

SOME GENERALIZATIONS ON δ-LIFTING MODULES

Sarah Shakir , Bahar Hamad

sarahshakir_87@yahoo.com
Department of math. ,College of science, University of Baghdad . Baghdad-Iraq

Abstract

In this note we study the concept δ-lifting and we add some new results. Also we introduce weak δ-lifting modules and FI- δ-lifting modules as two generalizations of δ-lifting modules. We obtain some properties, characterizations and decompositions of weak δ-lifting modules and FI- δ-lifting modules.

Keywords: c-singular submodule, δ-small submodule, δ-lifting module, FI- δ lifting module, weak δ-lifting module

في هذا البحث ندرس مفهوم مقاسات الرفع من الصنف(δ) وأضفنا بعض النتائج الجدية. كذلك قدمنا

) والمقاسات من الصنف((FI-)).
الكلمات المفتاحية:مقاس جزئي شاذ من الصنف(c)، مقاس جزئي صغير من الصنف(((δ)،مقاسات الرفع من

1. Introduction and preliminaries :

Throughout this paper, R is a ring with identity and every R-module is unitary left R-modules. Let M be an R-module, a submodule A of M is called essential (notation $A \subseteq_{e} M$), if for every nonzero submodule of M has a nonzero intersection with A (see [1]). Let M be an R-module and A be a submodule of M, then annihilator of A (denoted by $\operatorname{Ann}(A))$ is defined as follows $\operatorname{Ann}(A)=\{r \in R \mid r A=0\}, \quad$ (see $\quad[1]$).

Let M be an R-module, then $Z(M)=\left\{x \in M: \operatorname{Ann}(A) \subseteq_{e} R\right\}$ is called the singular submodule of M. If $Z(M)=M$, then M is called the singular module. If $Z(M)=0$ then M is called nonsingular module, (see [1]). Let M be an R-module. A submodule A of M is called c-singular ($A \underset{c . s}{\subseteq} M$) if $\frac{M}{A}$ is a singular module. Following Zhou [2], a submodule A of a
module M is called a $\quad \delta$-small submodule of $M\left(A \ll_{\delta} M\right)$, if $M \neq A+B$, for any proper c-singular submodule B of M. Let $\delta(M)=\sum\{A \subseteq M \mid A \quad$ is $\quad \delta$-small submodule of $M\}$ is the δ-radical of M and $\operatorname{soc}(M)$ will indicate the socle of M. Let M be an R-module and let B and A submodules of M such that $B \subseteq A \subseteq M$, then B is called a δ-coessentail submodule of A in M $\left(B \subseteq_{\delta . c e} A\right.$ in M) if $\frac{A}{B} \ll \delta \frac{M}{B}$ following Lomp [3], a submodule A of M is called δ-coclosed submodule of M if $X \subseteq_{c . s} A$ and $X \subseteq_{\delta . c e} A$ in M for some $X \subseteq A$, then $A=X$. An R-module M is called an projective R-module if given any epimorphism $\quad f: A \rightarrow B$ and any homomorphism $g: M \rightarrow B$, there exists a homomorphism $\quad h: M \rightarrow A$ such that $h \circ f=g$. Let M be an R-module, then an R-module P is called projective δ-cover of M, if P is projective and there exists anepimorphism $\quad \varphi: P \rightarrow M \quad$ with $\operatorname{ker}(\varphi) \ll_{\delta} P$, (see [2]).
Following Kosan [4], a module M is called δ-lifting if for every submodule A of M, there exists a direct summand B of M such that $B \subseteq_{\delta . c e} A$ in M. Let A and B be a submodules of an R-module M. Recall that B is called δ-supplement of A in M, if $M=A+B$, and $A \cap B \ll_{\delta} B$. If every submodule of M has a δ-supplement in M, then M is called δ-supplemented module. Recall that a submodule A of M is called fully invariant if $f(A) \subseteq A$ for all $f \in \operatorname{End}(M)$. If every submodule of M is fully invariant then M is called a duo-module. In this note, as two generalizations of δ-lifting modules we introduce weak δ-lifting modules and $\mathrm{FI}-\delta$-lifting modules as follows. Any module M is called weak δ-lifting, if for each semisimple submodule A of M, there exists a direct summand B of M such that $B \subseteq_{\text {o.ce }} A$ in M. Any module M is called FI-δ-lifting, if for each fully invariant submodule A of M, there exists a direct summand B of M such that $B \subseteq_{\delta . c e} A$ in M.

We starting by the following lemmas which one can easily prove it.

Lemma 1.1:

Let A be a submodule of any module M. Then:

1. every submodule of a singular module is c-singular.
2. If $A \subseteq_{c . s} M$ and $f: M \rightarrow N$ is an epimorphism, then $f(A) \subseteq_{c . S} N$.
3. If $B \subseteq_{c . s} N$ and $f: M \rightarrow N$ is a homomorphism, then $f^{-1}(B) \subseteq_{C . S} M$.

The following lemmas show the properties of c -singular submodules.

Lemma 1.2:

Let A and B be submodules of an R-module M.

1. If $A \subseteq_{c . s} M$ and $B \subseteq_{c . s} M$, then $A \cap B \subseteq_{c . s} M$.
2. If $A \subseteq B$ and $A \subseteq_{c . s} M$, then $B \subseteq_{c . s} M$.
3. If $A \subseteq_{c . s} B$, then $A \cap X \subseteq_{c . s} B \cap X$, for any submodule X of M.

The following lemma shows some properties of δ-small submodules, which is appear in [2].

Lemma 1.3:

Let M be a module.

1. Let $A<{ }_{\delta} M$ and $M=A+B$. Then $M=A \oplus B$, for projective semisimple submodule Y of A.
2. If $A \ll_{\delta} M$ and $f: M \rightarrow N$ is a homomorphism, then $f(A) \ll_{\delta} N$. In particular, if $A \subseteq M \subseteq N$, then $A \ll_{\delta} N$.
3. Let $A_{1} \subseteq M_{1} \subseteq M, A_{2} \subseteq M_{2} \subseteq M$, and $M=M_{1} \oplus M_{2}$. Then $A_{1} \oplus A_{2} \ll_{\delta} M_{1} \oplus M_{2}$ if and only if $A_{1} \ll_{\delta} M_{1}$ and $A_{2} \ll_{\delta} M_{2}$.
4. If $M=\bigoplus_{i \in I} M_{i}$ then $\delta(M)=\bigoplus_{i \in I} \delta\left(M_{i}\right)$.

The following lemma shows some properties of δ-coessential submodules, which one can easily prove it.

Lemma 1.4:

Let M be an R-module and let A, B, C and submodules of M.

