
Mohammed Iraqi Journal of Science, 2012, vol.53, No.3, pp 677-682

 677

OPTIMAL PALETTE CREATE WITH THE SPECIFIED NUMBER OF

COLORS USING OCTREE QUANTIZATION

Faisel G. Mohammed
faisel@scbaghdad.edu.iq

Department of Computer Science, College of Science , University of Baghdad. Baghdad-Iraq

Abstract

 In the current research work, improved and fast method to get a good approximation

of the most important 256 colors of a RGB-Picture was introduced. In this paper, we

propose a spatially-adaptive optimum octree quantization method for robust color

printing. The goal of spatially-adaptive octree quantization is to use quantization well-

suited for smooth areas, and to use octree quantization method better suited for edges. It

may be useful for digital image compression, graphics- and game programmers. Also,

this includes reduction of the overall number of colors, quantization or patterning the

reduced number of colors, generating bitmap images, and even handling Boolean

(on/off) transparency. The results show the suggested adaptive octree data-structure is

useful for color-quantization.

Keywords: Color reduction, octree data-structure quantization, Color image processing.

 خمق صفيحة لونية مثمى بعدد معين من الالوان باستخدام التكميم الثماني

 فيصل غازي محمد

faisel@scbaghdad.edu.iq

 العراق-. بغدادجامعة بغداد، كمية العموم ، قسم عموم الحاسبات

 الخلاصة
 652فييا العمييل البحلييا الحييالا ييم ييوير ريعيية م عليية سييريعة لمحلييول عمييه عرييي جيييد ل لييوان الم ميية ات

اق رحليييا ريعييية كميييية لماليييية ملميييه م يييور حي ييييا لعييير فيييا ق مسييي وو ليييولا فيييا الليييور الممولييية. فيييا ييي ا البحييي
ل ليييوان. ال يييدذ مييين ييي ال ريعييية يييو اسييي بدام ال كميييية الموليييية ب يييكل م يييم لممليييا ق الم جالسييية ، واسييي بدام ييي
ال ريعيية ب ييكل م ييم لمحييواذ. يمكيين ان يسيي لاد ميين يي ال ريعيية فييا ييغ اللييور والرسييوميات وبرمجيية ا لعييا .

لك ال ريعة يمن عمييا المسي ويات الموليية كال كمييةت او لعييا عيدد ا ليوان المعملية ، ولييد ليور لع يية ك

 .وك لك معالجة الملا ق ال لافة. الل ا ج بيلت ان ال ريعة المعدلة اللمالية الم يكمة لمبيالات مليد ل كمية ا لوان
 ميم يكل البيالات اللمالا، عميا ا لوانمعالجة اللور الممولة، ك :الكممات المفتاحية

1. Introduction

mailto:faisel@scbaghdad.edu.iq
mailto:faisel@scbaghdad.edu.iq

Mohammed Iraqi Journal of Science, 2012, vol.53, No.3, pp 677-682

 678

 The problem of color quantization is to

represent full color RGB images, where each pixel

is typically described by three 8-bit color samples,

in an approximate fashion by a relatively small

number of colors. In this paper the assumption

that each color is represented by its 24-bit RGB

value.

Color quantization methods can be broadly

classified into two categories: image-independent

methods that determine a universal (fixed) palette

without regard to any specific image, and image-

dependent methods that determine a custom

(adaptive) palette based on the color distribution

of the images. Despite being very fast, image-

independent methods usually give poor results

since they do not take into account the image

contents. Therefore, most of the studies in the

literature consider only image-dependent methods,

which strive to achieve a better balance between

computational efficiency and visual quality of the

quantization output [1].

Different quantization methods are investigated in

previous related works: Static Color Table,

Median cut, Popularity and Octree and combined

with error diffusion techniques: Dithering and

Floyd Steinberg.

