Iragi Journal of Science, 2012, vol.53, No.3, pp 663-667

/-\/
Iraqi

Journal of

Science

PREVENTING BRUTE FORCE ATTACK THROUGH THE
ANALYZING LOG

Bahaa Qasim M. AL-Musawi
bahaagm@yahoo.com
Department of Electrical Engineering, College of Engineering, University Of Kufa . Kufa-Irag

Abstract

Secure Shell (SSH) is a secure remote login program which can be used in place
of regular telnet. It has become the default remote access method for administration
of UNIX systems. It is very common for public Internet facing servers to experience
attacks that attempt to brute force username and password combinations via SSH to
gain access.
This paper examines these attacks depending on SSH log file to find unsuccessful
logins then blocks IP addresses of unsuccessful logins for a period of time that is
decided by administrator and then send an e-mail to administrator to consider whether
the addresses blocked belong to users failed to access or by an attacker, finally the
administrator will block attacker's IP address forever.
Some attackers highly skilled and just used trusted IP address as a user hame then the
software will block the IP address of attacker as well as the victim IP address that is
used by attacker. In this paper, an adaptive mechanism was built-in to distinguish
between attacker IP address and victim IP address which may be used by an attacker,
and then the program will block just attacker IP address.

Keywords: IPtables Firewall, SSH, SSH application
Jaad) Jalad VA (1 dadilil) 5581 ada

$ S 9all Jana (Ma@ slg
3l yad)-A8 S 48 5 Aaals caatigh S (il 5eS) duuigh pnd
Ladal)

Sy alatid oSy gy 2y e Jsaall el maliyy 58 (The secure shell)) s,z
Ge Jsasll oVl JsSgig) o8 4aa¥) 588l JiS5ig 0 sl 28 L (tEIN€L) s &8 JsS5i5 0 0
s5il) Clangl allal) 8 5yl Cud V) a0 lan @SLAD (e 43l L (uSiigy Aalai) $)0Y 2y
zolsl Ja) (e AaaV) 580 NS 55 5 ahadil e g pall AalSs il and diju Jolad) daslal)
gsiny A (log file) daudl Cale e slaie¥) DA (o Clangl) oda ey Eandl 13a Lalsall)
Gllee (oY oVl NS n cslie an g o ey AaY) 5880 JS5g 50 Jsaall cBlas e
I S ap Jlol oy S Al e Jgpuall J8 e st 2 el e 5l Aaal e 4l
dd e o) zslsll (B sl idise Greadiie B (e Dpsmaall Gogliall ilS 1Y Led Hlaill gl
oA cagslae LSS Jla 8 4led 8yseay Galikiiall (pslie cana Jispasall (Say Cun Gulilaial) (lany
psir zalindl ladie addiise aulS Zigisall Gasliall mny (yperdiing Alall Chdll (553 (e Cpaealedd)
a8 s aulS Jiliall dedii o (Say 53 Ll Gl) ABLaYL Jiliiall Glyie caany
Llee osSi Jibiiall daxdiivn o) A sl Glyies Jiliall Olsie o Jueill A0 pay S Gl

i Jalid) ol siad Canal)

663

mailto:bahaaqm@yahoo.com

AL-Musawi

Iragi Journal of Science, 2012, vol.53, No.3, pp 663-667

A0y 58 il ¢ AiaY) 8yl i) Cpslie Jpaad Abaad) las tdoalidal) cilalsl)

1. Introduction
The Secure Shell (SSH) protocol is one of the

most widely used mechanisms designed to secure
many of the activities that are carried out on the
Internet. It is used to secure remote shell
operations by means of cryptographic
authentication mechanisms [1]. Furthermore, it
can protect the privacy (through strong
cryptography) not only of remote shells and file
copying, but of generic application-layer flows
through what is known as “port forwarding” [2].
In general, the privacy of SSH users can be seen
as protected on two fronts: the contents of actual
data that flows through an SSH session is
supposed to be impenetrable by a third-party
observer. At the same time, the type of activity
that the user is carrying out through the SSH
connection, it could be web browsing, secure

copy, remote shell execution, etc., is supposed to
remain private [3,4].
There are two fundamental approaches to
attacking SSH, exploits and brute force.
Exploiting security issues in old versions of
SSH is typically used by worms. While the brute
force attack is typically a manually initiated
process used to scan large ranges of IP addresses
to find vulnerable accounts [5].
The paper organized as follows: section 2 present
a survey of brute force attack. Section 3
illustrates SSH applications. Section 4 describes
IPtable. Section 5 presents the implementation
of the algorithm and finally, section6 presents the
conclusions of this work.