1. $X \subseteq_{\delta . c e} B$ in M if and only if $\frac{X}{A} \subseteq_{\delta . c e} \frac{B}{A}$ in $\frac{M}{A}$.
2. If $A \subseteq B \subseteq C \subseteq M$. Then $A \subseteq_{\delta . c e} C$ in M if and only if $A_{\subseteq_{\delta . c e}} B$ in M and $B \subseteq_{\delta . c e} C$ in M.
3. If $A \subseteq_{\delta . c e} B$ in M and $X \subseteq_{\delta . c e} C$ in M, then $A+X \subseteq_{\delta . c e} B+C$ in M.
4. If $A_{\subseteq_{\delta . c e}} B$ in M and $f: M \rightarrow N$ be an epimorphism, then $f(A) \subseteq_{\delta . c e} f(B)$ in N.

The following proposition gives some properties of δ-supplements.

Lemma 1.5:

Let A and B be submodules of an R-module M such that B is δ-supplement of A. then:

1. If $M=X+B$, for some submodule X of A, then B is δ-supplement of X.
2. If $C \ll_{\delta} M$, then B is a δ-supplement of $A+C$.
3. For any submodule Y of A, then $\frac{(B+Y)}{Y}$ is a δ-supplement of $\frac{A}{Y}$ in $\frac{M}{Y}$.

2. δ-Lifting Modules

In this section we study the properties of δ-lifting modules. Also we add some new results.

Lemma 2.1: [4]

The following are equivalent for a module M :

1. $\quad M$ is δ-lifting.
2. For every submodule A in M, there is a decomposition $M=M_{1} \oplus M_{2}$ such that $M_{1} \subseteq A$ and $A \cap M_{2} \ll_{\delta} M_{2}$.
3. Every submodule A of M can be written as $A=B \oplus S$, where B is a direct summand of M and $S<{ }_{\delta} M$.

Proposition 2.2: [4]
Any direct summand of δ-lifting module is δ-lifting.

Definition 2.3:

Let M be an R-module. We say that M satisfies the condition $(\delta *)$, if for every direct summands M_{1} and M_{2} of M with $M_{1} \cap M_{2} \ll_{\delta} M$, then $M_{1} \cap M_{2}=0$.

Lemma 2.4:

Let M be an R-module satisfies $(\delta *)$ condition, then each direct summand of M satisfies $(\delta *)$ condition.

Proof: clear.

Proposition 2.5:

Let M be a δ-lifting module satisfies the condition $(\delta *)$. If M_{1} and M_{2} are direct summands of M, then $M_{1} \cap M_{2}$ is a direct summand of M.

Proof:

Assume that $M_{1} \cap M_{2} \neq 0$. Since M is a δ-lifting module, then there is a submodule A of $M_{1} \cap M_{2}$. such that $M=A \oplus B$ and $\left(M_{1} \cap M_{2}\right) \cap B<{ }_{\delta} B . \quad$ Hence $\left(M_{1} \cap M_{2}\right) \cap B \ll_{\delta} M, \quad$ by lemma (1.2). Claim that $\left(M_{1} \cap B\right)$ and $\left(M_{2} \cap B\right)$ are direct summand of B. By modular law . Since M_{1} is a direct summand of M, then $M_{1}=M_{1} \cap M=M_{1} \cap(A \oplus B)=A \oplus\left(M_{1} \cap B\right)$ $\left(M_{1} \cap B\right) \quad$ is a direct summand of M and hence $\left(M_{1} \cap B\right)$ is a direct summand of B. Similarly, we have $\left(M_{2} \cap B\right)$ is direct summand of B. But M satisfies $\left(\delta^{*}\right)$ condition, therefore B satisfies $(\delta *)$ condition, by lemma (2.4). Since $\left(M_{1} \cap B\right) \cap\left(M_{2} \cap B\right)=\left(M_{1} \cap M_{2}\right) \cap B \ll{ }_{\delta} B$ then $\left(M_{1} \cap B\right) \cap\left(M_{2} \cap B\right)=0$. Thus we get $\left(M_{1} \cap M_{2}\right) \cap B=0$. By modular law $\left(M_{1} \cap M_{2}\right)=\left(M_{1} \cap M_{2}\right) \cap M=\left(M_{1} \cap M_{2}\right)$ $\cap(A \oplus B)=A \oplus\left(M_{1} \cap M_{2}\right) \cap B=A$. Thus $\left(M_{1} \cap M_{2}\right)$ is a direct summand of M.

Theorem 2.6:

Let M be a δ-lifting module. Then $M=M_{1} \oplus M_{2} \oplus M_{3}$, where

1. M_{1} is semisimple.
2. M_{2} is δ-lifting with $\delta\left(M_{2}\right) \delta$-small and essential in M_{2}.
3. M_{3} is δ-lifting module with $\delta\left(M_{3}\right)=M_{3}$.

Proof:

Clearly $M \quad$ is δ-supplemented. By [4, prop.2.13], we have a decomposition $M=M_{1} \oplus A \quad$ where $\quad M_{1} \quad$ is semisimple and $\delta(A) \subseteq_{e} A$. So $\quad A \quad$ is δ-lifting, by proposition (2.2). Hence $A=M_{1} \oplus M_{2}$, where $M_{3} \subseteq \delta(A)$ and $\delta(A) \cap M_{2} \ll_{\delta} M_{2}$. But $\delta(A) \cap M_{2}=M_{2} \cap\left(\delta\left(M_{2}\right) \oplus \delta\left(M_{3}\right)\right)=\delta\left(M_{2}\right)$, therefore $\delta\left(M_{2}\right) \ll{ }_{\delta} M$. Now, since $\delta(A)=\delta\left(M_{2}\right) \oplus \delta\left(M_{3}\right) \subseteq_{e} M_{2} \oplus M_{3}=A, \quad$ then $\delta\left(M_{2}\right) \subseteq_{e} M_{2}$, by [5, prop. 5.20]. Since $M=A \oplus M_{1}=M_{1} \oplus M_{2} \oplus M_{3}$, then M_{3} is a direct summand of M. But $M_{3} \subseteq \delta(A)$, therefore
$M_{3}=M_{3} \cap \delta(A)=M_{3} \cap\left(\delta\left(M_{2}\right) \oplus \delta\left(M_{3}\right)\right)=$ $M_{3} \cap \delta\left(M_{3}\right)=\delta\left(M_{3}\right)$.

Proposition 2.7:

Let $M=M_{1} \oplus M_{2}$ be a duo module such that M_{1} and M_{2} are δ-lifting modules. Then M is δ-lifting module.

