

Γ-CENTRALIZING MAPPINGS OF SEMIPRIME Γ-RINGS

Abdulrahman H.Majeed,Sameer kadem Motashar
ahmajeed@yahoo.com
Department of Mathematics, College of Sciences, University of Baghdad. Baghdad-Iraq

Abstract

Let M be a Γ-Ring with center $Z(M)$ and S a non-empty subset of M. A mapping F from M to M is called Γ-centralizing on S if $[x, F(x)]_{\alpha}=x \alpha F(x)-F(x) \alpha x \in Z(M)$ for all $x \in S, \alpha \in \Gamma$. we show that a semi-prime Γ-ring M must have a non-trivial central ideal if it admits an endomorphism which is Γ-centralizing on some non-trivial one sided ideal.

Key word: Γ-Ring,Derevitions, Γ-centralizing, prim Γ-ring, semi-prim Γ-ring.

$$
\begin{aligned}
& \text { التطبيقات المركزيـة من النمط - } \\
& \text { عبدالرحمن حميد مجيد، سمير كاظم مطشر } \\
& \text { قسم الريـاضيات ، كـلـيـة الـعـلوم، جـامـعـنـبـغـداد. بغداد- العراق } \\
& \text { لنكن M حلقة من النمط-Г ذات مركز Z(M) و S مجموعة غير خالية من M .الدالة F من M إلى } \\
& \text { M } \\
& \text { أن الحقة من النمط- } \Gamma \text { شبه الأولية M يجب ان تحتوي مثالي مركزي غير صفري اذا كانت F تشتاكل نقابلي } \\
& \text { متمركز من النمط-Г على مثالي (ايمن او ايسر) غير صفري. } \\
& \text { الكلمات المفتاحية: حلقات كاما،المشتقات، تمركزات كاما،حلقات اولية من النمط-Г ،حلقات شبه اولية من } \\
& \text { النمط-ए. }
\end{aligned}
$$

1. Introduction

The purpose of introducing the concept of a Γ-ring is to generalize that of a classical ring. In the last few decades, a number of modern algebraists have determined a lot of fundamental properties of Γ-rings and extended numerous significant results in classical ring theory to gamma ring theory. Note that the notion of a Γ ring was first introduced by N. Nobusawa[1] and then generalized by W. E. Barnes[2]. They obtained many important fundamental properties of Γ-rings, and also S.Kyuno[3], J.Luh[4],
G.L.Booth[5] and some other prominent mathematicians characterized much more significant results in the theory. let R denote a ring with center Z , and let S be a nonempty
subset of R . A mapping F from R to R is called centralizing on S if $[x, F(x)] \in Z$ for all $x \in S$;in the special case where $[x, F(x)]=0$ for all $x \in S$, the mapping F is described as commuting on S . in [6] Mayne prove that if a prime ring R admits either a nonidentity automorphism or a nonzero derivation which is centralizing on some nonzero ideal U of R , then R is commutative in this paper we will extend the results of H.E.Bell and W.S. Martindale[7].

2.Some basic definitines and exmpel

Definition 2.1[2]

Let M and Γ be two additive abelian groups.
If there exists a mapping $(a, \alpha, b) \rightarrow a \alpha b$ of $M \times \Gamma$ $\times M \rightarrow M$ which satisfies the conditions:
(a) $(a+b) \alpha c=a \alpha c+b \alpha c, a(\alpha+\beta) b=a \alpha b+$ $a \beta b, a \alpha(b+c)=a \alpha b+a \alpha c$ and
(b) $(a \alpha b) \beta c=a \alpha(b \beta c)$ for all $a, b, c \in M$ and $\alpha(i) \beta$ $\in \Gamma$, then M is called a Γ-ring in the sense of Barnes[2], or simply, a Γ-ring.

Example 2.2

suppose that R is a ring with identity 1 and $M_{m, n}(R)$ is the set of all $m \times n$ matrices over R. Then M is a Γ-ring with respect to the usual addition and multiplication of matrices if we choose $M=M_{m, n}(R)$ and $\Gamma=M_{n, m}(R)$. In particular, if we let $M=M_{1,2}(R)$ and $\Gamma=\left\{\left({ }^{\mathrm{n} .1} 0\right)(; n\right.$ is an integer $\}$, then M is a Γ-ring.

Definition 2.3[3]

An additive subgroup U of M is said to be a left (or right) ideal of M if $\mathrm{M} Г \mathrm{U} \subset \mathrm{U}$ (or , $\mathrm{U} Г \mathrm{M}$ $\subset \mathrm{U})$, whereas U is called a two - sided ideal , or simply, an ideal of M if U is a left as well as a right ideal of M .
Definition 2.4[3]:If M is a Γ-ring then M is called prime if $a \Gamma M \Gamma b=0$ (with $a, b \in M$) Implies either $a=0$ or $b=0$ Note that this concept of prime Γ-ring were introduced by J. Luh[4], and some analogous results corresponding to the prime rings were obtained by him as well as by S. Kyuno[3]. For $a, b \in M$ and $\alpha \in \Gamma$, then $[\mathrm{a}, \mathrm{b}]_{\alpha}=\mathrm{a} \alpha \mathrm{b}-\mathrm{b} \alpha \mathrm{a}$ is called the commutator of a and b with respect to α. The set $Z(M)=\{a \in M ; a \alpha m=m \alpha a$ for all $\alpha \in \Gamma$ and $m \in M\}$ is called the center of Γ-ring M .

Definition2.5[3]

A subset S of a Γ-ring M is called strongly nilpotent if there exists a positive integer n such that $(\mathrm{S} \Gamma)^{\mathrm{n}} \mathrm{S}=(0)$.
Definition 2.6[3]
An ideal P of a Γ-ring M is prime if for any ideals $\mathrm{A}, \mathrm{B} \subset \mathrm{M}, \mathrm{A} \Gamma \mathrm{B} \subset \mathrm{P}$ implies $\mathrm{A} \subset \mathrm{P}$ or $\mathrm{B} \subset \mathrm{P}$. and an ideal Q of M is semi-prime if for any ideal U,UГUᄃQ implies UсQ Also a Γ-ring M is semi-prime if the zero ideal is semi-prime ideal. And we can prove that a semi-prime Γ ring contains no strongly nilpotent one sided ideal. $(a, \alpha, b) \rightarrow a \alpha b$ of $M \times \Gamma \times M \rightarrow M$ which satisfies the conditions
(a) $(a+b) \alpha c=a \alpha c+b \alpha c, a(\alpha+\beta) b=a \alpha b+$ $a \beta b, a \alpha(b+c)=a \alpha b+a \alpha c$
$(a \alpha b) \beta c=a \alpha(b \beta c)$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ then M is called a Γ-ring in the sense of Barnes[2], or simply, a Γ-ring.
Remark2.7[8]:T.K. Mukherjee and M.K.Sen give equivalent definition of prime ideal, if P is
an ideal of Γ-ring M ,then the following are equivalent
P is prime ideal of M .
if $a, b \in M$ and $a \Gamma M \Gamma b \subset P$ implies $a \in P$ or $b \in P$
Definition 2.8[9]: An additive subgroup S of a Γ-ring M is called subring if $S \Gamma S \subset S$.

