

SOME GENERALIZATIONS ON δ -LIFTING MODULES

Sarah Shakir , Bahar Hamad

sarahshakir_87@yahoo.com

Department of math. ,College of science, University of Baghdad . Baghdad-Iraq

Abstract

In this note we study the concept δ -lifting and we add some new results. Also we introduce weak δ -lifting modules and FI- δ -lifting modules as two generalizations of δ -lifting modules. We obtain some properties, characterizations and decompositions of weak δ -lifting modules and FI- δ -lifting modules.

Keywords: c-singular submodule, δ -small submodule, δ -lifting module, FI- δ -lifting module, weak δ -lifting module

 (δ) بعض تعميمات مقاسات الرفع من الصنف

سارة شاكر، بهار حمد

قسم الرياضيات ، كلية العلوم، جامعة بغداد. بغداد-العراق

الخلاصة

في هذا البحث ندرس مفهوم مقاسات الرفع من الصنف (δ) وأضفنا بعض النتائج الجديدة. كذلك قدمنا تعريف مقاسات الرفع من الصنف ($\delta - W$) ومقاسات الرفع من الصنف ($FI - \delta$) كتعميمات لمقاسات الرفع من الصنف (δ) وحصلنا على نتائج عن بعض الخواص، والمكافئات، وتجزئة المقاسات من الصنف ($\delta - W$) والمقاسات من الصنف ($\delta - FI - \delta$).

الكلمات المفتاحية:مقاس جزئي شاذ من الصنف(c)، مقاس جزئي صغير من الصنف(δ)،مقاسات الرفع من الصنف $(\delta$)،مقاسات الرفع من الصنف (δ)،مقاسات الرفع من الصنف (δ)،

1. Introduction and preliminaries :

Throughout this paper, R is a ring with identity and every R-module is unitary left R-modules. Let M be an R-module, a submodule A of M is called essential (notation $A \subseteq_e M$), if for every nonzero submodule of M has a nonzero intersection with A (see [1]). Let M be an R-module and A be a submodule of M, then annihilator of A (denoted by Ann(A)) is defined as follows $Ann(A) = \{r \in R \mid rA = 0\}$, (see [1]). Let M be an R-module, then $Z(M) = \{x \in M : Ann(A) \subseteq_e R\}$ is called the singular submodule of M. If Z(M) = M, then M is called the singular module. If Z(M) = 0 then M is called nonsingular module, (see [1]). Let M be an R-module. A submodule A of M is called c-singular $(A \subseteq_{c.s} M)$ if $\frac{M}{A}$ is a singular module. Following Zhou [2], a submodule A of a

module *M* is called a δ -small submodule of M ($A_{\leq \leq \delta}M$), if $M \neq A + B$, for any proper c-singular submodule B of M. Let $\delta(M) = \sum \{A \subseteq M \mid A \quad \text{is} \quad$ δ -small submodule of M is the δ -radical of M and soc(M) will indicate the socle of M. Let Mbe an R-module and let B and A submodules of M such that $B \subseteq A \subseteq M$, then B is called a δ -coessentail submodule of A in M $(B \subseteq_{\delta.ce} A \text{ in } M) \text{ if } \frac{A}{B} < <_{\delta} \frac{M}{B}$ following Lomp [3], a submodule A of M is called δ -coclosed submodule of M if $X \subseteq_{cs} A$ and $X \subseteq_{\delta,ce} A$ in M for some $X \subseteq A$, then A = X. An *R*-module *M* is called an if projective R -module given any epimorphism $f: A \rightarrow B$ and any homomorphism $g: M \rightarrow B$, there exists a $h: M \to A$ homomorphism such that $h \circ f = g$. Let M be an R-module, then an *R*-module *P* is called projective δ -cover of M, if P is projective and there exists anepimorphism $\varphi: P \to M$ with $\operatorname{ker}(\varphi)_{\leq \leq \delta} P$, (see [2]).

Following Kosan [4], a module M is called δ -lifting if for every submodule A of M, there exists a direct summand B of M such that $B_{\subseteq_{\delta,ce}}A$ in M. Let A and B be a submodules of an R-module M. Recall that B is called δ -supplement of A in M, if M = A + B, and $A \cap B_{\leq \leq \delta} B$. If every submodule of M has a δ -supplement in M, then M is called δ -supplemented module. Recall that a submodule A of M is called fully invariant if $f(A) \subset A$ for all $f \in End(M)$. If every submodule of M is fully invariant then M is called a duo-module. In this note, as two generalizations of δ -lifting modules we introduce weak δ -lifting modules and FI- δ -lifting modules as follows. Any module M is called weak δ -lifting, if for each semisimple submodule A of M, there exists a direct summand B of M such that $B_{\subseteq_{\delta,ce}}A$ in M. Any module M is called FI- δ -lifting, if for each fully invariant submodule A of M, there exists a direct summand B of M such that $B \subseteq_{\delta_{ce}} A$ in M.