Proof:

Assume that $M=M_{1} \oplus M_{2}$ be a duo module and let A be a submodule of M, then by assumption A is fully invariant, hence $A=\left(A \cap M_{1}\right) \oplus\left(A \cap M_{2}\right) . \quad$ Since M_{1} and M_{2} are δ-lifting, there exists a decompositions $A \cap M_{1}=A_{11} \oplus A_{12} \quad$ and $A \cap M_{2}=A_{21} \oplus A_{22}$, where A_{11} is a direct summand of M_{1} and A_{21} is a direct summand of M_{2} and $A_{12} \ll_{\delta} M_{1}$ and $A_{22} \ll_{\delta} M_{2}$. Then $A_{11} \oplus A_{21}$ is a direct summand of M and by lemma (1.3), $A_{12} \oplus A_{22} \ll \delta M$. Thus M is δ-lifting.

Following [9], let M_{1} and M_{2} be R-modules, then M_{1} is M_{2}-projective if for every submodule A of M_{2} and any homomorphism
$f: M_{1} \rightarrow \frac{M_{2}}{A}$ there is a homomorphism $g: M_{1} \rightarrow M_{2}$ such that $\pi \circ g=f$, where $\pi: M_{2} \rightarrow \frac{M_{2}}{A}$ is the natural epimorphism.

Theorem 2.8:

Let $M=M_{1} \oplus M_{2}$, where M_{1} be a δ lifting module and let M_{2} is M_{1}-projective. Then:

1. M is δ-lifting module.
2. for every submodule A of M such that $M \neq A+M_{1}$, there exists a direct summand X of M such that $X \subseteq_{\delta . c e} A$ in M

Proof:

$(1) \Rightarrow(2)$ Clear.
(2) \Rightarrow (1) Let A be a submodule of M such that $\quad M=A+M_{1}$. Since $\quad M_{2} \quad$ is M_{1}-projective, then there exists a submodule $A_{1} \subseteq A \quad$ such \quad that $\quad M=A_{1} \oplus M_{1}$, by $[6,41.14]$. But M_{1} is δ-lifting and $\frac{M}{A_{1}}=\frac{A_{1}+M_{1}}{A_{1}} \cong \frac{M_{1}}{A_{1} \cap M_{1}} \cong M_{1}, \quad$ by \quad (the second isomorphism theorem), therefore $\frac{M}{A_{1}}$ is δ-lifting, so there exists a direct summand $\frac{X}{A_{1}}$ of $\frac{M}{A_{1}}$ such that $\frac{X}{A_{1}} \subseteq_{\delta . c e} \frac{A}{A_{1}}$ in $\frac{M}{A_{1}}$. Hence $X \subseteq_{\delta . c e} A$ in M, by lemma (1.4). Now, $X=X \cap M=X \cap\left(A_{1} \oplus M_{1}\right)=A_{1} \oplus\left(X \cap M_{1}\right)$, by modular law. But $\frac{X}{A_{1}}$ is a direct summand of $\frac{M}{A_{1}}$ so $\frac{A_{1} \oplus\left(X \cap M_{1}\right)}{A_{1}}$ is a direct summand of $\frac{A_{1} \oplus M_{1}}{A_{1}}$ Hence $X \cap M_{1}$ is a direct summand of M_{1}, by (the second isomorphism theorem). Let $M_{1}=\left(X \cap M_{1}\right) \oplus Y$, for some submodule Y of M. Thus $M=A_{1} \oplus M_{1}=A_{1} \oplus\left(X \cap M_{1}\right) \oplus Y=X \oplus Y$ and hence M is δ-lifting module.

Proposition 2.9:

Let R be a ring. If R is δ-lifting, then every cyclic R-module M has a projective δ-cover.

Proof:

Assume that $M=R a$, for some $a \in M$. By (the first isomorphism theorem), $\frac{R}{\operatorname{ker}(\varphi)} \cong R a$. One can easy to show that $\operatorname{ker}(\varphi)=\operatorname{Ann}(a) . \quad$ Now, put $A=\operatorname{Ann}(a)$. Since R is δ-lifting, then there exists an ideal A_{1} of R such that $A_{1} \subseteq A, \quad R==A_{1} \oplus A_{2}$ and $A \cap A_{2} \ll \delta A_{2}$. Let $\pi: R \rightarrow \frac{R}{A}$ be the natural epimorphism. Clearly that $\left.\pi\right|_{A_{2}}: A_{2} \rightarrow \frac{R}{A}$ is an epimorphism and $\operatorname{ker}\left(\left.\pi\right|_{A_{2}}\right)=A \cap A_{2} \ll_{\delta} A_{2}$. So $\left.\pi\right|_{A_{2}}: A_{2} \rightarrow \frac{R}{A}$ is a projective δ-cover of $\frac{R}{A}$. Thus M has a projective δ-cover.

Theorem 2.10:

Let M_{1} and M_{2} be δ-lifting modules such that M_{i} is M_{j}-projective $(i, j=1,2)$. Then $M=M_{1} \oplus M_{2}$ is δ-lifting.

Proof:

Let A be a submodule of M. Consider the submodule $\quad M_{1} \cap\left(A+M_{2}\right)$ of M_{1}. Since M_{1} is δ-lifting, there exists decomposition $M_{1}=A_{1} \oplus B_{1}$ such that $A_{1} \subseteq M_{1} \cap\left(A+M_{2}\right)$ and $\left[M_{1} \cap\left(A+M_{2}\right) \cap B_{1}\right] \ll_{\delta} B_{1}$. Therefore $M=M_{1} \oplus M_{2}=A_{1} \oplus B_{1} \oplus M_{2}=A+\left(M_{2} \oplus B_{1}\right)$. Since $\quad M_{2} \cap\left(A+B_{1}\right) \subseteq M_{2} \quad$ and $\quad M_{2} \quad$ is δ-lifting, there exists a decomposition $M_{2}=A_{2} \oplus B_{2} \quad$ such that $\quad A_{2} \subseteq A+B_{1}$ and
$B_{2} \cap\left(M_{2} \cap\left(A+B_{1}\right)\right)=B_{2} \cap\left(A+B_{1}\right) \ll_{\delta} B_{2}$, we have $M=A+\left(B_{1} \oplus M_{2}\right)=A+\left(B_{1} \oplus B_{2}\right)$. So $M=\left(A_{1} \oplus A_{2}\right) \oplus\left(B_{1} \oplus B_{2}\right)$. Since M_{i} is M_{j}-projective, then $A_{1} \oplus A_{2}$ is $B_{1} \oplus B_{2}$ projective, by [7, prop.2-1-6, 2-1-7]. Then there exists $Y \subseteq A$ such that $M=Y \oplus\left(B_{1} \oplus B_{2}\right)$, by [6, 41.14]. Since $B_{1} \cap\left(A+M_{2}\right) \ll_{\delta} B_{1}$ and
$B_{2} \cap\left(A+B_{1}\right) \ll_{\delta} B_{2}, \quad$ then
$\left[B_{1} \cap\left(A+M_{2}\right) \oplus B_{2} \cap\left(A+B_{1}\right)\right] \ll \delta B_{1} \oplus B_{2}$.
But $A \cap\left(B_{1} \oplus B_{2}\right) \subseteq\left(B_{1} \cap\left(A+B_{2}\right)\right) \oplus\left(B_{2} \cap\left(A+B_{1}\right)\right)$, therefore $A \cap\left(B_{1} \oplus B_{2}\right) \ll_{\delta} B_{1} \oplus B_{2}$. Thus M is δ-lifting module.