Definition 2.9[3]: let M and N be two Γ-rings let T be a map from M to N then T is called Γ ring homomorphism iff $T(x \alpha y)=T(x) \alpha T(y)$ and $T(x+y)=T(x)+T(y)$, for all $x, y \in M$.
In the following we will define Γ-centralizing mapping on Γ-rings.
Definition 2.10: Let M be a Γ-ring with center $\mathrm{Z}(\mathrm{M})$ and S be a non-empty subset of M . A mapping $\mathrm{F}: \mathrm{M} \rightarrow \mathrm{M}$ is called Γ-centralizing on S if $[\mathrm{x}, \mathrm{F}(\mathrm{x})]_{\alpha} \in \mathrm{Z}(\mathrm{M})$ for all $\mathrm{x} \in \mathrm{S}$ and $\alpha \in \Gamma$; in the special case where $[x, F(x)]_{\alpha}=0$,for all $x \in S$ and $\alpha \in \Gamma$,the mapping F is described as Γ commuting on S .

Example2.11:Let M_{1} be Γ_{1}-ring ,put $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{1}$ and $\Gamma=\Gamma_{1} \oplus \Gamma_{1}$ then M is a Γ-ring. Define a mapping $\mathrm{d}: \mathrm{M} \rightarrow \mathrm{M}$ by $d((x, y))=(y, x)$ for all $x, y \in \quad M_{1}$, and let $S=\left\{(x, 0) \mid x \in M_{1}\right\}$ be a subset of M.
Then
$\left[(\mathrm{x}, 0), \mathrm{d}((\mathrm{x}, 0)]_{\alpha}=(\mathrm{x}, 0) \alpha(0, \mathrm{x})(0, \mathrm{x}) \alpha(\mathrm{x}, 0)\right.$
$=(x \alpha 0,0 \alpha x)-(0 \alpha x, x \alpha 0)=(0,0)$.
That is mean d is Γ-centralizing on S .

3. Γ-Centralizing mappings of semiprime Γ-rings:

For proving our main result, we have need some important results which we have proved here as lemmas. So, we start as follows:

Lemma3.1

The center of a semi-prime $\quad \Gamma$-ring M contains no non-zero strongly nilpotent elements.

Proof: Let $a \in Z(M)$ be a strongly nilpotent element then there exits smallest positive integer n such that
$(\mathrm{a} \Gamma)^{\mathrm{n}} \mathrm{a}=(0)$.
Then from (1) we have
$(a \Gamma)^{n-1} a \Gamma a=(0)$.
Since M is a Γ-ring, we get
$(\mathrm{a})^{\mathrm{n}-1} \mathrm{a} \Gamma \mathrm{a} \Gamma=(0)$.
Now from (3) and since $(a \Gamma)^{\mathrm{n}-2} \mathrm{a} \in \mathrm{M}$, therefore
(0) $=(a \Gamma)^{\mathrm{n}-1} \mathrm{a} Г М Г а \Gamma(a \Gamma)^{\mathrm{n}-2} \mathrm{a}$
$=(\mathrm{a} \Gamma)^{\mathrm{n}-1} \mathrm{a} \Gamma \mathrm{M} \Gamma(\mathrm{a} \Gamma)^{\mathrm{n}-1} \mathrm{a} . \quad$ But M is a
semi-prime Γ-ring we have from above relation , (0) $=(a \Gamma)^{n-1} a$

But n is smallest positive integer such that $(\mathrm{a} \Gamma)^{\mathrm{n}} \mathrm{a}=(0)$, then $\mathrm{a}=0$.

Lemma3.2

Let M be a Γ-ring then for all $a, b, c \in M, \alpha, \beta$ $\in \Gamma$
(1) $[\mathrm{a}, \mathrm{b}+\mathrm{c}]_{\alpha}=[\mathrm{a}, \mathrm{b}]_{\alpha}+[\mathrm{a}, \mathrm{c}]_{\alpha}$
(2) $[\mathrm{a}+\mathrm{b}, \mathrm{c}]_{\alpha}=[\mathrm{a}, \mathrm{b}]_{\alpha}+[\mathrm{a}, \mathrm{c}]_{\alpha}$
(3) $[\mathrm{a} \beta \mathrm{b}, \mathrm{c}]_{\alpha}=\mathrm{a} \beta[\mathrm{b}, \mathrm{c}]_{\alpha}+[\mathrm{a}, \mathrm{c}]_{\alpha}+\mathrm{a} \beta(\mathrm{c} \alpha \mathrm{b})-\mathrm{a} \alpha(\mathrm{c} \beta \mathrm{b})$.

Proof: Obvious.

Throughout this paper ,the condition $a \beta c \alpha b=a \alpha c \beta b$,for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ will represent by (*).

Lemma3.3

Let M be a semi-prime Γ-ring satisfying (*) and let $a \in M$ such that $a \beta[a, m]_{\alpha}=0$ (or $\left.[a, m]_{\alpha} \beta a=0\right)$, for all $m \in M$ and $\alpha, \beta \in \Gamma$. Then $\mathrm{a} \in \mathrm{Z}(\mathrm{M})$.

