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Abstract
In this note we study the concept ¢ -lifting and we add some new results. Also
we introduce weak o -lifting modules and FI-0 -lifting modules as two
generalizations of o -lifting modules. We obtain some properties, characterizations
and decompositions of weak o -lifting modules and FI- ¢ -lifting modules.
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1. Introduction and preliminaries :
Throughout this paper, R is a ring with
identity and every R -module is unitary left
R-modules. Let M be an R-module, a
submodule A of M is called essential
(notation AcgM), if for every nonzero
submodule of M has a nonzero intersection
with A (see [1]). Let M be an R -module and
A be a submodule of M , then annihilator of
A (denoted by Ann(A)) is defined as follows

Ann(A) ={r e R| rA=0}, (see [2]).
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Let M be an  R-module, then
Z(M) ={xeM : Ann(A)c, R} is called the
singular submodule of M. If Z(M)=M,

then M is called the singular module. If
Z(M)=0 then M is called nonsingular

module, (see [1]). Let M be an R -module. A
submodule A of M is called c-singular

(AcM ) if % is a singular module.
C.S

Following Zhou [2], a submodule A of a
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module M is called a o -small submodule
of M (A<<sM), if M =A+B, for any
proper c-singular submodule Bof M. Let
sSM)=>{AcM|A is S -small
submodule of M} is the o -radical of M and
soc(M) will indicate the socle of M . Let M
be an R -module and let B and A submodules
of M such that Bc A<M, then B is
called a o -coessentail submodule of A in M

A

(BgsAin M ) if E<<5% following

Lomp [3], a submodule A of M is called
0 -coclosed submodule of M if X < A and

XcseA in M for some X c A, then

A=X. An R-module M is called an
projective R-module if given any
epimorphism f: A— Band any

homomorphism ¢g:M — B, there exists a

homomorphism h:M — A such that
hof =g.Let M be an R-module, then an

R -module P is called projective o -cover of

M, if P is projective and there exists
anepimorphism p:P—>M with
ker(p)<<sP, (see [2]).

Following Kosan [4], a module M is called

o -lifting if for every submodule A of M,
there exists a direct summand B of M such
that Bc; A in M. LetA and B be a

submodules of an R -module M . Recall that
B is called o -supplement of A in M, if

M=A+B, and ANnB<«<sB. If every
submodule of M has a O -supplement in
M, then M is called o -supplemented

module. Recall that a submodule A of M is
called fully invariant if f(A)c A for all
f e End(M). If every submodule of M is
fully invariant then M is called a duo-module.
In this note, as two generalizations of ¢ -lifting
modules we introduce weak o -lifting modules
and FI-o -lifting modules as follows. Any
module M is called weak ¢ -lifting, if for
each semisimple submodule A of M, there
exists a direct summand B of M such that
By Ain M. Any module M is called FI-

o -lifting, if for each fully invariant submodule
A of M, there exists a direct summand B of
M suchthat Bc; ,Ain M.
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We starting by the following lemmas which
one can easily prove it.

Lemma 1.1:
Let A be a submodule of any module M .
Then:
1. every submodule of a singular module is
c-singular.
2. If Ac M f:M—>N
epimorphism, then f(A)c N
3. If B (N f:M—>N is a

homomorphism, then f™*(B)c. M .

and is an

and

The following lemmas show the properties
of c-singular submodules.

Lemma 1.2:
Let A and B be submodules of an
R -module M .
1. f Ac, M and Bg, M, then
ANBc M.

2. If AcBand Ac (M ,then B M.
3. If Ac B, then AnX < BN X | for

any submodule X of M.

The following lemma shows some
properties of o -small submodules, which is
appear in [2].

Lemma 1.3:
Let M be a module.
1. Let A<<sM and M =A+B. Then

M = A® B, for projective semisimple
submodule Y of A.
2. If A<ccsM and f:M —>N is a

homomorphism, then f(A)<<sN. In
particular, if AcM < N, then A<<s;N.
3. Let AcM1c=M, Ac=cM, =M, and

M=M:®M,. Then
AP A<<sMi®PM, if and only if
A<<sMiand Ap<<sM >
4. If M =@\ jthen 6(M)=P(M)).
iel iel
The following lemma shows some

properties of o -coessential submodules, which
one can easily prove it.
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Lemma 1.4:
Let M be an R-module and let A,B,C

and submodules of M .