Corollary 2.11:

Let M be a projective R-module such that $M=\bigoplus_{i \in I} M_{i}$. Then M is δ-lifting if and only if M_{i} is δ-lifting $(i=1, \ldots, n)$.

Proof:

By proposition (2.2), M_{i} is δ-lifting for each $(i=1, \ldots, n)$. Conversely, assume that each $M_{i}(i=1, \ldots, n)$ is δ-lifting modules. Hence each of M_{i} is δ-supplemented for each $(i=1, \ldots, n)$. Then by [8, propo.3.2] M is δ-supplemented. But M is projective, therefore M is δ-lifting module, by [4, propo.3.5].

3. weak δ-lifting modules

We introduce the concept of weak δ-lifting with example and basic properties.

Examples 3.1:

Clearly Z as a Z-module is w - δ-lifting, since Z has no semisimple submodule but not δ-lifting.

Proposition 3.2:

Every ring R is w- δ-lifting.

Proof:

First, we show that $\operatorname{soc}(R) \ll{ }_{\delta} R$. Let $\mathrm{R}=\operatorname{soc}(\mathrm{R})+\mathrm{I}$, where $I \subseteq_{c . s} R$, by [1, prop.1-20, p.32], $I \subseteq_{e} R$. But $\operatorname{soc}(R)$ is the intersection of all essential ideal of R, therefore $\operatorname{soc}(R) \subseteq I$ and hence $R=I$. Now, let J be a semisimple ideal of R, then $J \subseteq \operatorname{soc}(R)$. But $\operatorname{soc}(R) \ll_{\delta} R$, therefore $J<{ }_{\delta} R$. Thus R is w- δ-lifting.

Proposition 3.3:

Let M be an R-module. If M is nonsingular, then M is w- δ-lifting.

Proof:

Let A be a semisimple submodule of M. Then $A \subseteq \operatorname{soc}(M)$. Claim that $A \ll{ }_{\delta} M$, let $M=A+X$ where $X \subseteq_{c . s} M$, then $X \subseteq_{e} M$,
by [1, prop.1.21, p.32]. Clearly $A \subseteq \operatorname{soc}(M) \subseteq X$. Hence $M=X$. Thus M is w- δ-lifting module.

Proposition 3.4:

Any direct summand of a w- δ-lifting module is w- δ-lifting.

Proof:

Let X be a direct summand of M and let A be a semisimple submodule of X, so $A \subseteq M$. Then there exists a direct summand B of M such that $A \subseteq B$ and $A \subseteq_{\delta . c e} C$ in M. Claim that $\frac{X}{A}$ is δ-coclosed submodule of $\frac{M}{A}$, let $\frac{Y}{A}$ be a submodule of $\frac{X}{A}$ such that $\frac{Y}{A} \subseteq_{\delta . c e} \frac{X}{A} \quad$ in $\quad \frac{M}{A} \quad$ with $\quad \frac{Y}{A} \subseteq_{c . s} \frac{X}{A} \quad$ Then $Y \subseteq_{c . s} X$, by (the third isomorphism theorem) and $Y \subseteq_{\delta . c e} X$ in M, by lemma (1.4). But X is direct summand of M, then X is δ-coclosed and $Y \subseteq_{c . s} X$ hence $X=Y$. Thus $\frac{X}{A} \quad$ is $\quad \delta$-coclosed \quad in $\quad \frac{M}{A} \quad$ Since $\frac{B}{A} \subseteq \frac{X}{A} \subseteq \frac{M}{A}$, therefore $\frac{B}{A} \ll_{\delta} \frac{X}{A}$ by lemma (1.3). Thus X is w- δ-lifting.

Proposition 3.5:

The following statements are equivalent for an R-module M :

1. $\quad M$ is w- δ-lifting.
2. For every semisimple submodule A in M there is a decomposition such that $M_{1} \subseteq A$ and $A \cap M_{2} \ll_{\delta} M_{2}$.
3. Every semisimple submodule A of M can be written as $A=B \oplus S$ with B is a direct summand of M and $S \ll \delta M$.

Proof:

(1) \Rightarrow (2) let A be a semisimple submodule of M, then there exists a direct summand $M_{1} \subseteq A \quad$ and $\quad M_{1} \subseteq_{\delta . c e} A$ in M. Hence $M=M_{1} \oplus M_{2}$ for some submodule M_{2} of M By modular law $A=A \cap M=A \cap\left(M_{1} \oplus M_{2}\right)=M_{1} \oplus\left(A \cap M_{2}\right)$.

Now, let $\varphi: \frac{M}{M_{1}} \rightarrow M_{2}$ be a map defined by $\varphi\left(\left(m_{1}+m_{2}\right)+M_{1}\right)=m_{2}$, for all $m_{1} \in M_{1}$ and $m_{2} \in M_{2}$. Clearly that φ an isomorphism.
Since $\frac{A}{M_{1}} \ll_{\delta} \frac{M}{M_{1}}$, then $\varphi\left(\frac{A}{M_{1}}\right) \ll_{\delta} M_{2}$, by lemma (1.3). But $\varphi\left(\frac{A}{M_{1}}\right)=A \cap M_{2}$.
(2) \Rightarrow (3) Let A be a semisimple submodule of M, then by (2) there is a decomposition $M=M_{1} \oplus M_{2} \quad$ such that $\quad M_{1} \subseteq A \quad$ and $A \cap M_{2} \ll_{\delta} M_{2}$. By modular law $A=A \cap M=A \cap\left(M_{1} \oplus M_{2}\right)=M_{1} \oplus\left(A \cap M_{2}\right)$. (3) \Rightarrow (1) Let A be a semisimple submodule of M. By (3) A can be written as $A=B \oplus S$, where B is a direct summand of M and $S \ll_{\delta} M$. To show that $B \subseteq_{\delta . c e} A$ in M, \quad let $\pi: M \rightarrow \frac{M}{B}$ be the natural epimorphism. Since $S \ll_{\delta} M$, then $\pi(S)=\frac{S+B}{B}=\frac{A}{B} \ll{ }_{\delta} M$, by lemma (1.3). Thus M is w- δ-lifting.
Following [10], an R-module M is called an injective module if given any monomorphism $f: A \rightarrow B$ and any homomorphism $g: A \rightarrow M$, there exists a homomorphism $h: B \rightarrow M$ such that $h \circ f=g$.