To assess quantization techniques, the considered

quality criteria's are Human Perception, Run Time

and Memory Requirement

The objective of color quantization is displaying a

full color image (24 Bits per pixel) with a

restricted set of color numbers (256, 64, 16)

without a significant (almost preceptually not

noticeable by the spectator) lack of color

impression approximation as closely as possible

when quantized.

Generally speaking quantization can be viewed as

a stepwise process:[2]

1. In the first step statistics on the used colors in

the image that is to be quantized are generated

(histogram analysis)

2. a) Based on the analysis the color lookup-

table has to be filled with values

b) The true color values are mapped to the values

of the color table. The color values have to be

mapped to the nearest color entries in the color

table.

3. The original image is quantized. Each pixel is

transformed to the appropriate index of the color

table.

4. Optionally an error diffusion technique can be

applied.

In the recent research work, the octree algorithm

was based in colored image quantization in

adaptively form. This algorithm showed in the

next section.

2. Octree Algorithm
 The octree color quantization algorithm,

invented by Gervautz and Purgathofer in 1988,

encodes image color data as an octree up to nine

levels deep. Octree is a tree-structure which

contains data. The data is stored in a hierarchical

way so that we can search an element very fast.

Every tree has at least a root-node which is the

anchor of all subnodes. Every Node has pointers

to 8 subnodes [4], see (Figure1).

Fig. 1: Left: Recursive subdivision of a cube into

octants. Right: The corresponding octree.

The principle of the octree algorithm is to

sequentially read in the image. Every color is then

stored in an octree of depth 8 (every leaf at depth

8 represents a distinct color). A limit of G (in this

case G = 256) leaves is placed on the tree.

Insertion of a color in the tree can result in two

outcomes:-

1. If there are less than G leaves the color is

filtered down the tree until either it reaches

some leaf node that has an associated

representative color or it reaches the leaf node

representing its unique color.

2. If there are greater than G leaves in the tree

some set of leaves in the tree must be merged

(their representative colors averaged) together

and a new representative color stored in their

parent.

Gervautz & Purgathofer [5] offer two possible

criteria to be used in the selection of leaves to be

merged.

http://en.wikipedia.org/wiki/Color_quantization

Mohammed Iraqi Journal of Science, 2012, vol.53, No.3, pp 677-682

 679

1. Reducible nodes that have the largest depth in

the tree should be chosen first. They represent

colors that lie closest together

2. If there is more than one group of leaves at the

maximum depth the algorithm could:

 Merge the leaves that represent the fewest

number of pixels. This will help keep the

error small

 Reduce the leaves that represent the most

pixels. In this case large areas will be

uniformly filled in a slightly wrong color

while maintaining detailed shadings.

Once the entire image has been processed in this

manner the color map consists of the

representative colors of the leaf nodes in the tree.

The index of the color map is then stored at that

leaf, and the process of quantizing the image is

simply filtering each color down the tree until a

leaf is hit. Because a limit is placed on the number

of leaves in the tree this algorithm has a modest

memory complexity, O(G), compared to the

median cut and popularity algorithms. The time

complexity is more unclear. Gervautz &

Purgathofer [5] site the search phase as being

O(N) where N is the number of pixels in the

image. This is clearly best case behavior. The

average case needs to address the complexity of

the merging algorithm. The advantage of the

octree quantization is that it is simple to generate

both a good partitioning of the color space and a

fast inverse color table to find the color index for

each pixel in the image [6].