Proof

For all $\mathrm{m}_{1} \in \mathrm{M}$ and $\delta \in \Gamma$, then
$0=\mathrm{a} \beta\left[\mathrm{a}, \mathrm{m} \delta \mathrm{m}_{1}\right]_{\alpha}=\mathrm{a} \beta\left(\mathrm{m} \delta\left[\mathrm{a}, \mathrm{m}_{1}\right]_{\alpha}+[\mathrm{a}, \mathrm{m}]_{\alpha} \delta \mathrm{m}_{1}\right)$ $a \beta\left(m \delta\left[a, m_{1}\right]_{\alpha}\right.$
By assumption and $\left(^{*}\right)$, we get
$0=\mathrm{m} \delta \mathrm{a} \beta\left[\mathrm{a}, \mathrm{m}_{1}\right]_{\alpha}=\mathrm{m} \beta \mathrm{a} \delta\left[\mathrm{a}, \mathrm{m}_{1}\right]_{\alpha}$.
Now from (1) and (2), we have $[\mathrm{a}, \mathrm{m}]_{\beta} \delta\left[\mathrm{a}, \mathrm{m}_{1}\right]_{\alpha}=0$.
In (3) replace m_{1} by $\mathrm{m}_{1} \gamma \mathrm{~m}$, for all $\gamma \in \Gamma$, we have
$0=[\mathrm{a}, \mathrm{m}]_{\beta} \delta\left[\mathrm{a}, \mathrm{m}_{1} \gamma \mathrm{~m}\right]_{\alpha}=[\mathrm{a}, \mathrm{m}]_{\beta} \delta\left(\mathrm{m}_{1} \gamma[\mathrm{a}, \mathrm{m}]_{\alpha}\right.$
$\left.+\left[\mathrm{a}, \mathrm{m}_{1}\right]_{\alpha} \gamma \mathrm{m}\right)=[\mathrm{a}, \mathrm{m}]_{\beta} \delta \mathrm{m}_{1} \gamma[\mathrm{a}, \mathrm{m}]_{\alpha}$.
Now for all $\beta \in \Gamma$ take $\beta=\alpha$ and since M is a semi-prime Γ-ring therefore
$[a, m]_{\alpha}=0$, for all $m \in M$ and $\alpha \in \Gamma$, thus $a \in Z(M)$. Similarly we can prove the lemma, when $[\mathrm{a}, \mathrm{m}]_{\alpha} \beta \mathrm{a}=0$.

Lemma3.4

let M be a semi-prime Γ-ring, U be a left ideal of M and $A, B: M \times M \rightarrow M$, be two biadditive maps , if $\mathrm{A}(\mathrm{x}, \mathrm{y}) \Gamma \mathrm{U} \Gamma(\mathrm{x}, \mathrm{y})=0$, then $A(x, y) \Gamma U \Gamma B(u, v)=0$, for all $x, y, u, v \in U$.

Proof: By assumption
$A(x, y) \Gamma U \Gamma B(x, y)=(0)$, for all $x, y \in U \ldots$ (1)
In (1) replace x by $x+u$ for all $u \in U$ we get (0) $=\mathrm{A}(\mathrm{x}+\mathrm{u}, \mathrm{y}) \Gamma \mathrm{U} \Gamma \mathrm{B}(\mathrm{x}+\mathrm{u}, \mathrm{y})$
$=(\mathrm{A}(\mathrm{x}, \mathrm{y}) \Gamma \mathrm{U} \cdot \mathrm{A}(\mathrm{u}, \mathrm{y})) \Gamma \mathrm{U}(\mathrm{B}(\mathrm{x}, \mathrm{y})+\mathrm{B}(\mathrm{u}, \mathrm{y}))$
$A(\mathrm{x}, \mathrm{y}) \Gamma \mathrm{U} \mathrm{B}(\mathrm{u}, \mathrm{y})+\mathrm{A}(\mathrm{u}, \mathrm{y}) \Gamma \mathrm{U} \mathrm{B}(\mathrm{x}, \mathrm{y})=(0)$.
Now from (2) and semi-primness of M we can prove
$(\mathrm{A}(\mathrm{x}, \mathrm{y}) \Gamma \mathrm{U} Г \mathrm{~B}(\mathrm{u}, \mathrm{y})) \Gamma \mathrm{M}(\mathrm{A}(\mathrm{x}, \mathrm{y}) \Gamma \mathrm{U}$ ($\mathrm{B}(\mathrm{u}, \mathrm{y})$ $=-А(\mathrm{u}, \mathrm{y}) Г \mathrm{U}$ В $(\mathrm{x}, \mathrm{y}) Г М Г А(\mathrm{x}, \mathrm{y}) Г \cup Г В(\mathrm{u}, \mathrm{y})$ but U В $(\mathrm{x}, \mathrm{y}) Г М Г А(\mathrm{x}, \mathrm{y}) \Gamma \mathrm{U} \subseteq \mathrm{U}$, (U be a left ideal), therefore
$(\mathrm{A}(\mathrm{x}, \mathrm{y}) \Gamma \mathrm{U}$ В $(\mathrm{u}, \mathrm{y})) Г \mathrm{M}(\mathrm{A}(\mathrm{x}, \mathrm{y}) \Gamma \mathrm{U}$ В $(\mathrm{u}, \mathrm{y})=0$. Then
$\mathrm{A}(\mathrm{x}, \mathrm{y}) \Gamma \mathrm{U} \mathrm{B}^{(\mathrm{u}, \mathrm{y})}=(0)$.
In (3) replace y with $y+v$, for all $v \in U$ we get
(0) $=\mathrm{A}(\mathrm{x}, \mathrm{y}+\mathrm{v}) \Gamma \mathrm{U}$ В $(\mathrm{u}, \mathrm{y}+\mathrm{v})$
$=(\mathrm{A}(\mathrm{x}, \mathrm{y})+\mathrm{A}(\mathrm{x}, \mathrm{v})) \Gamma \mathrm{U} \Gamma(\mathrm{B}(\mathrm{u}, \mathrm{y})+\mathrm{B}(\mathrm{u}, \mathrm{v}))$
$\mathrm{A}(\mathrm{x}, \mathrm{y}) \Gamma \cup Г \mathrm{~B}(\mathrm{u}, \mathrm{v})+\mathrm{A}(\mathrm{x}, \mathrm{v}) \Gamma \mathrm{U}$ В $(\mathrm{u}, \mathrm{v})=0$.
Also we can prove that
$(\mathrm{A}(\mathrm{x}, \mathrm{y}) \Gamma \mathrm{U} \mathrm{B}(\mathrm{u}, \mathrm{v})) Г \mathrm{M}(\mathrm{A}(\mathrm{x}, \mathrm{y}) Г \mathrm{U}$ В $(\mathrm{u}, \mathrm{v}) \quad=-$ А(x,v) ГUГВ(u,v)ГМГА(x,y)ГUГВ(u,v).
From the above relation ,since U be a left ideal, then $U Г В(u, v) Г М Г А(x, y) Г U \subset \mathrm{U}$, therefore
 M be a semi-prime Γ-ring then $А(x, y) \Gamma U Г В(u, v)=0 \quad$,for all $\quad x, y, u, v \in U$.