Proposition 3.6:

Let $M=M_{1} \oplus M_{2}$ be an R-module. If M_{1} is w - δ-lifting and M_{2} is injective w- δ-lifting, then M is w- δ-lifting.

Proof:

Let A be a semisimple submodule of M. Then $\quad A=\left(A \cap M_{2}\right) \oplus A_{1}$, for some submodule A_{1} of A. Hence by (the second isomorphism theorem)
$\frac{A_{1}+M_{2}}{A_{1}} \cong \frac{M_{2}}{M_{2} \cap A_{1}} \cong M_{2}$. Now, consider the short exact sequence
$0 \rightarrow \frac{A_{1}+M_{2}}{A_{1}} \xrightarrow{i} \frac{M}{A_{1}} \xrightarrow{\pi} \frac{M / A_{1}}{A_{1}+M_{2} / A_{1}} \rightarrow 0$
Where i is the inclusion map and π is the natural epimorphism. By [6, 16.3], this short exact
sequence
split.
Let
$\frac{M}{A_{1}}=\frac{A_{1}+M_{2}}{A_{1}} \oplus \frac{M_{3}}{A_{1}} \quad$ for \quad some $M_{3} \subseteq M$. Then $M=A_{1}+M_{2}+M_{3}=M_{2}+M_{3}$. Since $M=M_{1} \oplus M_{2}=M_{2} \oplus M_{3}$, then $M_{3} \cong M_{1}$ and hence M_{3} is w- δ-lifting module. So there exists a direct summand Y of M_{3} such that $Y \subseteq M_{3}$ and $Y \subseteq_{\text {б.ce }} A_{1}$ in M_{3}. Now, since $A \cap M_{2}$ is semisimple submodule of M_{2}, there exists a direct summand X of M_{2} such that $X \subseteq_{\delta . c e} A \cap M_{2}$ in M_{2}. It is clear that $X \oplus Y$ is a direct summand of M. Now, let $f_{1}: \frac{M}{X} \rightarrow \frac{M}{X \oplus Y}$ and $f_{2}: \frac{M}{Y} \rightarrow \frac{M}{X \oplus Y}$ be a maps defined as follows $f_{1}(m+X)=m+(X \oplus Y)$ and
$f_{2}(m+Y)=m+(X \oplus Y)$.
Since
$\frac{A \cap M_{2}}{X} \ll \delta \frac{M}{X} \quad$ and $\quad \frac{M_{1}}{Y} \ll_{\delta} \frac{M}{Y}$, then $f_{1}\left(\frac{A \cap M_{2}}{X}\right)=\frac{\left(A \cap M_{2}\right) \oplus Y}{X \oplus Y} \ll_{\delta} \frac{M}{X \oplus Y} \quad$ and $f_{2}\left(\frac{A_{1}}{Y}\right)=\frac{A_{1} \oplus X}{X \oplus Y} \ll_{\delta} \frac{M}{X \oplus Y}$ by lemma (1.3). Hence $\frac{A}{X \oplus Y}=\frac{A \cap M_{2}}{X \oplus Y} \oplus \frac{A_{1}}{X \oplus Y} \ll_{\delta} \frac{M}{X \oplus Y}$, by lemma (1.3). Thus M is w - δ-lifting module.

Proposition 3.7:

Let $M=M_{1} \oplus M_{2}$ be an R-module. If M_{1} is a $\mathrm{w}-\delta$-lifting module and M_{2} is a semisimple module, then M is w- δ-lifting.
Proof:
Let A be a semisimple submodule of M. By modular law $A+M_{1}=\left(A+M_{1}\right) \cap\left(M_{1} \oplus M_{2}\right)=M_{1} \oplus\left[\left(A+M_{1}\right) \cap M_{2}\right]$. Since M_{2} is semisimple then $\left(A+M_{1}\right) \cap M_{2}$ is a diect summand of M_{2}. So $\left(A+M_{1}\right) \cap M_{2} \quad$ is a direct summand of M. Therefore $A+M_{1}$ is a direct summand of M. Since A is semisimple, then there exists submodule X of A such that $A=\left(A+M_{1}\right) \oplus X$. Hence $A+M_{1}=\left[\left(A \cap M_{1}\right) \oplus X\right]+M_{1}=X+M_{1}$. Now, since M_{1} is w - δ-lifting, then there exists a direct summand B of M_{1} such that $B \subseteq_{\delta . c e}\left(A \cap M_{1}\right) \quad$ in $\quad M_{1} \quad$ and \quad hence
$B \subseteq_{\text {d.ce }}\left(A \cap M_{1}\right)$ in M, by lemma (1.4). Clearly $\quad B \oplus X \quad$ is a direct summand $M_{1} \oplus X$, since $A+M_{1}=X \oplus M_{1} \quad$ and $A+M_{1}$ is a direct summand of M, then $B \oplus X$ is a direct summand of A.
Claim that $\frac{A}{B \oplus X}=\frac{\left[\left(A \cap M_{1}\right) \oplus X\right]}{B \oplus X} \ll_{\delta} \frac{M}{B \oplus X}$.
Let $\frac{M}{B \oplus X}=\frac{\left[\left(A \cap M_{1}\right) \oplus X\right]}{B \oplus X}+\frac{Y}{B \oplus X} \quad$ where
$\frac{Y}{B \oplus X} \complement_{c . s} \frac{M}{B \oplus X} . \quad$ Then
$M=\left[\left(A+M_{1}\right) \oplus X\right]+Y=\left(A \cap M_{1}\right)+Y$ and hence $\quad \frac{M}{B}=\frac{\left(A \cap M_{1}\right)}{B}+\frac{Y}{B}$. Since $\frac{Y}{B \oplus X} \subseteq_{c . s} \frac{M}{B \oplus X}$, then by (the third isomorphism theorem) $Y \subseteq_{c . s} M$ and hence $\frac{Y}{B} \subseteq_{\delta . c e} \frac{M}{B}$. But $\frac{\left(A \cap M_{1}\right)}{B} \ll_{\delta} \frac{M}{B}$, therefore $M=Y$. Thus $B \oplus X \subseteq_{\delta . c e} A B \oplus X$ in M and hence M is $\mathrm{w}-\delta$-lifting.

Lemma 3.8:

Let M be a $w-\delta$-lifting module. Then $M=M_{1} \oplus M_{2}$, where M_{1} is semisimple module and M_{2} is w- δ-lifting module with $\operatorname{soc}\left(M_{2}\right) \ll \delta M_{2}$.