We starting by the following lemmas which one can easily prove it.

Lemma 1.1:

Let A be a submodule of any module M. Then:

- 1. every submodule of a singular module is c-singular.
- 2. If $A \subseteq_{c,s} M$ and $f: M \to N$ is an epimorphism, then $f(A) \subseteq_{c,s} N$.
- 3. If $B \subseteq_{c.s} N$ and $f: M \to N$ is a homomorphism, then $f^{-1}(B) \subseteq_{c.s} M$.

The following lemmas show the properties of c-singular submodules.

Lemma 1.2:

Let A and B be submodules of an R-module M.

- 1. If $A \subseteq_{c,s} M$ and $B \subseteq_{c,s} M$, then $A \cap B \subseteq_{c,s} M$.
- 2. If $A \subseteq B$ and $A \subseteq_{c,s} M$, then $B \subseteq_{c,s} M$.
- 3. If $A \subseteq_{cs} B$, then $A \cap X \subseteq_{cs} B \cap X$, for

any submodule X of M.

The following lemma shows some properties of δ -small submodules, which is appear in [2].

Lemma 1.3:

Let M be a module.

- 1. Let $A_{<<\delta}M$ and M = A + B. Then $M = A \oplus B$, for projective semisimple submodule *Y* of *A*.
- 2. If $A_{\leq <\delta}M$ and $f: M \to N$ is a homomorphism, then $f(A)_{\leq <\delta}N$. In particular, if $A \subseteq M \subseteq N$, then $A_{\leq <\delta}N$.
- 3. Let $A_1 \subseteq M_1 \subseteq M$, $A_2 \subseteq M_2 \subseteq M$, and $M = M_1 \oplus M_2$. Then $A_1 \oplus A_2 <<_{\delta} M_1 \oplus M_2$ if and only if $A_1 <<_{\delta} M_1$ and $A_2 <<_{\delta} M_2$.
- 4. If $M = \bigoplus_{i \in I} i$ then $\delta(M) = \bigoplus_{i \in I} \delta(M_i)$.

The following lemma shows some properties of δ -coessential submodules, which one can easily prove it.

Lemma 1.4:

Let M be an R-module and let A, B, Cand submodules of M.

- 1. $X \subseteq_{\delta.ce} B$ in M if and only if $\frac{X}{A} \subseteq_{\delta.ce} \frac{B}{A}$ in $\frac{M}{A}$.
- 2. If $A \subseteq B \subseteq C \subseteq M$. Then $A_{\subseteq_{\delta.ce}}C$ in M if and only if $A_{\subseteq_{\delta.ce}}B$ in M and $B_{\subseteq_{\delta.ce}}C$ in M.
- 3. If $A_{\subseteq_{\delta,ce}}B$ in M and $X_{\subseteq_{\delta,ce}}C$ in M, then $A + X_{\subseteq_{\delta,ce}}B + C$ in M.
- 4. If $A_{\subseteq_{\delta.ce}}B$ in M and $f: M \to N$ be an epimorphism, then $f(A)_{\subseteq_{\delta.ce}}f(B)$ in N.

The following proposition gives some properties of δ -supplements.

Lemma 1.5:

Let A and B be submodules of an R-module M such that B is δ -supplement of A. then:

- 1. If M = X + B, for some submodule X of A, then B is δ -supplement of X.
- 2. If $C_{\leq\delta}M$, then *B* is a δ -supplement of A + C.
- 3. For any submodule Y of A, then $\frac{(B+Y)}{Y} \text{ is a } \delta \text{-supplement of } \frac{A}{Y} \text{ in } \frac{M}{Y}.$

2. δ -Lifting Modules

In this section we study the properties of δ -lifting modules. Also we add some new results.

Lemma 2.1: [4]

The following are equivalent for a module M:

- 1. *M* is δ -lifting.
- 2. For every submodule A in M, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq A$ and $A \cap M_2 \ll M_2$.
- 3. Every submodule A of M can be written as $A = B \oplus S$, where B is a direct summand of M and $S_{<<\delta}M$.