Lemma3.5

Let M be semiprime Γ-ring satisfying (*) and let U be left ideal of M then $Z(U) \subset Z(M)$.

Proof

Let $a \in Z(U)$ then for all $\alpha \in \Gamma$ and $x \in M$, $x \alpha a \in U$ and $[a, x \alpha a]_{\beta}=0$ for all $\beta \in \Gamma$, then by lemma 3.3 , $\mathrm{a} \in \mathrm{Z}(\mathrm{M})$.

Lemma3.6

Let U be a nonzero left ideal of the semiprime Γ-ring M satisfying (*) if T is an endomorphism of M which is Γ centralizing on U.Then T is Γ-commuting on U
Proof: By assumption $[x, T(x)]_{\alpha} \in Z(M)$,for all $x \in U$ and $\alpha \in \Gamma$. Polarizing the above relation we have
$[\mathrm{x}, \mathrm{T}(\mathrm{y})]_{\alpha}+[\mathrm{y}, \mathrm{T}(\mathrm{x})]_{\alpha} \in \mathrm{Z}(\mathrm{M})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$ and $\alpha \in \Gamma$. ...(1)
In (1) replacing y by $x \beta x$, then we get
$[\mathrm{x}, \mathrm{T}(\mathrm{x} \beta \mathrm{x})]_{\alpha}+[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{x})]_{\alpha}=[\mathrm{x}, \mathrm{T}(\mathrm{x}) \beta \mathrm{T}(\mathrm{x})]_{\alpha}$
$+\mathrm{x} \beta[\mathrm{x}, \mathrm{T}(\mathrm{x})]_{\alpha}+[\mathrm{x}, \mathrm{T}(\mathrm{x})]_{\alpha} \beta \mathrm{x}$
$=2 T(x) \beta[x, T(x)]_{\alpha}+2 x \beta[x, T(x)]_{\alpha} \in Z(M)$.
Now since $[x, T(x)]_{\alpha} \in Z(M)$, then
$\left[2 x \beta[x, T(x)]_{\alpha}, x\right]_{\alpha}=0$,for all $x \in U$.
Therefore $\quad 2 \mathrm{x} \beta[\mathrm{x}, \mathrm{T}(\mathrm{x})]_{\alpha} \in \mathrm{Z}(\mathrm{U}) \subset \mathrm{Z}(\mathrm{M}) \quad$ (by Lemma 3.5) ,so $2 x \beta[x, T(x)]_{\alpha} \in Z(M)$, by additive subgroup of $Z(M)$ we have $2 \mathrm{~T}(\mathrm{x}) \beta[\mathrm{x}, \mathrm{T}(\mathrm{x})]_{\alpha}$ Therefore $0=2\left[\mathrm{~T}(\mathrm{x}) \beta[\mathrm{x}, \mathrm{T}(\mathrm{x})]_{\alpha}, \mathrm{x}\right]_{\alpha}$
$=2[\mathrm{x}, \mathrm{T}(\mathrm{x})]_{\alpha} \beta[\mathrm{x}, \mathrm{T}(\mathrm{x})]_{\alpha}$, for all $\mathrm{x} \in \mathrm{U}$ and $\alpha \in \Gamma$. Which means that
$\left(2[\mathrm{x}, \mathrm{T}(\mathrm{x})]_{\alpha} \beta\right)^{3}\left(2[\mathrm{x}, \mathrm{T}(\mathrm{x})]_{\alpha}\right)$
$=2^{3}\left(2[x, T(x)]_{\alpha} \beta[x, T(x)]_{\alpha}\right) \beta[x, T(x)]_{\alpha} \beta[x, T(x)]_{\alpha}$ $=0$.
Since the center of a semi-prime Γ-ring contains no nonzero strongly nilpotent elements we conclude that
$2[\mathrm{x}, \mathrm{T}(\mathrm{x})]_{\alpha}=0$
and hence
$2\left([\mathrm{x}, \mathrm{T}(\mathrm{y})]_{\alpha}+[\mathrm{y}, \mathrm{T}(\mathrm{x})]_{\alpha}\right)=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$ and $\alpha \in \Gamma$.
Now by use (1) and (2) we can proved that
$[x \beta y+y \beta x, x T(x)]_{\alpha}+[x \beta x, T(y)]_{\alpha}=2 y \beta[x, T(x)]_{\alpha}+2 x$ $\beta\left([\mathrm{x}, \mathrm{T}(\mathrm{y})]_{\alpha}+[\mathrm{y}, \mathrm{T}(\mathrm{x})]_{\alpha}\right)=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$ and $\alpha, \beta \in \Gamma$.
Therefore $\quad[x \beta y+y \beta x, x T(x)]_{\alpha}+[x \beta x, T(y)]_{\alpha}=0$, for all $x, y \in U$ and $\alpha, \beta \in \Gamma$.
Now in (4) let $T(x)=z$ and take $y=z \delta x \mu x$, for all $\delta, \mu \in \Gamma$,then
$[\mathrm{x} \beta \mathrm{z} \delta \mathrm{x} \mu \mathrm{x}+\mathrm{z} \delta \mathrm{x} \mu \mathrm{x} \beta \mathrm{x}, \mathrm{z}]_{\alpha}+[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z} \delta \mathrm{x} \mu \mathrm{x})]_{\alpha}$
$=[\mathrm{x} \beta \mathrm{z} \delta \mathrm{x} \mu \mathrm{x}, \mathrm{z}]_{\alpha}+[\mathrm{z} \delta \mathrm{x} \mu \mathrm{x} \beta \mathrm{x}, \mathrm{z}]_{\alpha}+[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z}) \delta \mathrm{z} \mu \mathrm{z}]_{\alpha}$
$=\quad \mathrm{x} \beta \mathrm{z} \mathrm{\delta}[\mathrm{x} \mu \mathrm{x}, \mathrm{z}]_{\alpha}+[\mathrm{x} \beta \mathrm{z}, \mathrm{z}]_{\alpha} \delta \mathrm{x} \mu \mathrm{x}+\mathrm{z} \delta \mathrm{x} \mu \mathrm{x} \beta[\mathrm{x}, \mathrm{z}]_{\alpha}$
$+[z \delta x \mu x, z]_{\alpha} \beta x \quad+[x \beta x, T(z) \delta z \mu z]_{\alpha}$
$=\mathrm{x} \beta \mathrm{z} \delta\left(\mathrm{x} \mu[\mathrm{x}, \mathrm{z}]_{\alpha}+[\mathrm{x}, \mathrm{z}]_{\alpha} \mu \mathrm{x}\right)+\left(\mathrm{x} \beta[\mathrm{z}, \mathrm{z}]_{\alpha}+[\mathrm{x}, \mathrm{z}]_{\alpha} \beta \mathrm{z}\right)$