2.Related Work

There have been numerous studies that detail
network monitoring, security, and SSH attacks [6,
7, 8]. Thames et al. outlines a distributed
architecture for preventing SSH attacks [9]. In
this architecture, a group of trusted hosts works
together and shares information in order to block
attackers and modify firewall rules. The
architecture was never implemented, only
simulated. A similar, lightweight option is
Denyhosts. Denyhosts is an open-source Python
script that maintains a blacklist based on past
failed login attempts [10]. Review the current
market for brute-force attacks against SSH-
related software body, such as: denyhosts,
sshdfilter and sshit [10,11]. The common point is
that both use the log file for SSH server that is
located on /var/log/auth.log, then analyze the log
file to block IP address of failed login attempts.
Some attackers highly skilled just use trusted IP

664

address as a username then the software will
block the attacker IP address as well as the trusted
IP address that is used by attacker.

3. SSH Applications.

There are many applications for SSH that can
be used from Unix/Linux command line. With
SSH applications, anything that can be
accomplished at a machine’s command prompt
can now be done securely as described below:

Use for remote login
The syntax for remote login in Linux system
is: [$ ssh <username>@<remotehost>] Where
remote host may be domain or IP address [12].
Typical syntax for remote command
execution

It possible to execute commands in remote
host with one line command instead of login and
then execute typical commands, for example, who
command which lists all users logged on to the
remote host may be used [13].

Forward X Connections
To use a graphical program that runs on a
remote host on the local machine, the -X option
must be set. This can be done for running a single
program: [$ssh -X <username>@<remotehost>
<graphical programs name>] [12,13]. -

SSH Port Forwarding
SSH has the functionality of forwarding ports
between the client and the server through the
encrypted connection. This is working with the

standard SSH implementations, no extra
software is needed. This is also called
"encapsulation" or "tunneling". There are

forward and backward tunnels possible [12,13].

A. Forward Tunnel

The syntax of forward tunnel is as follows: [ssh
-L < local_port >: < host_to_forward_to >:<
remote_port >user@sshserver].

This will open a port (local_port) on the ssh client
host. All connections to this port will be
forwarded (tunneled) via the ssh connection to
the remote host (ssh daemon).

As an example, we have a situation, where a web
server on port 80 is running on a host (Host A)
and a firewall is blocking connections from
outside to this host and port, but allowing ssh
connections on port 22. To access the web server
from the outside (Host B), an ssh connection
with a port forwarding can be established: ssh -L
2080: localhost :80 user@sshserver

As long as this ssh connection remains
established, all connections to the port 2080 on

AL-Musawi

the client side (where ssh has been started, Host
B) will be forwarded to the port 80 on the "ssh
server" (Host A) host. In this case, one can type
http://localhost:2080 into a web browser on the
client (Host B) and be directed to the web server
(Host B) via the encrypted ssh connection.
Another scenario is an encrypted connection to
services that are unencrypted, or when the
connection is restricted to the localhost only
[14].

B. Reverse Tunnel

The syntax for a reverse tunnel is: ssh -R
<remote_port>:<host_to_forward_to>:<
local_port> user@sshserver

As with the forward tunnel, a port will be
opened for listening, but here on the remote host
(ssh server). All connections to this port will be

forwarded back to the ssh client host [14].

Secure copy SSH can be used for secure copy
between two hosts, for example: $ scp
<username>@<remotehost>:<sourcepath>/
<destinationpath>

Copies a file from a remote host to the local
machine $ scp <sourcepath> /
<username>@<remotehost>: <destinationpath>
Copies a file from the local machine to a remote
host [12].