Proposition 2.2: [4]

Any direct summand of δ -lifting module is δ -lifting.

Definition 2.3:

Let M be an R-module. We say that M satisfies the condition (δ *), if for every direct summands M_1 and M_2 of M with $M_1 \cap M_2 <<_{\delta} M$, then $M_1 \cap M_2 = 0$.

Lemma 2.4:

Let M be an R-module satisfies (δ^*) condition, then each direct summand of M satisfies (δ^*) condition.

Proof: clear.

Proposition 2.5:

Let M be a δ -lifting module satisfies the condition (δ *). If M_1 and M_2 are direct summands of M, then $M_1 \cap M_2$ is a direct summand of M.

Proof:

Assume that $M_1 \cap M_2 \neq 0$. Since M is a δ -lifting module, then there is a submodule A of $M_1 \cap M_2$. such that $M = A \oplus B$ and $(M_1 \cap M_2) \cap B_{\langle \langle \rangle} B.$ Hence $(M_1 \cap M_2) \cap B_{\leq \leq \delta} M$, by lemma (1.2). Claim that $(M_1 \cap B)$ and $(M_2 \cap B)$ are direct summand of B. By modular law . Since M_1 is a direct summand of M, then $M_1 = M_1 \cap M = M_1 \cap (A \oplus B) = A \oplus (M_1 \cap B)$ $(M_1 \cap B)$ is a direct summand of Mand hence $(M_1 \cap B)$ is a direct summand of B. Similarly, we have $(M_2 \cap B)$ is direct summand of *B*. But *M* satisfies (δ^*) condition, therefore B satisfies (δ^*) condition, by lemma (2.4).Since $(M_1 \cap B) \cap (M_2 \cap B) = (M_1 \cap M_2) \cap B_{\langle \langle \rangle} B$ then $(M_1 \cap B) \cap (M_2 \cap B) = 0$. Thus we get $(M_1 \cap M_2) \cap B = 0$. By modular law $(M_1 \cap M_2) = (M_1 \cap M_2) \cap M = (M_1 \cap M_2)$ $\cap (A \oplus B) = A \oplus (M_1 \cap M_2) \cap B = A$. Thus $(M_1 \cap M_2)$ is a direct summand of M.

Theorem 2.6:

Let M be a δ -lifting module. Then $M = M_1 \oplus M_2 \oplus M_3$, where

- 1. M_1 is semisimple.
- 2. M_2 is δ -lifting with $\delta(M_2)$ δ -small and essential in M_2 .
- 3. M_3 is δ -lifting module with $\delta(M_3) = M_3$.

Proof:

Clearly *M* is δ -supplemented. By [4, prop.2.13], we have a decomposition $M = M_1 \oplus A$ where M_1 is semisimple and $\delta(A) \subseteq_e A$. So *A* is δ -lifting, by proposition (2.2). Hence $A = M_1 \oplus M_2$, where $M_3 \subseteq \delta(A)$ and $\delta(A) \cap M_2 <<\delta M_2$. But $\delta(A) \cap M_2 = M_2 \cap (\delta(M_2) \oplus \delta(M_3)) = \delta(M_2)$, therefore $\delta(M_2) <<\delta M$. Now, since $\delta(A) = \delta(M_2) \oplus \delta(M_3) \subseteq_e M_2 \oplus M_3 = A$, then $\delta(M_2) \subseteq_e M_2$, by [5, prop. 5.20]. Since $M = A \oplus M_1 = M_1 \oplus M_2 \oplus M_3$, then M_3 is a direct summand of *M*. But $M_3 \subseteq \delta(A)$, therefore

 $M_3 = M_3 \cap \delta(A) = M_3 \cap (\delta(M_2) \oplus \delta(M_3)) = M_3 \cap \delta(M_3) = \delta(M_3).$

Proposition 2.7:

Let $M = M_1 \oplus M_2$ be a duo module such that M_1 and M_2 are δ -lifting modules. Then M is δ -lifting module.

Proof:

Assume that $M = M_1 \oplus M_2$ be a duo module and let A be a submodule of M, then by assumption A is fully invariant, hence $A = (A \cap M_1) \oplus (A \cap M_2)$. Since M_1 and M_2 are δ -lifting, there exists a decompositions $A \cap M_1 = A_{11} \oplus A_{12}$ and $A \cap M_2 = A_{21} \oplus A_{22}$, where A_{11} is a direct summand of M_1 and A_{21} is a direct summand of M_2 and $A_{12} <<_{\delta} M_1$ and $A_{22} <<_{\delta} M_2$. Then $A_{11} \oplus A_{21}$ is a direct summand of M and by lemma (1.3), $A_{12} \oplus A_{22} <<_{\delta} M$. Thus M is δ -lifting.