X B
1. Xcs.B in M ifand only if A S

A

in —.
A

2. If AcBcCc M. Then Ag,.C in
M if and only if Ac;,.B in M and
Bcs.CinM.

3. If Acs,.B in M and Xc;,.C inM,
then A+ X c;.B+C in M.

4. If Acs;,.BinM and f:M — N bean
epimorphism, then f(A)c;. f(B) in
N.

The following proposition gives some
properties of o -supplements.

Lemma 1.5:
Let A and B be submodules of an
R -module M such that B is ¢ -supplement
of A.then:
1. If M =X+B, for some submodule X
of A, then B is 6 -supplement of X .
2. IfC<c<sM, then B isa o -supplement

of A+C.

3. For any submodule Y of A, then
(B+Y) is a o -supplement of YA in
M
v

2. 0 -Lifting Modules
In this section we study the properties of
o0 -lifting modules. Also we add some new
results.
Lemma 2.1: [4]
The following are equivalent for a module
M :
1. M is ¢ -lifting.
2. For every submodule A in M, thereis a
decomposition M =M;® M, such that

M:c Aand ANM <<sM:-

3. Every submodule A of M can be written
as A=B®S, where B is a direct
summand of M and S<<;M .
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Proposition 2.2: [4]
Any direct summand of ¢ -lifting module is
o -lifting.

Definition 2.3:

Let M be an R-module. We say that M
satisfies the condition (o *), if for every direct

summands M; and M, of M with
M1 Mao<<sM , then MM, =0.
Lemma 2.4:

Let M be an R-module satisfies (0 *)
condition, then each direct summand of M
satisfies (O *) condition.

Proof: clear.

Proposition 2.5:

Let M be a ¢ -lifting module satisfies the
condition (0 *). If M, and M, are direct
summands of M, then M, M, is a direct
summand of M .

Proof:
Assume that M; M, #0. Since M is a

o -lifting module, then there is a submodule A
of Mi"M,. such that M =A®B and

(M1 M2) NB<<sB. Hence
(MinM2) "B<<sM, by lemma (1.2).
Claim that (M, B) and (M, " B) are direct

summand of B. By modular law . Since M
is a direct summand of M, then
Mi=M:"M =M;N(A®B)=A®S(M,NB)
(M1nB) is a direct summand of M
and hence (M1 B)is a direct summand of
B. Similarly, we have (M, B) is direct

summand of B. But M satisfies (0 *)
condition, therefore B satisfies (0 %)
condition, by lemma  (2.4).  Since

(MinB)N(M.NB)=(M:"M2) NB<<;B
then (M.B)~(M,"B)=0. Thus we get
(Mi"M2)"B=0. By modular law
(M1 M2) =M1 M) "M =(M:"M>)
N(A®B)=A®(M:"M,)"B=A. Thus
(M1M M) isadirect summand of M .

Theorem 2.6:



Shakir and Hamad

Let M be a o -lifting module. Then
M=MDPM,®P M3, where
1. M, issemisimple.
2. M, is o -lifting with 6(M,) o -small
and essential in M , .

3. Ms; is o -lifting  module  with
6(M3) = Ms.

Proof:
ClearlyM is ¢ -supplemented. By [4,

prop.2.13], we have a decomposition

M=M,®A where M; Iis semisimple
ando(A)c,A. So A is O -lifting, by
proposition (2.2). Hence A=M:DP M.,

where Ms;< 0(A) and S(A) "Mo<<sM -
But 5(A)NM,=M.N(5(M2) ®5(M3))=5(M>),

therefore  6(M.)<<sM . Now, since
O(A)=6(M2) ®(Ma) M2 ®Ms=A,  then
0(Mz)c.M,, by [5, prop. 5.20]. Since

M=ADM;=M:1DPM,DPMsj, then M, is
a direct summand of M. But M;< o(A),
therefore

Ms=M3z;NS(A) =M3sN(6(M2) @ 6(M3)) =
Ms:NS(M3) =S(Ma).