Proof:

Assume that M is $\mathrm{w}-\delta$-lifting. Since $\operatorname{soc}(M)$ is semisimple submodule of M, then there is a decomposition $M=M_{1} \oplus M_{2}$ such that $\quad M_{1} \subseteq \operatorname{soc}(M) \quad$ and $M_{2} \cap \operatorname{soc}(M)=\operatorname{soc}\left(M_{2}\right) \ll_{\delta} M_{2}$. Thus M_{1} is semisimple by [8, lemma3.1], and M_{2} is $\mathrm{w}-\delta$-lifting.

Proposition 3.9:

Let M be an indecomposable and not simple module. Then M is $\mathrm{w}-\delta$-lifting if and only if $\operatorname{soc}(M) \ll_{\delta} M$.

Proof:

Assume that $\operatorname{soc}(M) \neq 0$. Since $\operatorname{soc}(M)$ is semisimple submodule of M, then $\operatorname{soc}(M)=A \oplus S$, where A is a direct summand of M and $S<{ }_{\delta} M$. But M is indecomposable, therefore $A=0$. Thus $\operatorname{soc}(M) \ll_{\delta} M$. Conversely, assume that
$\operatorname{soc}(M) \ll_{\delta} M$ and let A be a semisimple submodule of M. Clearly $A \subseteq \operatorname{soc}(M) \ll_{\delta} M$, hence $A \ll_{\delta} M$, by lemma (1.3). Thus M is w- δ-lifting module.

Proposition 3.10:

Let P be a projective module. Then the following statements are equivalent:

1. P is w- δ-lifting.
2. For every semisimple submodule A of P, $\frac{P}{A}$ has a projective δ-cover.

Proof:

(1) \Rightarrow (2) Let A is a semisimple submodule
of P. Then there exists a submodule X of A such that $P=X \oplus Y$, for some $Y \subseteq P$ and $A \cap Y \ll_{\delta} Y$. Now, consider the following short exact sequence:

$$
0 \rightarrow A \cap Y \xrightarrow{i} Y \xrightarrow{\pi} \frac{Y}{A \cap Y} \rightarrow 0
$$

Where i is the inclusion map and π be the natural epimorphism. By (the second isomorphism theorem), $\frac{P}{A}=\frac{A+Y}{A} \cong \frac{Y}{A \cap Y}$
Since P is projective and Y is a direct summand of M, then Y is projective. But $\operatorname{ker}(\pi)=A \cap Y \ll_{\delta} Y, \quad$ therefore $\quad Y$ is a projective δ-cover of $\frac{Y}{A \cap Y}$ Since $\frac{P}{A} \cong \frac{Y}{A \cap Y}$ Thus $\frac{P}{A}$ has a projective δ-cover. (2) \Rightarrow (1) let A be a semisimple submodule of P and let $\pi: P \rightarrow \frac{P}{A}$ be the natural epimorphism. By (2), $\frac{P}{A}$ has a projective δ-cover. Thus by [2, lemma 2-3], there exists a decomposition $P=P_{1} \oplus P_{2}$ such that $\left.\pi\right|_{P_{2}}: P_{2} \rightarrow \frac{P}{A}$ is a projective δ-cover and $P_{1} \subseteq \operatorname{ker}(\pi)$. This implies that $P_{1} \subseteq A$ and $\operatorname{ker}\left(\left.\pi\right|_{P_{2}}\right)=A \cap P_{2} \ll_{\delta} P_{2}$. Thus $\quad P \quad$ is $\mathrm{w}-\delta$-lifting module.

Proposition 3.11:

Let P be a projective module with $\delta(P) \ll_{\delta} P$. Then P is w- δ-lifting if and only
if for every semisimple submodule X of P, there exists a direct summand A of P such that $\bar{X}=\bar{A}$ (where $\bar{X}=X+\delta(P) / \delta(P)$).

Proof:

Assume that X is a semisimple submodule of P. Then $X=A \oplus S$, where A is a direct summand of P and $S \ll_{\delta} P$. So $\quad S \subseteq \delta(P) \quad$ and \quad hence $X+\delta(P)=A+A+\delta(P)=A+\delta(P)$. Thus $\bar{X}=\bar{A}$. Conversely, let X be a semisimple submodule of P, then there exists a direct summand A of P such that $\bar{X}=\bar{A}$. Let $P=A \oplus B \quad$ for \quad some $\quad B \subseteq P$. Since $\frac{P}{\delta(P)}=\frac{A+\delta(P)}{\delta(P)} \oplus \frac{B+\delta(P)}{\delta(P)}=\frac{X+\delta(P)}{\delta(P)} \oplus \frac{B+\delta(P)}{\delta(P)}$ then $P=X+B+\delta(P)$. Since $\delta(P){ }_{\ll{ }_{\delta} P} P$, then by lemma (1.3), $P=(X+B) \oplus Y$ for projective semisimple submodule Y of $\delta(P)$. By modular law $X+B=(X+B) \cap P=(X+B) \cap(A \oplus B)=((X+B) \cap A) \oplus B$. Since P is projective, then $X+B$ is projective and hence $X+B$ is B-projctive, by $[9, \quad$ p.68]. So $\quad(X+B) \cap A$ is B-projective by [7, prop.2-1-6]. So there exists $X_{1} \subseteq X$ such that , by [6, 41.14]. So $P=(X+B) \oplus Y=X_{1} \oplus B \oplus Y$. Now, $X \cap(B \oplus Y) \subseteq X \cap(B+\delta(P)) \subseteq \delta(P) \ll_{\delta} P$,
hence $X \cap(B \oplus Y) \ll_{\delta} P$. Thus P is w - δ lifting module.
Following [9], an R-module M is called quasi-projective if M is M-projective.

Theorem 3.12:

Let M be quasi-projective module. Then the following statements are equivalent:

1. $\quad M$ is $\mathrm{w}-\delta$-lifting.
2. Every semisimple submodule A of M has a δ-supplement which is a direct summand.