$\delta \mathrm{x} \mu \mathrm{x}+\mathrm{z} \delta \mathrm{x} \mu \mathrm{x} \beta[\mathrm{x}, \mathrm{z}]_{\alpha}+\left(\mathrm{z} \delta \mathrm{x} \mu[\mathrm{x}, \mathrm{z}]_{\alpha}+[\mathrm{z} \delta \mathrm{x}, \mathrm{z}]_{\alpha} \mu \mathrm{x}\right) \beta \mathrm{x}$
$+[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z}) \delta \mathrm{z} \mu \mathrm{z}]_{\alpha}$
$=\mathrm{x} \beta \mathrm{z} \delta\left(2 \mathrm{x} \mu[\mathrm{x}, \mathrm{z}]_{\alpha}\right)+2[\mathrm{x}, \mathrm{z}]_{\alpha} \beta \mathrm{z} \delta \mathrm{x} \mu \mathrm{x}+\mathrm{z} \delta \mathrm{x} \mu[\mathrm{x}, \mathrm{z}]_{\alpha} \beta \mathrm{x}$
$+z \delta[\mathrm{x}, \mathrm{z}]_{\alpha} \mu \mathrm{x} \beta \mathrm{x}+[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z}) \delta \mathrm{z} \mu \mathrm{z}]_{\alpha}$
$=2[\mathrm{x}, \mathrm{z}]_{\alpha} \beta \mathrm{z} \delta \mathrm{x} \mu \mathrm{x}+[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z}) \delta \mathrm{z} \mu \mathrm{z}]_{\alpha}$
$=[x \beta x, T(z) \delta z \mu z]_{\alpha}$.
Therefore
$0=[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z}) \delta \mathrm{z} \mu \mathrm{z}]_{\alpha}$
$=\mathrm{T}(\mathrm{z}) \delta[\mathrm{x} \beta \mathrm{x}, \quad \mathrm{z} \mu \mathrm{z}]_{\alpha}+[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z})]_{\alpha} \delta \mathrm{z} \mu \mathrm{z}$
$=\mathrm{T}(\mathrm{z}) \delta\left(\mathrm{x} \beta\left(2[\mathrm{x}, \mathrm{z}]_{\alpha} \mu \mathrm{z}\right)\right)+[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z})]_{\alpha} \delta \mathrm{z} \mu \mathrm{z}$
$[x \beta x, T(z)]_{\alpha} \delta z \mu z=0$
On the other hand taking $y=z \delta x$ in (4)
for all $\delta \in \Gamma$, we have
$[\mathrm{x} \beta \mathrm{z} \delta \mathrm{x}+\mathrm{z} \delta \mathrm{x} \beta \mathrm{x}, \mathrm{x}, \mathrm{z}]_{\alpha}+[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z} \delta \mathrm{x})]_{\alpha}$
$=[\mathrm{x} \beta \mathrm{z} \delta \mathrm{x}+\mathrm{z} \delta \mathrm{x} \beta \mathrm{x}, \mathrm{x}, \mathrm{z}]_{\alpha}+[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z}) \delta \mathrm{z}]_{\alpha}$
$=[\mathrm{x} \delta \mathrm{z} \beta \mathrm{x}+\mathrm{z} \delta \mathrm{x} \beta \mathrm{x}, \mathrm{x}, \mathrm{z}]_{\alpha}+[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z}) \delta \mathrm{z}]_{\alpha}$
$\left.=[(\mathrm{x} \delta \mathrm{z}+\mathrm{z} \delta \mathrm{x}) \beta \mathrm{x}, \mathrm{x}, \mathrm{z}]_{\alpha}+\mathrm{T}(\mathrm{z}) \delta[\mathrm{x} \beta \mathrm{x}, \mathrm{z})\right]_{\alpha}$
$+[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z})]_{\alpha} \delta \mathrm{z}$
$=\left[\left([\mathrm{x}, \mathrm{z}]_{\delta}+2 \mathrm{z} \delta \mathrm{x}\right) \beta \mathrm{x}, \mathrm{z}\right]_{\alpha}+[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z})]_{\alpha} \delta \mathrm{z}$
$=\left[[\mathrm{x}, \mathrm{z}]_{\delta} \beta \mathrm{x}, \mathrm{z}\right]_{\alpha}+2[\mathrm{z} \delta \mathrm{x} \beta \mathrm{x}, \mathrm{z}]_{\alpha}+[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z})]_{\alpha} \delta \mathrm{z}$
$=[\mathrm{x}, \mathrm{z}]_{\delta} \beta[\mathrm{x}, \mathrm{z}]_{\alpha}+\left[[\mathrm{x}, \mathrm{z}]_{\delta}, \mathrm{z}\right]_{\alpha} \beta \mathrm{x}+[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z})]_{\alpha} \delta \mathrm{z}$.
$0=[x, z]_{\delta} \beta[x, z]_{\alpha}+[x \beta x, T(z)]_{\alpha} \delta z \in Z(M) \ldots$ (6)
But $[x, z]_{\delta} \beta[x, z]_{\alpha} \in Z(M)$, therefore from (6)
$[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z})]_{\alpha} \delta \mathrm{z} \in \mathrm{Z}(\mathrm{M})$.
Now from (5)
$0=[x \beta x, T(z)]_{\alpha} \delta z \mu z=z \mu[x \beta x, T(z)]_{\alpha} \delta z$
$0=[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z})]_{\alpha} \delta \mathrm{z} \mu[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z})]_{\alpha} \delta \mathrm{z}$
but the center of a semi-prime Γ-ring contains no nonzero strongly nilpotent elements we conclude that. $[\mathrm{x} \beta \mathrm{x}, \mathrm{T}(\mathrm{z})]_{\alpha} \delta \mathrm{z}=0$. Therefore from
(6)we have $[x, z]_{\delta} \beta[x, z]_{\alpha}=0$,for all
$\delta \in \Gamma$, thus $[\mathrm{x}, \mathrm{z}]_{\alpha} \beta[\mathrm{x}, \mathrm{z}]_{\alpha}=0$, therefore
$[\mathrm{x}, \mathrm{z}]_{\alpha}=[\mathrm{x}, \mathrm{T}(\mathrm{x})]_{\alpha}=0$.