Proposition 2.7:
Let M =MD M, be a duo module such

that M, and M, are o -lifting modules. Then
M is o -lifting module.
Proof:

Assume that M =M, ©®M, be a duo
module and let A be a submodule of M , then
by assumption A is fully invariant, hence
A=(AnM) ®(ANM,). Since
M,and M, are o -lifting, there exists a
decompositions AN M; = A ® Az and
ANM,=An® Az where A;; is a direct
summand of M ,and A, is a direct summand of
M2 and Ap<<sMi and Ag<<s M. Then
A D@ A, is a direct summand of M and by
lemma (1.3), AP Ass<<sM . Thus M is
o -lifting.

Following [9], let M, and M, be R-modules,
then M, is M,-projective if for every
submodule A of M, and any homomorphism
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M,

f:|\/|l—>7 there is a homomorphism

g:M;:—> M-, such that zog=f, where

M
E:MZ%TZ

is the natural epimorphism.
Theorem 2.8:

Let M =M, ©M,, where M; be a o -
lifting module and let M, iS M;-projective.
Then:

1. M is ¢ -lifting module.
2. for every submodule A of M such that
M = A+ M,, there exists a direct

summand X of M suchthat X <5 A in
M

Proof:

@) = (2) Clear.

(2) = (1) Let A be a submodule of M such
that M=A+M,. Since M, is
M ;-projective, then there exists a submodule
AcCA such that M= A®M;,
by [6, 41.14]. But M, is o -lifting and
M_ATM:i. M M., by (the
A A AN M1

. . M .
second isomorphism theorem), therefore — is

- ) . X
o -lifting, so there exists a direct summand —

M M
of ", such that %gmﬁ in ", - Hence
XcseA in M, by lemma (1.4). Now,
X=XN"M=XN(ADM)=ADP(X M),
by modular law. But % is a direct summand
A® (X My
Au
AL©® M,
A
direct summand of M,, by (the second

isomorphism theorem). Let
M:=(X M) @Y, for some submodule Y
of M. Thus
M=APM;=ADLX A M)BY =XDY
and hence M is o -lifting module.

M

A

of S0 is a direct

summand of Hence X M, is a



Shakir and Hamad

Proposition 2.9:

Let R be a ring. If R iso -lifting, then
every cyclic R-module M has a projective
O -cover.

Proof:

Assume that M = Ra, for some ae M . By

(the first isomorphism theorem),
R

~Ra. One can easy to show that
ker(o)
ker(p) = Ann(a). Now, put A= Ann(a).

Since R is ¢ -lifting, then there exists an ideal
A, of R such thatA/Cc A, R=AP A,

and AnAr<<sA,. Let n:R—)% be the

natural epimorphism. Clearly that

”lAz:AZ_)% is an epimorphism and

ker(7z|A2) = ANAr<<s Ao - So

) R . I R
7z|AZ A A is a projective o -cover of a

Thus M has a projective o -cover.
Theorem 2.10:

Let M, and M, be ¢ -lifting modules
such that M; is M j-projective (i, j=12).
Then M =M, ® M, is J -lifting.

Proof:

Let A be a submodule of M . Consider the
submodule M. (A+M,) of M,. Since

M is O -lifting, there exists decomposition
M:= A @D B; such that AcM;N(A+My)
and [M1"(A+M,) " Bi]l<<sB:. Therefore
M=M®OM.=A®PBOM,=A+(M.®B).