3. Proposed method description
 In this section we describe the proposed

spatially-adaptive octree method. All processing is

done independently for each color plane. Consider

a particular color plane of the image, and a

threshold image the same size as the image. As is

standard, different octree masks are used for each

color plane to create clusters of dots at different

angles. Instead, each color plane of the image is

partitioned into non-overlapping windows; in this

paper we use 12 × 12 pixel windows. Using non-

overlapping windows preserves the ability to

implement the octree as a parallel process. For

each window, a decision is made as to whether

there is intense spatial activity (such as an edge or

texture). If there is not substantial spatial activity

within the window, then standard octree is

applied: the image pixel is compared to its

corresponding octree to determine if a dot should

be printed there. However, if there is substantial

spatial activity within the window, then octree is

used. The algorithm is highly memory efficient

because the tree's size can be limited. The bottom

level of the octree consists of leaf nodes that

accrue color data not represented in the tree; these

nodes initially contain single bits. If much more

than the desired number of palette colors are

entered into the octree, its size can be continually

reduced by seeking out a bottom-level node and

averaging its bit data up into a leaf node, pruning

part of the tree. Once sampling is complete,

exploring all routes in the tree down to the leaf

nodes, taking note of the bits along the way, will

yield approximately the required number of

colors. The list of code of our proposed method

showed in details in appendix A.

4. Results and Experiments
 Experiments compared standard halftone with

the proposed optimum octree color quantization

method, as described in previous section. The

effectiveness of a quantization method was

quantified by the commonly used Mean Squared

Error (MSE) measure:

H

h

W

w

whQwhI
HW

MSE
1 1

2
),(),(

1

where I and Q denote the original and the

quantized images with height H and width W,

respectively.

)Figure 2(shows sample quantization results for

the "Billiard" image. It can be seen that halftone

method generates severe dots especially on the

flat, red and yellow balls. In contrast, adaptive

octree method obtains visually pleasing results

with less prominent false dots. Also, example

results are shown in (Figure 3). Figures should be

viewed from some distance to get a feel for what

the octree would look like printed at a reasonable

dpi. Edges are clearly sharper in the spatially

adaptive octree method (the bottom halftone in

each figure), for example the red arm of the horse-

rider in (Figure 3). Smooth areas of the spatially-

adaptive method look like the ordered dither

halftone, for example in the background of Figure

4, because if a window was judged to be smooth,

ordered dither was used.(Table 1) show MSE

results for "Parrots" image.

Mohammed Iraqi Journal of Science, 2012, vol.53, No.3, pp 677-682

 680

Fig. 2: Sample quantization results on "Billiard" image.

Fig. 3: Sample quantization results on "Parrots" image.

Table1: MSE measures of octree and halftone on

"Billiard" and "Parrots" images using different

octree color depth to obtain different number of

final quantized colors.

Number of

final

quantized

color levels

MSE

"Billiard"

synthesized image

MSE

"Parrots" real

image

256 0.0009 0.0044

128 0.0000 0.0030

64 0.0000 0.0044

32 0.0000 0.0023

16 0.0000 0.0023

8 0.0002 0.0157

In the spatially-adaptive octree the normal rosette

pattern of the octree can be seen, but in none of

the test images could we see an artifact pattern

from the square windows. Also, the rosette pattern

from the dither tends to be slightly less visible

because it is broken up by the octree windows, for

example the yellow background in (Figure 3-f).

The spatially-adaptive octree uses two repeating

patterns: the regular pattern of the octree mask,

and the regular square windows used for the

spatial adaptation. Often when different repeating

patterns are used moiré problems arise.

In fact, we saw less moiré with the spatially-

adaptive octree, we conjecture this is because this

method simply does a better job at capturing

edges.

5. Conclusions
 There are some final things that can be used to

gain more speed. Most of the time is spent finding

 (a) Original (b) Octree (c) Halftone

(a) Original (b) 256 level

(c) 128 level (d) 64 level

(e) 32 level (f) 16 level

Mohammed Iraqi Journal of Science, 2012, vol.53, No.3, pp 677-682

 681

the node which has to be reduced. It doesn't hurt

to maintain a list of all nodes that are on the same

level (level means how deep the node is stored in

the tree). A simple linked list could be very useful

for this. The best node to reduce is always stored

at the highest level in the tree. It also doesn't hurt

to reduce random nodes and don't analyze the

contents of the node as long as we reduce in the

highest level. The palette won't be as good, but it'll

be a lot faster (and the difference is hardly

noticeable).