4.Main result

Theorem_4.1:

Let M be a semi-prime Γ-ring satisfying (*) and U be a non zero left ideal of M, suppose that M admits an endomorphism T which is one-toone on U, Γ-centralizing on U and not the identity on U , if $\mathrm{T}(\mathrm{U}) \subseteq \mathrm{U}$. Then M contains a non zero central ideal.

Proof:

Let x^{T} be the image of element x under the mapping T .
Now, by Lemma 3.6, we have
$\left[\mathrm{x}, \mathrm{x}^{\mathrm{T}}\right]_{\alpha}=0, \quad$ for all $\mathrm{x} \in \mathrm{U}, \alpha \in \Gamma$.
Polarizing the above relation we have $\left[\mathrm{x}, \mathrm{y}^{\mathrm{T}}\right]_{\alpha}=\left[\mathrm{x}^{\mathrm{T}}, \mathrm{y}\right]_{\alpha}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}, \alpha \in \Gamma$.
Substituting $x \beta y$ for y and applying (1), we then get
$\left(x-x^{T}\right) \beta\left[x^{T}, y\right]_{\alpha}=0$,for all $x, y \in U \beta, \alpha \in \Gamma$. ...(2)
Replacing y by u$\gamma \mathbf{y}$ in (2) for all $u \in U$ and $\gamma \in \Gamma$ yields
$\left(\mathrm{x}-\mathrm{x}^{\mathrm{T}}\right) \beta \mathrm{U} \gamma\left[\mathrm{x}^{\mathrm{T}}, \mathrm{y}\right]_{\alpha}=(0)$
therefore $\quad\left(\mathrm{x}-\mathrm{x}^{\mathrm{T}}\right) \Gamma \mathrm{U} \Gamma\left[\mathrm{x}^{\mathrm{T}}, \mathrm{y}\right]_{\alpha}=(0)$
now by Lemma3.4 then
$\left(\mathrm{x}-\mathrm{x}^{\mathrm{T}}\right) \Gamma \mathrm{U} \Gamma\left[\mathrm{z}^{\mathrm{T}}, \mathrm{y}\right]_{\alpha}=(0)$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{U}$
Let $\mathrm{P}=\left\{\mathrm{P}_{\mathrm{i}} \mid \mathrm{P}_{\mathrm{i}}\right.$ is prime ideal with $\cap \mathrm{P}_{\mathrm{i}}=(0)$; $\mathrm{i} \in \mathrm{I}\}$, therefore from (3), we get
$\left(\mathrm{x}-\mathrm{x}^{\mathrm{T}}\right) \Gamma \mathrm{M} \Gamma \mathrm{U} \Gamma\left[\mathrm{z}^{\mathrm{T}}, \mathrm{y}\right]_{\alpha} \subset \mathrm{P}_{\mathrm{i}}$.
Therefore by Remark2.6 either
(a) $\left(x-x^{T}\right) \subset P_{i}$ or
(b) $U \Gamma\left[z^{T}, y\right] \subset P_{i}$.

Call a prime ideal in P a type -one prime if it satisfies (a); call all other members of P typetwo primes. Now let $P_{1}=\cap P_{i}$ (type -one prime) and $P_{2}=\cap P_{i}$ (type-two prime). It is clear that $P_{1} \cap P_{2}=(0)$. Now from (a) and (b) and since $T(U)$ $\subseteq U$ then for all x in U we have $x^{T} \in U$ and $x-$ $x^{T} \in U$. From (a) and (b) we get $U^{T} \Gamma\left[\left(x-x^{T}\right), y^{T}\right] \subset$ $P_{1} \cap P_{2}=(0)$, therefore $\left(U \Gamma\left[x-x^{T}, y\right]_{\alpha}\right)^{T}=0$, but T is one to one on U then
$\mathrm{U} \Gamma\left[\mathrm{x}-\mathrm{x}^{\mathrm{T}}, \mathrm{y}\right]_{\alpha}=0$
From (4) we have $U \Gamma[x, y]_{\alpha}-U \Gamma\left[x^{T}, y\right]_{\alpha}=0 \in P_{i}$ but $U \Gamma\left[\mathrm{x}^{\mathrm{T}}, \mathrm{y}\right]_{\alpha} \subset \mathrm{P}_{\mathrm{i}}$ (type-two prime), therefore $\mathrm{U} \Gamma[\mathrm{x}, \mathrm{y}]_{\alpha} \subset \mathrm{P}_{\mathrm{i}}$ (type-two prime).
Now returning to (1) and replacing x by $x \beta y$ for all $x, y \in U$ and $\beta \in \Gamma$ we get
$\left[\mathrm{x} \beta \mathrm{y}, \mathrm{y}^{\mathrm{T}}\right]_{\alpha}=\left[(\mathrm{x} \beta \mathrm{y})^{\mathrm{T}}, \mathrm{y}\right]_{\alpha}=\left[\mathrm{x}^{\mathrm{T}} \beta \mathrm{y}^{\mathrm{T}}, \mathrm{y}\right]_{\alpha}$
$\mathrm{x} \beta\left[\mathrm{y}, \mathrm{y}^{\mathrm{T}}\right]_{\alpha}+\left[\mathrm{x}, \mathrm{y}^{\mathrm{T}}\right]_{\alpha} \beta \mathrm{y}=\mathrm{x}^{\mathrm{T}} \beta\left[\mathrm{y}^{\mathrm{T}}, \mathrm{y}\right]_{\alpha}+\left[\mathrm{x}^{\mathrm{T}}, \mathrm{y}\right]_{\alpha} \beta \mathrm{y}^{\mathrm{T}}$
$\left[\mathrm{x}, \mathrm{y}^{\mathrm{T}}\right]_{\alpha} \beta \mathrm{y}=\left[\mathrm{x}^{\mathrm{T}}, \mathrm{y}\right]_{\alpha} \beta \mathrm{y}^{\mathrm{T}}=\left[\mathrm{x}^{\mathrm{T}}, \mathrm{y}\right]_{\alpha} \beta \mathrm{y}^{\mathrm{T}}$ (from (1))