Since M,"N(A+B)c< M, and , s
O -lifting, there exists a decomposition
M.=A®B, such that A,cA+B;
and

BoN (M2 (A+B)) =B, N (A+B) <<sBo

we have M=A+(B®M,)=A+(B.PB,)-
So M =(ADPA)DP(B.DB,). Since M; is
M j-projective, then A D A, is B, @ B,-
projective, by [7, prop.2-1-6, 2-1-7]. Then there
exists Y < A such that M =Y @ (B, ® B,),
by [6, 41.14]. Since B, (A+M,) <<sB; and
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B. N (A+B,)) <<5B:>, then
[BiN(A+M2) @ BN (A+B)l<<sB1®PB:.
But AN(B,®B,) c(B,N(A+By))®(B.N(A+BY)),
therefore AN (B, @ By) <<sBi®B,. Thus
M is o -lifting module.
Corollary 2.11:

Let M be a projective R -module such that
M =@Mmi- Then M is & -lifting if and only

iel
if M; is o -lifting (i1=1,...,n).
Proof:

By proposition (2.2), M; is o -lifting for
each (i=1,...,n). Conversely, assume that each
M; (i=1...,n) is o -lifting modules. Hence
each of M;is O -supplemented for each
(i=1...,n). Then by [8, propo.3.2] M is
O -supplemented. But M is projective,

therefore M is 0o -lifting module, by [4,
propo.3.5].

3. weak ¢ -lifting modules
We introduce the concept of weak ¢ -lifting
with example and basic properties.

Examples 3.1:

Clearly Z as a Z -module is w-¢ -lifting,
since Z has no semisimple submodule but not
o -lifting.

Proposition 3.2:
Every ring R is w-¢ -lifting.
Proof:

First, we show that SOC(R)<<s;R. Let
R=s0c(R)+I’ where | < (R, by [1, prop.1-20,
p.32], | <. R. Butsoc(R) is the intersection of
all essential ideal of R, therefore soc(R) < |

and hence R=1. Now, let J be a semisimple
ideal of R, then Jcsoc(R). But

S0C(R) <<s R, therefore J <<s;R. Thus R is
w- ¢ -lifting.
Proposition 3.3:

Let M be an R-module.
nonsingular, then M is w- 9 -lifting.

If M is

Proof:
Let A be a semisimple submodule of M .
Then Ac soc(M). Claim that A<<s;M , let

M=A+X where X, M, then X, M,
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by [1, prop.1.21, p.32]. Clearly
Acsoc(M)c X.Hence M =X .Thus M

is w- ¢ -lifting module.

Proposition 3.4:

Any direct summand of a w-9 -lifting
module is w- ¢ -lifting.
Proof:

Let X be a direct summand of M and let

A be a semisimple submodule of X, so
A c M . Then there exists a direct summand

B of M such that Ac B and Az, C in

M . Claim that % is O -coclosed submodule

of M let i be a submodule of é such that
A A A

Y X . M Y X
G N with ~Ces T
A A A A
Y . X, by (the third isomorphism theorem)
and Y 5. X in M, by lemma (1.4). But X

is direct summand of M, then X is
o -coclosed and Y <, X hence X =Y . Thus

Then

K is oO-coclosed in —  Since
B X M B X

— c — c —, therefore —<<5;— by lemma
A-A- A A< Y

(1.3). Thus X isw-0 -lifting.

Proposition 3.5:

The following statements are equivalent for
an R-module M :

1. M isw-0 -lifting.

2. For every semisimple submodule A in M
there is a decomposition  such that
M:< A and AnM,<<s M>.

3. Every semisimple submodule A of M
can be writtenas A=B@® S with B isa
direct summand of M and S<<;M .

Proof:
(@) = (2) let A be a semisimple submodule

of M, then there exists a direct summand
M: <A and M;cs;.A in M. Hence
M=M,® M, for some submodule M, of

M. By modular law
A=ANM =AM, ®M,) = M:® (AnM,)
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Now, let ¢ M —> M, be a map defined
1

by o((my +my) + M) =m;,, for all myeM;

and m, € M. Clearly that ¢ an isomorphism.