Proof:

(1) \Rightarrow (2) Let A be a semisimple submodule of M, then there is a decomposition $M=M_{1} \oplus M_{2} \quad$ such that $\quad M_{1} \subseteq A \quad$ and $A \cap M_{2} \ll_{\delta} M_{2}$. Clearly $M=A+M_{2}$, then M_{2} is a δ-supplement of A in M which is a direct summand. (2) \Rightarrow (1) Assume that every semisimple submodule has a δ-supplement
which is a direct summand and let A is a semisimple submodule of M, then there exists a direct summand B of M such that $M=B \oplus B_{1}=B+A \quad$ and $\quad A \cap B \ll_{\delta} B \quad$ for some submodule $\quad B_{1}$ of $\quad M$. Let $\psi: M \rightarrow \frac{B}{A \cap B} \quad$ where $\quad \psi=\varphi \circ \pi \quad$ and $\pi: M \rightarrow \frac{M}{A}$ be the natural epimorphism and $\varphi: \frac{M}{A} \rightarrow \frac{B}{A \cap B}$ be an isomorphism and let $\alpha: B \rightarrow \frac{B}{A \cap B}$ be an epimorphism. Now, since M is M-projective, then by [7, prop.2-1-5] M is B-projective and hence there exists a homomorphism $h: M \rightarrow B$ such that $\psi=\alpha \circ h$. So $\alpha \circ h(M)=\varphi \circ \pi(M), \quad \alpha(h(M))=\varphi(\pi(M))$, $\frac{h(M)}{A \cap B}=\frac{B}{A \cap B}$, therefore $h(M)=B$. Thus h is epimorphism. Since B is M-projective, by [7, pro.2-1-6], then h is split by [7, pro.2-1-8]. Hence there exists a homomorphism $g: B \rightarrow M$ such that $h \circ g=I_{B}$. By [10, coro.3-4-10], $\quad M=\operatorname{ker}(h) \oplus \operatorname{Im}(g)$. $\operatorname{ker}(h) \subseteq A$. Clearly $A \cap \operatorname{Im}(g)=g(A \cap B)$. Since $A \cap B<{ }_{\delta} B$, then $g(A \cap B)=A \cap \operatorname{Im}(g)<{ }_{\delta} \operatorname{Im}(g), \quad$ by lemma (1.3). Thus M is w- δ-lifting module.

4. FI- δ-lifting modules

We introduce the concept of FI- δ-lifting with example and some basic properties.

Example 4.1:

Consider the Z-module $\quad M=Z_{8} \oplus Z_{2}$. One can easy show that M is FI- δ-lifting, but not δ-lifting.

Proposition 4.2:

The following statements are equivalent for an R-module M.

1. $\quad M$ is $\mathrm{FI}-\delta$-lifting module.
2. Every fully invariant submodule A in M can be written as $A=X \oplus S$ with X is a direct summand of M and $S{ }_{\ll \delta} M$.
3. Every fully invariant submodule A of M can be written as $A=X+S$ with X is a direct summand of M and $S{ }_{\ll_{\delta}} M$.

Proof:

$(1) \Rightarrow(2)$ Let A is a fully invariant submodule of M, then there exists a direct summand X of M such that $Y \subseteq_{\delta . c e} A$ in M. So $M=X \oplus X_{1}$, for some $X_{1} \subseteq M$. By modular law $A=A \cap M=A \cap\left(X \oplus X_{1}\right)=X \oplus\left(A \cap X_{1}\right)$. To show that $A \cap X_{1} \ll_{\delta} X_{1}$, let $X_{1}=\left(A \cap X_{1}\right)+Y \quad$ where $\quad Y \subseteq_{c . s} X_{1}$, then $M=A+Y$. Now, $\frac{M}{X}=\frac{A}{X}+\frac{Y}{X}$, by (the isomorphism theorems) $\frac{M / X}{Y+X / X} \cong \frac{M}{Y+X}=\frac{X \oplus X_{1}}{Y+X} \cong \frac{X_{1}}{Y} . \quad$ Since $Y \subseteq_{c . s} X_{1}, \quad$ then $\quad \frac{Y+X}{X} \subseteq_{c . s} \frac{M}{X} \quad$ But $\frac{A}{X} \ll \delta \frac{M}{X}, \quad$ therefore $\quad M=Y+X . \quad$ Since $M=X+X_{1}$ and $Y \subseteq X_{1}$, then $Y=X_{1}$. let $S=A \cap X_{1}$. Thus $A=X \oplus S$, where X is a direct summand of M and $S_{\ll{ }_{\delta}} M$. (2) \Rightarrow (3) Clear. (3) \Rightarrow (1) Let A be a fully invariant submodule of M. Then $A=X+S$, where X is a direct summand of M and $S_{\ll \delta} M$. So $M=X \oplus Y$ for some $Y \subseteq M$. Since Y is a δ-supplement of X in M and $S_{\ll \delta} M$, then Y is a δ-supplement of $X+S=A$ in M, by lemma (1.5). Hence $M=A+Y$ and $A \cap Y \ll_{\delta} Y$. To show that $X \subseteq_{\delta . c e} A$ in M, let $\varphi: Y \rightarrow \frac{M}{X}$ be a map defined by $\varphi(y)=y+X$. Clearly φ is an isomorphism. Since $A \cap Y<{ }_{\delta} Y$, then $\varphi(A \cap Y)=\frac{A}{X} \ll \delta \frac{M}{X}$ by lemma (1.3). Thus M is FI- δ-lifting module.

Theorem 4.3:

The following statements are equivalent for an R-module M.

1. $\quad M$ is FI- δ-lifting module.
2. Every fully invariant submodule A of M has a δ-supplement B in M such that $A \cap B$ is a direct summand in A.

Proposition 4.4:

Let M be FI- δ-lifting R-module and A be a fully invariant direct summand of M, then A is FI- δ-lifting.

Proof:

Suppose that $M=A \oplus B$ is FI - δ-lifting module where A is a fully invariant submodule of M. Now, let X be a fully invariant submodule of A, so X is a fully invariant submodule of M, by [11, lemma2.1]. Then $\quad X=Y \oplus S$, where Y is a direct summand of M and $S<{ }_{<\delta} M$ and hence $S_{\ll \delta} A$ and clearly Y is adirect summand of A. Thus A is FI- δ-lifting.

Proposition 4.5:

Let M be an indecomposable R-module. If M is FI- δ-lifting, then for every fully invariant submodule A of $M, \delta(A) \ll{ }_{\delta} M$.

Proof:

Let A be a fully invariant submodule of M. Since $\delta(A)$ is a fully invariant submodule of A, then $\delta(A)$ is a fully invariant submodule of M, by [11, lemma 2.1]. Hence $\delta(A)=B \oplus S$, where B is a direct summand of M and $S<{ }_{\delta} M$. But M is an indecomposable, therefore $B=0$. Thus $\delta(A)=S$ and hence $\delta(M)<{ }_{\delta} M$.

Theorem 4.6:

Let $\quad M=\bigoplus_{i \in I} M_{i}$ be a direct sum of FI- δ-lifting modules. Then M is FI-δ-lifting.