Therefore
$\left[\mathrm{x}^{\mathrm{T}}, \mathrm{y}\right]_{\alpha} \beta\left(\mathrm{y}-\mathrm{y}^{\mathrm{T}}\right)=0$
now since $T(U) \subseteq U$, then in above relation replace y by y^{T}, we have $\left[x^{T}, y^{T}\right]_{\alpha} \beta\left(y^{T} y^{T T}\right)=0$,but T is one to one on U therefore $[x, y]_{\alpha} \beta\left(y-y^{T}\right)=0$, replace x by $x \gamma u$, for all $u \in U$ and $\gamma \in \Gamma$, thus
$0=[\mathrm{x} \gamma \mathrm{u}, \mathrm{y}]_{\alpha} \beta\left(\mathrm{y}-\mathrm{y}^{\mathrm{T}}\right)=\left(\mathrm{x} \gamma[\mathrm{u}, \mathrm{y}]_{\alpha}+[\mathrm{x}, \mathrm{y}]_{\alpha} \gamma \mathrm{u}\right) \beta\left(\mathrm{y}-\mathrm{y}^{\mathrm{T}}\right)$
$=[x, y]_{\alpha} \gamma u \beta\left(y-y^{T}\right)$.
Therefore $[x, y]_{\alpha} \Gamma U \Gamma\left(y-y^{T}\right)=(0)$. Now by Lemma 3.4, then $[\mathrm{x}, \mathrm{y}]_{\alpha} \Gamma \mathrm{U} \Gamma\left(\mathrm{z}-\mathrm{z}^{\mathrm{T}}\right)=(0)$, for all $x, y, z \in U$. By definition of P then either
$[\mathrm{x}, \mathrm{y}]_{\alpha} \in \mathrm{P}_{\mathrm{i}} \quad$ or $\quad \mathrm{U} \Gamma\left(\mathrm{z}-\mathrm{z}^{\mathrm{T}}\right) \subset \mathrm{P}_{\mathrm{i}}$. But $\mathrm{T}(\mathrm{U}) \subset \mathrm{U}$,
for all $z_{1} \in U$, then $z_{1}-z_{1}{ }^{T} \in U$, therefore
$[\mathrm{x}, \mathrm{y}]_{\alpha} \Gamma\left(\mathrm{z}_{1}-\mathrm{z}_{1}{ }^{\mathrm{T}}\right) \Gamma\left(\mathrm{z}_{2}-\mathrm{z}_{2}{ }^{\mathrm{T}}\right)=(0)$,
for all $x, y, z_{1}, z_{2} \in U$.
Define V be the left ideal generated by all elements of form $u \beta\left(v-v^{T}\right)$ for $u, v \in U$ and $\beta \in$ Γ. We will show that V is commutative as Γ ring, it will suffice to show that
$\left[\mathrm{u}_{1} \beta\left(\mathrm{v}_{1}-\mathrm{v}_{1}{ }^{\mathrm{T}}\right), \mathrm{u}_{2} \gamma\left(\mathrm{v}_{2}-\mathrm{v}_{2}{ }^{\mathrm{T}}\right)\right]_{\alpha}=0$,for all $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{v}_{1}, \mathrm{v}_{2} \in$ U and $\beta, \gamma \in \Gamma$
We note that
$\left[\mathrm{u}_{1} \beta\left(\mathrm{v}_{1}-\mathrm{v}_{1}{ }^{\mathrm{T}}\right), \mathrm{u}_{2} \gamma\left(\mathrm{v}_{2}-\mathrm{v}_{2}{ }^{\mathrm{T}}\right)\right]_{\alpha}=\mathrm{u}_{1} \beta\left[\left(\mathrm{v}_{1}-\mathrm{v}_{1}{ }^{\mathrm{T}}\right), \mathrm{u} \gamma\left(\mathrm{v}_{2}-\right.\right.$
$\left.\left.\mathrm{v}_{2}{ }^{\mathrm{T}}\right)\right]_{\alpha}$
$+\left[\mathrm{u}_{1}, \mathrm{u}_{2} \gamma\left(\mathrm{v}_{2}-\mathrm{v}_{2}{ }^{\mathrm{T}}\right)\right]_{\alpha} \beta\left(\mathrm{v}_{1}-\mathrm{v}_{1}{ }^{\mathrm{T}}\right)$
$=\mathrm{u}_{1} \beta\left[\mathrm{v}_{1}-\mathrm{v}_{1}{ }^{\mathrm{T}}, \mathrm{u}_{2} \quad \begin{array}{rr}\left.\gamma \mathrm{v}_{2}\right]_{\alpha}-\mathrm{u}_{1} & \beta\left[\mathrm{v}_{1}-\mathrm{v}_{1}{ }^{\mathrm{T}}, \mathrm{u}_{2} \gamma \mathrm{v}_{2}{ }^{\mathrm{T}}\right]_{\alpha} \\ & {\left[\mathrm{u}_{1}, \mathrm{v}_{2}-\mathrm{v}_{2}\right]_{\alpha}}\end{array}\right.$
$\begin{array}{lll}+\mathrm{u}_{2} \gamma & {\left[\mathrm{u}_{1}, \mathrm{v}_{2}-\mathrm{v}_{2}{ }^{\mathrm{T}}\right]_{\alpha}} & \beta\left(\mathrm{v}_{1}-\mathrm{v}_{1}{ }^{\mathrm{T}}\right) \\ +\left[\mathrm{u}_{1}, \mathrm{u}_{2}\right]_{\alpha} \gamma\left(\mathrm{v}_{2}-\mathrm{v}_{2}{ }^{\mathrm{T}}\right) \beta\left(\mathrm{v}_{1}-\mathrm{v}_{1}{ }^{\mathrm{T}}\right) & \end{array}$
$+\left[\mathrm{u}_{1}, \mathrm{u}_{2}\right]_{\alpha} \gamma\left(\mathrm{v}_{2}-\mathrm{v}_{2}{ }^{\mathrm{T}}\right) \beta\left(\mathrm{v}_{1}-\mathrm{v}_{1}{ }^{\mathrm{T}}\right)$
$=0$
according to (4) and (6), V is commutative ideal so by Lemma 3.5, V is central left ideal of M .
Now if $V=(0)$ then $u \beta\left(v-v^{T}\right)=0$, for all $u, v \in$ U and $\beta \in \Gamma$, there for
$U \Gamma\left(y-y^{T}\right)=0 \quad$, for all $y \in U$.
Suppose that $\mathrm{F}=\left\{\mathrm{u} \in \mathrm{U} \mid \mathrm{u}^{\mathrm{T}}=\mathrm{u}\right\}$, then from (1) and (8) we can prove that $x \beta y+y \beta x \in F$ for all x, $y \in U, \beta \in \Gamma$.
Since $U \Gamma\left(y-y^{T}\right)=0, U \Gamma\left(x-x^{T}\right)=0$ and $x, x^{T}, y, y^{T} \in$ U , then