Since A<<5M, then (p(i)<<5|\/|2, by
M M

1 1 1

lemma  (1.3). But (p(i) =ANM;.
M1

(2) = (3) Let A be a semisimple submodule

of M, then by (2) there is a decomposition

M=M;©®M, such that M, A and
ANM,r<<sM>. By modular law
A=AnM=ANn(MiDM,) =M@ (ANM,).
(3)= () Let A be a semisimple submodule

of M. By (3 A can be written as
A=B®S, where B is a direct summand of
M and S<<;M . To show that B, A in

M, let 7:M —>% be the natural
epimorphism. Since S<<sM, then
7(S) = S;B :§<<5M , by lemma (1.3).

Thus M is w- 0 -lifting.

Following [10], an R -module M is called an
injective module if given any monomorphism
f:A—>Band any homomorphism

g:A—> M, there exists a homomorphism
h:B—M suchthat ho f =g.

Proposition 3.6:
Let M =M, ®M, be an R-module. If

M, is w-o -lifting and M, is injective
w- ¢ -lifting, then M is w- ¢ -lifting.
Proof:

Let A be a semisimple submodule of M .
Then A=(AnM,)®D A, for some

submodule A, of A. Hence by (the second
isomorphism theorem)
A+ M-,

Au
the

~_ M =M..
MM A

short

Now, consider

exact

A+tM: ' M 7 M/A
A AT ATM/ A

Where 1 is the inclusion map and 7 is the

natural epimorphism. By [6, 16.3], this short
exact sequence split. Let

sequence

0—
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M_ATM: g Ms ¢

A A A
Then M =A+M,+Ms=M,+ Msj. Since
M =M1®M2=M2®M3, then M3EM1
and hence M ; is w- ¢ -lifting module. So there
exists a direct summand Y of Mj such that
YcM;s and Yo, A in Ms. Now, since
ANM, is semisimple submodule of M,,
there exists a direct summand X of M, such
that X3 . ANM, in M,. It is clear that
X @Y is a direct summand of M . Now, let
fl:MeL and fz:MaL be
X X @Y Y XY
a maps defined follows
f.(M+X)=m+(X®Y) and
f,(m+Y)=m+(XDY). Since
AﬁMz M Ml M
= — and — —,
X <5 X Y << Y
f(,A\(\|\/|2):(AmM2)€r>Y - M
X X @Y X®Y
ADX M
Xoy ““Xev
_ AnM: @ A M
- <<§ ]
XeYy XaeY XaY XY
by lemma (1.3). Thus M is w-9 -lifting
module.

someMs;< M.

as

then

and

fz(;ﬂ): by lemma (1.3).

Hence

Proposition 3.7:
Let M =M, DM, be an R-module. If

M, is a w-0 -lifting module and M, is a
semisimple module, then M is w- o -lifting.
Proof:

Let A be a semisimple submodule of M .
By modular law

A+M;=(A+ M) N (M@ M,) = M ®[(A+ M) "M,
Since M, is semisimple then (A+My) M-
is a diect summand of M,. So
(A+My)NM, isadirect summand of M .
Therefore A+ M, is a direct summand of M .

Since A is semisimple, then there exists
submodule X of A such  that
A=(A+M)®X. Hence

A+M:=[(AnM) D X]+M;= X +M;. Now,
since M, is w-0 -lifting, then there exists a
direct summand B of M, such that
B (AMMy) in M; and hence
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B (AMMy) in M, by lemma (1.4).
Clearly B@ X is a direct summand
M.:@ X, since A+M;=XDM; and
A+ M, is a direct summand of M, then

B @ X isadirect summand of A.
A [(AnMy) @ X] M

Claim that = .
B X B® X B® X
Let M :[(Ali)@XL Y where
B®X B®X BdX

Y Ces M : Then
B®&X T"B®X
M =[(A+M)® X]+Y =(AnM)+Y and
hence M = M + i Since

B B B

Y Ces M , then Dby (the third
B®X " B®X
isomorphism theorem) Y <. .M and hence
Y M (AnMy)
—c,.—. But ——<«,—, therefore
Bgb.ce B B << B

M=Y. Thus B& X, , AB®X in M
and hence M is w- 9 -lifting.
Lemma 3.8:

Let M be a w-¢ -lifting module. Then
M=M,®M,, where M; is semisimple
module and M, is w-0 -lifting module with
s0C(M2) <<s M-

Proof:
Assume that M is w-0 -lifting. Since
soc(M) is semisimple submodule of M , then

there is a decomposition M =M, ® M, such
that M, < soc(M) and
M. soc(M) =soc(M,) <<s M - Thus
M is semisimple by [8, lemma3.1], and M,
is  w-0 -lifting.
Proposition 3.9:

Let M be an indecomposable and not

simple module. Then M is w- ¢ -lifting if and
only if soc(M)<<sM .

