(3 and 1) with the experimental data of table-1 in [1] since α_{tot} is equal to 0.098.

2-All the $[M(EL,ML)]^2$ _{W.u} values within the associated errors are consistent with upper limit presented in table-1.

3- A recent study of the mixing transitions for $\Delta I=$ 0,1 in neutron rich isotopes indicated that nearly pure M1 radiation was observed [5].For the following transitions; the 176.5 KeV. $8_1 \rightarrow 7_1$ transition from 3056 KeV. level and the 149.9Kev. $7_2 \rightarrow 7_1$ transition from 3029 KeV. level in ¹¹⁰Cd isotope are observed to be almost M1 radiation

4-The largest values of $[M(E2)]^2_{W,u}$ to electric quadrupole transitions for;171.3 KeV. $10^+ \rightarrow 8_3^+$ transition from 3611 KeV level, and 159.7 KeV. $8_1^- \rightarrow 6_1^-$ transition from 3056 KeV, level are indicated ; a high collectivity of excited states and the cooperative effects between nucleons governs the behavior of the transitions.

Where the $[M(E2)]^2_{W,u}$ value for 335.6 KeV. $10^+ \rightarrow 8^+_2$ transition from 3611 KeV, level reveals the inter play of collective and single-particle excitation in nucleus .While all very low transition strengths values of E1 and E2 transitions in table-3 are indicating allow collectivity of the excited states and the dominance of single particle degrees of freedom [6].

References

[1] Kostov L.K. , Andrejtscheff W., Kostova L.G., Kaubler L. , Prade H.,and Schwenngner R **1998**, Absolute E1and E2 transition rates in 110 Cd, Eur.Phys.J. A2, p.263-273.

[2] Fore stone R.B., and Shirley V.S., **1999**, Appendix 1 . Reduced transition Probabilities, Table of Isotopes , 8^{th} edition, John Wiley and Sons ,p.1.1-1.8.

[3] Martin B.R., **2008**, Nuclear and particle physics ,3rd Edition ,John Wiely and sons P.27

[4]Skerka S.J., Hertal J.and Retzschaidt, **1966**, Nucl.Data A2, p.341

[5] Fenker B.B., **2010**, Multipole mixing ratios of transitions out high spin gamma vibrational states

in neutron rich Mo ,Ru isotopes ,Vanderbilt University ,Nashville TN 37235 undergraduate Departmental Honors Thesis ,P.6.

[6] Lucas R., 1998, Nuclear shapes , Euro physics News ,Vol.31 No.7 p.1-8

Iraqi Journal of Science. Vol 53.No 4.2012.Pp 814-818