Proof:

Let A be fully invariant submodule of M, then $A=\bigoplus \underset{i \in I}{\left(A \cap M_{i}\right)}$ and $A \cap M_{i}$ is a fully invariant submodule of M_{i},
by [11, lemma 2.1]. Since each of M_{i} is

FI- δ lifting, then $A \cap M_{i}=X_{i} \oplus S_{i}$, where X_{i} is a direct summand of M_{i} and $S_{i} \ll \delta M_{i}$. Let $X=\bigoplus_{i \in I} X i$ and $S=\bigoplus_{i \in I} S_{i}$. It is clear that X is a direct summand of M and $S \ll_{\delta} M$.

Proposition 4.7:

Let M be FI- δ-lifting module satisfies the condition $\left(\delta^{*}\right)$. If M_{1} and M_{2} are fully invariant direct summands of M, then $\left(M_{1} \cap M_{2}\right)$ is a direct summand of M.

Proof:

Assume that $M_{1} \cap M_{2} \neq 0$. Since M_{1} and M_{2} are fully invariant, then $M_{1} \cap M_{2}$ fully invariant, by [11, lemma 2.1]. Now, since M is $\mathrm{FI}-\delta$-lifting module, then there exists a submodule X of M such that $M=\left(M_{1} \cap M_{2}\right)+X, \quad\left(M_{1} \cap M_{2}\right) \cap X \ll_{\delta} X$, hence $\quad\left(M_{1} \cap M_{2}\right) \cap X \ll_{\delta} M$, by lemma (1.3) and $\left(M_{1} \cap M_{2}\right)=\left[\left(M_{1} \cap M_{2}\right) \cap X\right] \oplus Y$, for some $Y \subseteq\left(M_{1} \cap M_{2}\right)$, by theorem (3.13). Clearly $M=X \oplus Y$. Claim that $\left(M_{1} \cap X\right)$ and $\left(M_{2} \cap X\right)$ are direct summand of X. By modular
law

$$
M_{1}=M_{1} \cap M=M_{1} \cap(X \oplus Y)=\left(M_{1} \cap X\right) \oplus Y
$$

Since M_{1} is a direct summand of M, then $\left(M_{1} \cap X\right)$ is a direct summand of M and hence $\left(M_{1} \cap X\right)$ is a direct summand of X. Similarly, we have $\left(M_{2} \cap X\right)$ is direct summand of X. But M satisfies $\left(\delta^{*}\right)$ condition, therefore X satisfies $\left(\delta^{*}\right)$ condition, by lemma (2.4). Since $\left(M_{1} \cap X\right) \cap\left(M_{2} \cap X\right)=\left(M_{1} \cap M_{2}\right) \cap X \ll_{\delta} X$, then $\left(M_{1} \cap X\right) \cap\left(M_{2} \cap X\right)=0$. Thus we get $\left(M_{1} \cap M_{2}\right) \cap X=0$. By modular law $\left(M_{1} \cap M_{2}\right)=\left(M_{1} \cap M_{2}\right) \cap M=\left(M_{1} \cap M_{2}\right) \cap(X \oplus Y)$ $\left(\left(M_{1} \cap M_{2}\right) \cap X\right) \oplus Y=Y . \quad$ Thus $\left(M_{1} \cap M_{2}\right)$ is a direct summand of M.

Proposition 4.8:

Let P be a projective module. Then the following statements are equivalent:

1. $\quad P$ is FI- δ-lifting module.
2. For every fully invariant submodule A of $P, \frac{P}{A}$ has a projective δ-cover.

Proof:

(1) \Rightarrow (2) Let A be a fully invariant submodule of P. Then $A=X \oplus S$, where X is a direct summand of P and $S<_{<\delta} P$. So
$P=X \oplus Y$, for some $Y \subseteq P$. By modular law $\quad A=A \cap P=A(X \oplus Y)=X \oplus(A \cap Y)$. Now, let $\pi: P \rightarrow \frac{P}{X}$ be the natural epimorphism. Since $\quad S_{\ll \delta} P$, then $\pi(S) \frac{S+X}{X}=\frac{A}{X} \ll_{\delta} \frac{P}{X}$.
Let $f: \frac{P}{X} \rightarrow \frac{P}{S+X}=\frac{P}{A}$ be an epimorphism. One can easily show that $\operatorname{ker}\left(\left.\varphi\right|_{X}\right)=\frac{A}{X} \ll \delta \frac{P}{X}$. Thus $\frac{P}{X}$ has a projective δ-cover. (2) (1) Let A be a submodule of P and let $\pi: P \rightarrow \frac{P}{A}$ be the natural epimorphism and let $\varphi: M \rightarrow \frac{P}{A}$ be a projective δ-cover of $\frac{P}{A}$ for every fully invariant submodule A of M. Then by [11, lemma 2-1], there exists a decomposition $P=X \oplus Y$ such that $\left.\varphi\right|_{X}: X \rightarrow \frac{P}{A}$ is a projective δ-cover \quad and $Y \subseteq \operatorname{ker}(\varphi)$, this implies that $\quad Y \subseteq A \quad$ and $\operatorname{ker}\left(\left.\varphi\right|_{X}\right)=A \cap X \ll_{\delta} X \subseteq P, \quad$ then $A \cap X \ll_{\delta} P$. Thus P is FI- δ-lifting.

References:

1. Goodearl, K.R.1976. Ring theory, NonSingular Rings and Modules, Mercel Dekker, New York.pp.10-40.
2. Zhou, Y. 2000. Generalization of Perfect, Semiperfect and Semiregular Rings, Algebra colloquium, 7(3):305-318.
3. Lomp, C. and Büyükasik, E. 2009, When δ-Semiperfect Rings are Semiperfect, Turk. J. Math. 33:1-8.
4. Kosan, M. T. 2007, δ-Lifting and δ-Supplemented Modules, Algebra colloquium, 14 (1):53-60.
5. Anderson, F. W. and Fuller, K. R. 1974. Rings and Categories of Modules, Sipringer-Verlag, New York.pp.65-105.
6. Wisbauer, R. 1991. Foundations of Modules and Rings theory, Gordon and Breach, Philadelphia.pp.350-359.
7. Abdelkader, B.H. 2001. On Lifting Modules, M.Sc. Thesis. Department of math, college of scince, University of Baghdad.pp.29-43.
8. Wang, Y. 2007. δ-Small Submodules and δ-Supplemented Modules, International J. Math. and Mathematical Sciences. pp.1-8.
9. Mohamad, S. H. and Muller, B. J. 1990. Continuous and Discrete Modules, London, Math. Soc. LNS 174 Cambridge University, press, Cambridge.pp.55-79.
10. Kasch, F. 1982. Modules and Rings, Academic press., London.pp.61-116.
11. Birkenmeier, G. F. Müller, B. J. and Rizvi, S. T. 2002. Modules in which every fully invariant submodules is essential in a direct summand, Comm. Algebra, 30:1395-1415.