Proof:

Assume that soc(M) = 0. Since soc(M)

is semisimple submodule of M, then
soc(M)=A®S, where A is a direct

summand of M and S<<;M. But M is

indecomposable, therefore A=0. Thus
soc(M)<<sM . Conversely, assume that
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Soc(M)<<sM and let A be a semisimple
submodule of M. Clearly
Acsoc(M)<<;M, hence A<<;M, by
lemma (1.3). Thus M is w-¢ -lifting module.
Proposition 3.10:

Let P be a projective module. Then the
following statements are equivalent:

1. P isw-0¢ -lifting.
2. For every semisimple submodule p of P,

% has a projective o -cover.

Proof:
D = (2) Let A is a semisimple submodule

of P . Then there exists a submodule X of A
such that P=X @Y, for some Y < P and
ANY <<sY . Now, consider the following short
exact sequence:

M

Where i is the inclusion map and 7 be the

natural epimorphism. By (the second
. . P A+Y Y
isomorphism theorem), —= x—
A AnY
Since P is projective and Y is a direct

summand of M, then Y is projective. But
ker(z) = ANY <<sY, therefore Y is a

projective O -cover of Since

ANnY

E x L Thus E has a projective o -cover.
A ANnY A
(2) = (1) let A be a semisimple submodule

of P and let ﬂ':P—)% be the natural

epimorphism. By (2), % has a projective

O -cover. Thus by [2, lemma 2-3], there exists
a decomposition P=p,@®p, such that

P . I
7r|P2:P2—>K is a projective o -cover and
P, < ker(xz). This implies that p, < A and
ker(ﬁ|P):Am P,<<sP,. Thus P s
w- o -lifting module.

Proposition 3.11:
Let P be a projective module with
0(P)<<sP. ThenP is w-¢ -lifting if and only
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if for every semisimple submodule X of P,
there exists a direct summand A of P such
that X = A (where X = X +5(P)/5(P)).
Proof:

Assume that X is a semisimple submodule
of P. Then X = A®S, where A is a direct
summand of P and S<<sP.
So Sco(P) and hence
X+0(P)=A+A+6(P)=A+6(P). Thus
X =A. Conversely, let X be a semisimple
submodule of P, then there exists a direct
summand A of P such that X = A. Let
P=A®B for some BcP. Since

P _A+4(P) o B+6(P) _ X+4(P) ® B+d(P)
o(P)  o(P) o(P) o(P) o(P)
then P=X +B+06(P). Since 6(P)<<sP,
then by lemma (1.3), P=(X+B)®Y for
projective semisimple submodule Y of &(P).
By modular law
X+B=(X+B)nP=(X+B)n(A®B)=((X +B)nA)®B.
Since P is projective, then X +B is
projective and hence X + B is B -projctive,
by [9, p68]. So (X+B)mA is
B -projective by [7, prop.2-1-6]. So there exists
X, X such that @ by [6, 41.14]. So
P=(X+B)®Y =x,®B®Y . Now,
XNBAY)c X Nn(B+5(P)) c 5(P)<<;sP,
hence XN(B®Y)<<;P. Thus P is w-¢ -

lifting module.
Following [9], an R-module M is called
quasi-projective if M is M -projective.