4. IPtables

Iptables is part of the Netfilter project.
Netfilter is a set of Linux kernel hooks that
communicate with the network stack. Iptables is
a command and the table structure that contains
the rule sets that control the packet filtering.
Iptables is complex. It filters packets by the
fields in IP, TCP, UDP, and ICMP packet
headers. A number of different actions can be
taken on each packet, so the key to iptables
happiness is simplicity. Start with the minimum
necessary to get the job done, then add rules as
you need them. It’s not necessary to build vast
iptables edifices, and in fact, it’s a bad idea, as it
makes it difficult to maintain, and will hurt
performance [15, 16].
There are three tables in iptables. Any rules or
custom chains that you create will go into one of
these tables. The filter table is the default, and is
the one most used. The filter table contains these
built-in chains:
INPUT: Processes incoming packets
FORWARD: Processes packets routed through
the host OUTPUT: Processes outgoing packets

5. Implementation
The idea of the model started after checking

665

Iragi Journal of Science, 2012, vol.53, No.3, pp 663-667

log file for SSH server through analyzing SSH
log file looking for any login attempt failed, the
checking process produced hundreds of failed
attempts by attackers to server starting by using
root access and ending using dictionary of well-
known username/password combinations.

In this paper, a mechanism that checks log file
for failed attempts and block their IP addresses
for a while and then send the blocked IP
addresses to the administrator using SSMTP or
secure simple mail transfer protocol, ssmtp is a
send-only sendmail emulator for machines
which normally pick their mail up from a
centralized mailhub (via pop or imap) [17].
Some attackers may use an IP address as a
username, and then the blocking will be done for
the IP of the attacker as well as the IP of victim
that the attacker may use. Then the attacker will
fail in attempting to access but will succeed in
blocking specific IP address. The adaptive
model that is built-in in this paper is capable of
distinguishing between attackers' IP and the IP
of the victim which attacker want to block it as
well be soon explained. The model was tested
and built on Debian 5.0 server that provide DNS
serves and web server over more than 100 PCs
connected on internet.

A typical SSH brute force will be logged by
SSH via syslog using the auth-priority.
Depending on the SSH software, typical brute
force log entries consist of the following:

A Sep 2 18:37:59 DNS1 sshd[828]: Failed
password for invalid user admin from X. Y.ZW
port 52273 ssh2

A Sep 2 18:38:08 DNS1 sshd[830]: Failed
password for invalid user user from X.Y.ZW
port 52320 ssh2

A Sep 2 18:38:16 DNS1 sshd[832]: Failed
password for root from X. Y.Z.W port 52377
ssh2
A Sep 2 18:38:25 DNS1 sshd[834]: Failed
password for invalid user admin from X. Y.ZW
port 52433 ssh2

These were four login attempts, two for non-
existing accounts called user and admin, and the
third for the root account.

The above scenario can be stopped by
denyhosts, sshdfilter, sshit as well as our model,
but if an attacker use IP address for a victim as a
username then the blocking will be for attacker's
IP address as well as IP of the victim as shown
bellow.

N Sep 1 21:48:39 DNS1 sshd[854]: Failed
password for 8.8.8.8 from 212.6.40.14 port

http://localhost:2080/

AL-Musawi
58455 ssh2 * Sep 2 09:20:54 DNS1 sshd[844]:
Failed password for 8.8.8.8 from

222.168.102.78 port 51961 ssh2 The filtering
process will be as follows: 8.8.8.8 X.Y.ZW
8.8.8.8 X.Y.ZW

The model is capable of distinguish between
attacker IP address and IP address of victim that
may be used by the attacker as shown in (figure
1). (Figure 1) shows the model and how it filters
log file to find failed passwords and its IP
address to block it as well as it is capable to
distinguish between attacker's IP address and
victim's IP address that may be used by the
attacker.

Filtering process will produce the IP addresses
of just failed password as follow: X.Y.ZW

So, process of checking each line of failed
attempt to find out if the attacker uses an IP
address as a username is necessary.

After building the module and testing it, there
are three options to make this module work at
each reboot of server if server shuts down:

1. Using cron daemon to make this module
working as each start for server.

2. Adding the module to System V Init. There
are seven run levels in Unix OS, a module can
be added to which run level you wanted.

666

Iragi Journal of Science, 2012, vol.53, No.3, pp 663-667

= = " — -
Input maximum no. of failed
attempt and the peripd time for

pocideg.
B, (8 =

2o Create two directories, biock and check dlrectmyl

(a) — 3 _

while read log file for ssh ‘

Servor

3.

No s
-~ Check failed ssh .