Also after created the palette the tree is still useful.

It could use them to fast map a RGB-triple to a

palette index. To do this we have to store the

palette indices into the nodes during the palette

calculation.

When we want to find a color we simply traverse

the tree down until we find a node which

reference-count is greater than zero. The palette

indices can be directly read out of the node. To

our knowledge this is the fastest way to map RGB

colors to adaptive palettes. Normally we don't

need to use all 8 bits of the color-components.

Using only 6 bits will give more performance and

because standard VGA-adapters can only use 6

bits per primary color no one would be able to

spot the difference at all. It also saves a lot of

memory

If memory-usage is an issue we might reduce the

nodes after we inserted a complete scan line. We

wouldn't reduce to 256 colors in this case but to

4000 or so. This will help us to keep the tree small

Some Comments and Reactions. A genius idea

how to speed up the quantization process is to

keep the tree small. We reduced the nodes which

have a reference count of 1 (thus represent only

one pixel of the source-image). This of cause

keeps the tree small and saves lots needless tree-

traversal.

The suggested algorithm very elegant and useful.

It's a good example of the high art of computer

programming and maybe it makes we interested in

other algorithms.

On the one hand the algorithm leads to the best

results but on the other hand, it is small memory

and time consuming. The algorithm is well suited

for images that have to be displayed with the best

quality and the quantization process is not

considered. Artifacts may appear as local

discontinuities in a color shade. A combination

between the octree algorithm and the dithering

technique is not appreciated because the color

table entries are not equidistant. In comparison

with the other algorithms this approach needs less

implementation effort.

5. References
1. Celebi, M. E. 2009 "Effective

initialization of k-means for color

quantization", IEEE International

Conference on Image Processing, USA,

ICIP.

2. hраbах Н., 2009 "Color Quantization

Overview", technical report, Germany,

http://algolist.manual.ru/graphics/quant/qo

verview.php

3. Chang,Y.; Lee,D.; James, Y.H.J. and

Liang, D., 2008 "A Robust Color Image

Quantization Algorithm Based on

Knowledge Reuse of K-Means Clustering

Ensemble", Journal of Multimedia, Vol. 3,

No. 2, June.

4. Yurong, L.; Zhengdong, D. and

Hongguang,F.2010." Adaptive Extraction

of Principal Colors Using an Improved

Self-Growing Network", Journal of

Computers, Vol. 5, No. 2, Feb.

Appendix A

List code of our suggested optimal octree

quantization method were showed in the next

sections:
(A-1)Main Procedure "Create Optimal octree palette"
Procedure benefit: Create an optimal palette with the specified

number of colors using proposed adaptive octree quantization.

1. Start Create Optimal Procedure

 Inputs:

 Number of levels of color to create (nLevels)

 Max. number of colors (nColors)

 Channel weights [0,1] (RedW=GreenW=BlueW=1)
2. Allocates initial storage:

 Set: number of color depth = Number of levels of
color to create (nDepth=nColor)

 Set: Current Node; cNodes = 1: Current Color; cClr =
0

3. For All image pixele in x,y dimension Do
 Adds the current pixel to the color octree

 Call Add_Colour (1, 1, 0, 255, 0, 255, 0, 255, Bits(x,
y).R, Bits(x, y).G, Bits(x, y).B)

 Combine the levels to get down to desired palette size

 Do While (cClr > nColors)

 If (pvCombineNodes = 0) Then Exit Do

 Loop
 end.
4. Call Initialize_Palette
5. Go through octree and extract colors

 For y := 1 To UBound(aNodes) Do

 If (aNodes(y).bIsLeaf) Then Do
With aNodes(y)
o m_tPal(lEnt).R = .vR / .cClrs

Mohammed Iraqi Journal of Science, 2012, vol.53, No.3, pp 677-682

 682

o m_tPal(lEnt).G = .vG / .cClrs
o m_tPal(lEnt).B = .vB / .cClrs
o lEnt = lEnt + 1
end With

 end If
 end.
 m_Entries = lEnt
6. Call "Create logical palette"