Theorem 3.12:
Let M be quasi-projective module. Then

the following statements are equivalent:

1. M isw-0 -lifting.

2. Every semisimple submodule p of M has
a o -supplement which is a direct
summand.

Proof:
(@) = (2) Let p be a semisimple submodule

of M, then there is a decomposition
M=M,®M, such that M,<A and

ANM,<<sM,. Clearly M =A+M,, then
M isa o -supplement of A in M whichis a
direct summand. (2) = (1) Assume that every
semisimple submodule has a ¢ -supplement



Shakir and Hamad

which is a direct summand and let A is a
semisimple submodule of M , then there exists
a direct summand Bof M such that
M=B®B,=B+A and AnB««B for

some submodule B, of M. Let
B
‘M —>—— where =Qor and
4 AFB y=¢
.M —>% be the natural epimorphism

andgo:Mai be an isomorphism and let
A  AnB

a:B —>i be an epimorphism. Now, since
ANnB

M is M -projective, then by [7, prop.2-1-5]
M is B -projective and hence there exists a
homomorphism h:M — B such that w =aoh.

Soaoh(M)=goz(M),  a(h(M))=p(z(M)),
M:i, therefore h(M)=B. Thus h
AnB ANnB
is epimorphism. Since B is M -projective, by
[7, pro.2-1-6], then h is split by [7, pro.2-1-8].

Hence there exists a homomorphism
g:B—>M such that hog=1z. By [10,
coro.3-4-10], M =ker(h)®1Im(g).

ker(h) < A. Clearly AnIm(g)=g(AnB).
Since ANB«<«;B, then

9(ANB) = AnIm(g)<<;1m(g). by
lemma (1.3). Thus M is w-¢ -lifting module.

4. FIl-¢ -lifting modules
We introduce the concept of FI-¢ -lifting
with example and some basic properties.

Example 4.1:

Consider the Z-module M=7;®7Z,.
One can easy show that M is FI- ¢ -lifting, but
not o -lifting.

Proposition 4.2:

The following statements are equivalent for

an R -module M .

1. M isFI-¢ -lifting module.

2. Every fully invariant submodule A in M
can be writtenas A=X @®S with X isa
direct summand of M and S<<;M .

3. Every fully invariant submodule A of M
can be writtenas A= X +S with X isa
direct summand of M and S<<;M .
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Proof:

@D=(2) Let A is a fully invariant
submodule of M , then there exists a direct
summand X of M suchthat Y —; ,Ain M.
So M=X®X,, for some X,cM. By
modular law
A=AnM =AN(XDS X)=XD(ANXy).

To show  that AN Xi<<s X1s let
X:=(ANXy)+Y where Y. X;, then
M =A+Y . Now, M:A+i, by (the
X X X
isomorphism theorems)
M/X = M =X@X1;ﬁ. Since
Y+X/X Y+X Y+X Y
Y S X1 then ity gc.s% But
A M .
—<<s—, therefore M =Y+ X . Since
X <<s X

M=X+X, and Y < X;, then Y = X,. let
S=ANnX,;. Thus A=X®S, where X isa
direct summand of M and S<<;M.
(2) = (3) Clear. (3) = (1) Let p be a fully
invariant submodule of M . Then A= X +S,

where X is a direct summand of M and
S<<sM. So M=X®Y for someY cM.

Since Y isa o -supplement of X in M and
S<<sM, then Y is a o -supplement of

X+S=A in M, by lemma (1.5). Hence
M =A+Y and ANY<<Y. To show that

XcseAIn M, let p:Y —>% be a map

defined by ¢@(y)=y+ X. Clearly ¢ is an
isomorphism.  Since ANY <<Y, then

o(ANY) =§<<5% by lemma (1.3). Thus M
is FI- o -lifting module.

Theorem 4.3:

The following statements are equivalent for an

R -module M .

1. M isFI-¢ -lifting module.

2. Every fully invariant submodule A of M
has a o —supplement B in M such that
ANB isadirect summand in A.
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Proposition 4.4:

Let M be FI-0 -lifting R -module and A
be a fully invariant direct summand of M,
then A is FI- ¢ -lifting.