& attempt, It it is 2
exists
yes

Create tita Inside chock directory with name of 1P
address of fail attempt and print falled attampt-on it

r

L

\ wihife reud iles inside chuck directory

A

" Check noof failed ™
attempt in files of S
chack directory if

more than the max,

A Yos

7 checkittp
address is biock *

already of no
yes

no.
{1- block IP address |

EZ- print time of blocking on a file inside black directory with pame of IF address,
13- Send e-mail st each tima of blocking Lo sdministrator using SSMTP

v

|Remove file of TP address inside check directory which blocked |

>
la

while read files insida block directory, check time of
Blockad 1P Inside each file

1

A7 A the time

“ morethan 3
W
)

Un bleck the IP and remove file I

1

(:)

Figure 1: Flowchart of checking and blocking
process

3. Adding the module to Upstart service. To
make the module working after starting
networking can be configured using upstart
service.

Cron daemon was adopted in this work.

AL-Musawi

Because the server used is necessary to work all
the time and if it stops for any reason and starts
again, cron daemon will start the program
automatically. This can be done by typing
crontab —e then add @reboot <the path to
script>. To download the script, please visit :
http://www.kuirag.com/staff/bahaagm/software

6. Conclusions

In this paper, a compact model with real-time
detection to prevent SSH brute force attacks was
presented. This model blocks IP addresses of
unsuccessful logins for a period of time that is
decided by administrator, the model gives remote
monitoring to administrator about who try to hack
the server through sending e-mails about the
blocking IP address.
After installed the model for more than three
months, it's note that some attackers highly
skilled and just used trusted IP address as a
username then the software will block the IP
address of attacker as well as the victim IP
address that is used by attacker, this issue is a
problem of denyhosts and sshit. This issue was
noticed by the remote monitoring and notice that
there are many of trusted IP addresses was
blocked, so an adaptive mechanism was built-in
to distinguish between attacker IP address and
victim IP address which may be used by an
attacker, and then the program will block just
attacker IP address.

References

1. Liberatore, M. and Levine, B. N. 2006
“Inferring the source of encrypted http
connections+”, in CCS ’06: Proceedings
of the 13th ACM conference on
Computer and Communications Security,
(Alexandria, Virginia, USA), pp. 255-
263.

2. Ramsbrock, D.; Berthier, R. and Cukier,
M. 2007. “Profiling Attacker Behavior
Following SSH Compromises”, in
Proceedings of the 37th Annual
IEEE/IFIP International Conference on
Dependable Systems and Networks,
pp.119- 124.

3. Dusi, M.; Gringoli, F. and Salgarelli, L.
2008 “A Preliminary Look at the Privacy
of SSH Tunnels”, in Proceedings of the
17th IEEE International Conference on
Computer Communications and
Networks (ICCCN 2008), (St. Thomas,
U.S. Virgin Islands), Aug.. Open SSH
Security,
http://ww.openssh.org/security.html.

667

4,

6.

Iragi Journal of Science, 2012, vol.53, No.3, pp 663-667

Dusi M.; Gringoli F., and Salgarelli, L.
2008. “A Preliminary Look at the
Privacy of SSH Tunnels”, in Proceedings
of the 17th IEEE International
Conference on Computer
Communications and Networks (ICCCN
2008), (St. Thomas, U.S. Virgin Islands),
Aug.

Mukosaka, S. and Koike, H. 2007
“Integrated visualization system for
monitoring security in largescale local
area network”, Asia-Pacific Symposium
on Visualization, 0:41-44,.
http://doi.ieeecomputersociety.org/10.110
9/APVIS. 2007.329273.

Anirudh, R. and Nick, F. 2006,
“Understanding the network-level
behavior of spammers” , in SIGCOMM
’06: Proceedings of the conference on
Applications, technologies,
architectures, and protocols for
computer communications, pages 291-
302, New York, NY, USA, 2006. ACM.
ISBN 1-59593-308-5.
http://doi.acm.org/10.1145/1159913.1159
947.

Daniel, R.; Robin, B., and Michel,
C.,2007. “Profiling attacker behavior
following ssh compromises”, dependable
Systems and Networks, International
Conference on, 0:119-124.

http://www.kuiraq.com/staff/bahaaqm/software
http://ww.openssh.org/security.html
http://doi.ieeecomputersociety.org/10.1109/APVIS
http://doi.ieeecomputersociety.org/10.1109/APVIS
http://doi.acm.org/10.1145/1159913.1159947
http://doi.acm.org/10.1145/1159913.1159947