End Procedure

(A-2) Procedure "Add_Colour"
Adds a color to the Octree palette. Will call itself if not in correct
level. (Recursive procedure)

1. Inputs:

 iBranch (Branch to look down)

 nLevel (Current level (depth) in tree)

 vMin(R, G, B) (The minimum branch value)

 vMax(R, G, B) (The maximum branch value)

 R, G, B (The Red, Green, and Blue color
components)

2. For all Color Bands: Find mid values for colors and decide
which path to take.

 (vMid = vMinR / 2 + vMaxR / 2) for Red channel
3. Also update max and min values for later call to self.

 If (wR * R > vMid) Then iR = 1: vMinR = vMid Else iR
= 0: vMaxR = vMid

 If no child here then... If
(aNodes(iBranch).iChildren(iR, iG, iB) = 0) Then 4

4. Get a new node index

 iIndex = Get _Free_ Node
 aNodes(iBranch).iChildren(iR, iG, iB) = iIndex
 aNodes(iBranch).cClrs = aNodes(iBranch).cClrs + 1

 Else Has a child hereiIndex =
aNodes(iBranch).iChildren(iR, iG, iB)

 End If

5. If it is a leaf
 If (aNodes(iIndex).bIsLeaf) Then

 With aNodes(iIndex)

 If (.cClrs = 0) Then cClr = cClr + 1

 .cClrs = .cClrs + 1

 .vR = .vR + R

 .vG = .vG + G

 . vB = .vB + B

 End With

 Else 6
6. If 2 or more colors, add to reducible a Nodes list

 With aNodes(iIndex)

 If (.bAddedReduce = 0) Then
o .iNext = aReduce(nLevel)
o aReduce(nLevel) = iIndex
o .bAddedReduce = -1

 End If

 End With
7. Search a level deeper

 Call Add_ Colour (iIndex, nLevel + 1, vMinR,
vMaxR, vMinG, vMaxG, vMinB, vMaxB, R, G, B)

 End If 5

End Procedure

(A-3) Public Sub Initialize(Optional ByVal
InitialEntries As Integer = 0)
 Re-dimension palette
 m_Entries = InitialEntries

 ReDim m_tPal(255) As RGBQUAD

End Sub

(A-4) Function "Get _Free_ Node"

Start Get _Free_ Node Function
Gets a new node index from the trash list or the end of the list. Clears

child pointers.

 Outputs: - Node index

 cNodes = cNodes + 1

 If (TopGarbage = 0) Then

 If (cNodes > UBound(aNodes)) Then

 i = cNodes * 1.1

 ReDim Preserve aNodes(1 To i)

 end If

 pvGetFreeNode = cNodes

 else

 pvGetFreeNode = TopGarbage

 TopGarbage = aNodes(TopGarbage).iNext

 For i := 0 To 7 Do

 If (i And 1) = 1 Then iR = 1 Else iR = 0

 If (i And 2) = 2 Then iG = 1 Else iG = 0

 If (i And 4) = 4 Then iB = 1 Else iB = 0

 aNodes(pvGetFreeNode).iChildren(iR, iG, iB) = 0

 end Do

 end If

End Function

(A-5) Procedure "Create Logical Palette"
Build logical palette here

 With logPal256

 .palNumEntries = m_Entries

 .palVersion = &H300

 End With

 m_hPal = CreatePalette(logPal256)

End Sub

(A-6) Private Type PALETTEENTRY
(Structure of octree node)
 peR As Byte
 peG As Byte
 peB As Byte
 peFlags As Byte

End Type

(A-7) Private Type LOGPALETTE256
 palVersion As Integer
 palNumEntries As Integer
 palPalEntry(255) As PALETTEENTRY

End Type