Proof:

Suppose that M =A@ B is FI-¢ -lifting
module where A is a fully invariant
submodule of M. Now, let X be a fully
invariant submodule of A, so X is a fully
invariant submodule of M , by [11, lemma2.1].
Then X =Y®S, where Y s a direct
summand of M and S<<sM and hence
S<<sA and clearly Y is adirect summand of

A.Thus A is Fl-0 -lifting.
Proposition 4.5:
Let M be an indecomposable R -module.

If M is FI-o -lifting, then for every fully
invariant submodule A of M, 6(A)<<; M.

Proof:
Let A be a fully invariant submodule of
M . Since 6(A) is a fully invariant submodule

of A, then 6(A) is a fully invariant

submodule of M, by [11, lemma 2.1]. Hence
O(A)=B®S, where B is a direct summand

of M and S<<sM. But M is an

indecomposable, therefore B =0. Thus
O(A)=S and hence 6(M) <<sM .

Theorem 4.6:
Let M=@\m; be a direct sum of
iel
Fl- 0 -lifting modules. Then M is
o -lifting.

FI-

Proof:
Let A be fully invariant submodule of M ,

then A:@(Aml\/li) and A~M; is a fully
iel

invariant submodule of M;, by [11,

lemma 2.1]. Since each of M; is FI-o -

lifting, then A~NMi= X;DS;, where X; is a

direct summand of M; and Si<<sM,;. Let

X=@xjand S=@s;j. Itis clear that X
iel iel

is a direct summand of M and S <<;M .
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Proposition 4.7:

Let M be FI- ¢ -lifting module satisfies the
condition (0 *). If M, and M, are fully
invariant direct summands of M, then
(M, M) is adirect summand of M .

Proof:
Assume that M; "M, # 0. Since M, and

M, are fully invariant, then M; M, fully
invariant, by [11, lemma 2.1]. Now, since M
is Fl-0 -lifting module, then there exists a
submodule X of M such  that
M=(M,N"M)+X, (MNM)NX<<sX,
hence (M;NM;)NX<<sM, by lemma
(1.3)and (M;AMy) =[(M;AM)NX]®Y, for
some Y <(M,NM,), by theorem (3.13).
Clearly M =X ®Y. Claim that (M, X)
and (M, X) are direct summand of X . By

modular
law

Mi=M:iM =M N(XBY) =(M N X) DY .
Since M, is a direct summand of M , then
(M;nX) is a direct summand of M and
hence (M, X) is a direct summand of X .
Similarly, we have (M.MX) is direct
summand of X . But M satisfies (o *)
condition, therefore X satisfies (0 %)
condition, by lemma  (2.4).  Since
M AX)N (M2 X)=(M,AM) N X<<s X,
then (M;NX)N(M,NX)=0. Thus we get
(M,AM,)nX=0. By modular law
(M;AM2) =(M;AM) M =(M;AM )N (X @Y)
(M,"AM2)NX)DPY =Y. Thus
(M, M) is adirect summand of M .

Proposition 4.8:
Let P be a projective module. Then the
following statements are equivalent:

1. P isFI-o -lifting module.
2. For every fully invariant submodule A of

P, % has a projective o -cover.

Proof:
@D =(2) Let A be a fully invariant

submodule of P. Then A= X @S, where X
is a direct summand of P and S<<;P. So



Shakir and Hamad

P=X®&Y, for some Y < P. By modular
law  A=ANnP=AX®Y)=X®(ANY).

Now, let x:P —>§ be the natural
epimorphism. Since S << P, then
S+X A P
7(S =—<<5—.
() Ty <O
Let f :E—> P :E be an epimorphism.
S+X A
One can easily show that
A P P
ker =—<<s—. Thus — has a
(¢ly) X <Y

projective o -cover. (2)= (1) Let A be a

submodule of P and let x: P—>% be the
. . P
natural epimorphism and let ¢ : M _)K be a

I P
projective o -cover of K for every fully

invariant submodule A of M. Then by
[11, lemma 2-1], there exists a decomposition

P=X@®&Y such that go|X:X—>E is a

A
projective o -cover andY < ker(¢), this
implies that YCA and
ker(gly) = ANX<<s X <P, then

AN X <<sP. Thus P isFl-0 -lifting.
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