$$
\begin{aligned}
& x \beta y=x \beta y^{T} \ldots \text { (a) } \\
& y \beta x=y \beta x^{T} \ldots \text { (b) }
\end{aligned}
$$

but from (1) , we have $\left[x, y^{T}\right]_{\beta}=\left[x^{T}, y\right]_{\beta}$, therefore from (a) and (b), we get $x \beta y+y \beta x=x^{T} \beta y^{T}+y^{T} \beta x^{T}=(x \beta y+y \beta x)^{T}$.
Therefore
$x \beta y+y \beta x \in F$.
Now from (1) if $x \in F$ then $\left[\mathrm{x}, \mathrm{y}^{\mathrm{T}}\right]_{\alpha}=\left[\mathrm{x}^{\mathrm{T}}, \mathrm{y}\right]_{\alpha}=[\mathrm{x}, \mathrm{y}]_{\alpha} \quad$ for all $\mathrm{y} \in \mathrm{U}, \alpha \in \Gamma$ therefore $\left[\mathrm{x}, \mathrm{y}-\mathrm{y}^{\mathrm{T}}\right]_{\alpha}=0$ and $\left(\mathrm{y}-\mathrm{y}^{\mathrm{T}}\right) \alpha \mathrm{x}=\mathrm{x} \alpha\left(\mathrm{y}-\mathrm{y}^{\mathrm{T}}\right)$, but by (8) then
$\left(y-y^{T}\right) \alpha x=0$, for all $x \in F, y \in U$ and $\alpha \in \Gamma$.
Now from (9) then
$\left(y-y^{T}\right) \alpha(x \beta z+y \beta z)=0$ for all $x, y, z \in U$
therefore $\quad\left(y-y^{T}\right) \alpha x \beta z+\left(y-y^{T}\right) \alpha y \beta z=0$.
Then
$2(\mathrm{y}-\mathrm{y}) \Gamma \mathrm{U} \mathrm{U}=(0)$.
But U be a left ideal then $2\left(y-y^{T}\right) \Gamma U \Gamma M \Gamma U=(0)$ and $2(\mathrm{y}-\mathrm{y}) \Gamma \mathrm{U} \subset \mathrm{U}$ then
$\left(2\left(y-y^{T}\right) \Gamma \mathrm{U}\right) \Gamma \mathrm{M}\left(2\left(\mathrm{y}-\mathrm{y}^{\mathrm{T}}\right) \Gamma \mathrm{U}\right)=(0) \quad$, but M is a semi-prime Γ-ring then
$2(y-y) \Gamma U=(0)$ for all $y \in U$.
Since $T(U) \subset U$ then $y-y^{T} \in U \quad$ for all $y \in U$,now from (8), we get
$\left(y-y^{T}\right) \beta\left(y-y^{T}\right)=0 \quad$ for all $\beta \in \Gamma$.
$\begin{array}{ll}\text { Therefore } & \begin{array}{l}y^{T} \beta y^{T}=\left(y-\left(y-y^{T}\right)\right) \\ y^{T} \beta y^{T}\end{array}=y \beta y \quad\left(y-\left(y-y^{T}\right)\right) \\ \text { (according to }\end{array}$
(8),(a)and (14)).
then $y \beta y \in F$ for all $y \in U$ and $\beta \in \Gamma$.
In (11) replace x by $x \gamma x$ and z by $m \delta x$,for all $\gamma, \delta \in \Gamma$ and $m \in M$, we get
$0=\left(y-y^{T}\right) \alpha(x \gamma x) \beta m \delta x+\left(y-y^{T}\right) \alpha m \delta x \beta x \gamma x$
But if $x \in U$ then $x \gamma x \in F$ therefore from (10) we have
$\left(y-y^{T}\right) \alpha(x \gamma x) \beta m \delta x=0$
So that
$\left(y-y^{T}\right) \Gamma M \Gamma(x \Gamma)^{2} x=0$, for all $x, y \in U$
Now from definition of P then either
$\left(y-y^{T}\right) \in P_{i} \quad$ for all $y \in U \quad$ or
$(x \Gamma)^{2} x \in P_{i} \quad$ for all $x \in U$.
We say P_{i} is of type three if satisfy (a^{\prime})
We say P_{i} is of type four if satisfy (b^{\prime})
and $\quad P_{4}=\cap P_{i} \quad\left(P_{i}\right.$ is type four $)$
therefore $\quad P_{3} \cap P_{4}=(0)$
Since T is not identity on U then there exists $y \in$ U such that $y-y^{T} \neq 0$
let $0 \neq \tilde{U}=U \cap P_{3} \quad$ that \tilde{U} is left ideal.
For each $x \in \tilde{U}$ then $x \in U$ there for
$(x \Gamma)^{2} x_{\subset} P_{4} \quad$ but $P_{4} \cap P_{3} \cap U=(0)$ then
For all $x \in \tilde{U}^{\prime}$,then $(x \Gamma)^{2} x=0$ therefore $(\tilde{U} \Gamma)^{2} \tilde{U}=(0)$
,but M has no such left ideal by Definition 2.5 ,then $\mathrm{V} \neq 0$.

References

1. Nobusawa,N.1964.On
theGeneralization of the Ring Theory, Osaka J.Math.,1, 81-89.
2. Barnes,W. E. 1966. On the Γ-Rings of Nobusawa, Pacific J. Math., 18, 411422.

3．Kyuno，S．1978．On prime gamma rings，Pacific J．Math．，75（1），185－ 190.

4．Luh，J．1969．On the theory of simple Γ－rings，Michigan Math．J．，16，65－75．
5．Booth，G．L．1987．On the radicals of Γ_{N}－rings，Math．Japonica，32（3），357－ 372.

6．Mukherjee，T．K．and sen， M．K．，1987．On fuzzy ideals of a ring I， Fuzzy Sets and Systems 21（1），99－104．
7．Kyuno，S．1977．On the semi－simple gamma rings，Tohoku Math．J．，29， 217－225．
8．Mayne，J． 1984 ．Centralizing mappings of prime rings，Canad． Math．Bull．27，pp．122－126．
9．Bell ，H．E．and Martindale，W．S．． 1987．Centralizing mappings of semiprime rings，Canad．Math．Bull． 30，92－101．