Following [9], let M_1 and M_2 be R-modules, then M_1 is M_2 -projective if for every submodule A of M_2 and any homomorphism $f: M_1 \rightarrow \frac{M_2}{A}$ there is a homomorphism $g: M_1 \rightarrow M_2$ such that $\pi \circ g = f$, where $\pi: M_2 \rightarrow \frac{M_2}{A}$ is the natural epimorphism.

Theorem 2.8:

Let $M = M_1 \oplus M_2$, where M_1 be a δ lifting module and let M_2 is M_1 -projective. Then:

- 1. *M* is δ -lifting module.
- 2. for every submodule A of M such that $M \neq A + M_1$, there exists a direct summand X of M such that $X \subseteq_{\delta.ce} A$ in M

Proof:

(1) \Rightarrow (2) Clear.

(2) \Rightarrow (1) Let *A* be a submodule of *M* such that $M = A + M_1$. Since M_2 is M_1 -projective, then there exists a submodule $A_1 \subseteq A$ such that $M = A_1 \oplus M_1$, by [6, 41.14]. But M_1 is δ -lifting and $\frac{M}{A_1} = \frac{A_1 + M_1}{A_1} \cong \frac{M_1}{A_1 \cap M_1} \cong M_1$, by (the

second isomorphism theorem), therefore $\frac{M}{A_1}$ is

 δ -lifting, so there exists a direct summand $\frac{X}{A_1}$

of $\frac{M}{A_1}$ such that $\frac{X}{A_1} \subseteq_{\delta,ce} \frac{A}{A_1}$ in $\frac{M}{A_1}$. Hence $X \subseteq_{\delta,ce} A$ in M, by lemma (1.4). Now, $X = X \cap M = X \cap (A_1 \oplus M_1) = A_1 \oplus (X \cap M_1),$ by modular law. But $\frac{X}{A}$ is a direct summand of $\frac{M}{A_1}$ so $\frac{A_1 \oplus (X \cap M_1)}{A_1}$ is a direct summand of $\frac{A_1 \oplus M_1}{A_1}$ Hence $X \cap M_1$ is a direct summand of M_1 , by (the second isomorphism theorem). Let $M_1 = (X \cap M_1) \oplus Y$, for some submodule Y of M . Thus $M = A_1 \oplus M_1 = A_1 \oplus (X \cap M_1) \oplus Y = X \oplus Y$ and hence *M* is δ -lifting module.

Proposition 2.9:

Let R be a ring. If R is δ -lifting, then every cyclic R-module M has a projective δ -cover.

Proof:

Assume that M = Ra, for some $a \in M$. By isomorphism (the first theorem), $\frac{R}{\ker(\varphi)} \cong Ra$. One can easy to show that $ker(\varphi) = Ann(a)$. Now, put A = Ann(a). Since *R* is δ -lifting, then there exists an ideal A_1 of R such that $A_1 \subseteq A$, $R == A_1 \oplus A_2$ and $A \cap A_2 << \delta A_2$. Let $\pi: R \to \frac{R}{A}$ be the natural epimorphism. Clearly that $\pi|_{A_2}: A_2 \to \frac{R}{A}$ is an epimorphism and $\ker(\pi|_{A_2}) = A \cap A_2 <<_{\delta} A_2.$ So $\pi|_{A_2}: A_2 \to \frac{R}{4}$ is a projective δ -cover of $\frac{R}{4}$.

Thus M has a projective δ -cover.

Theorem 2.10:

Let M_1 and M_2 be δ -lifting modules such that M_i is M_j -projective (i, j = 1, 2). Then $M = M_1 \oplus M_2$ is δ -lifting.

Proof:

Let *A* be a submodule of *M*. Consider the submodule $M_1 \cap (A + M_2)$ of M_1 . Since M_1 is δ -lifting, there exists decomposition $M_1 = A_1 \oplus B_1$ such that $A_1 \subseteq M_1 \cap (A + M_2)$ and $[M_1 \cap (A + M_2) \cap B_1] <<_{\delta} B_1$. Therefore $M = M_1 \oplus M_2 = A_1 \oplus B_1 \oplus M_2 = A + (M_2 \oplus B_1)$. Since $M_2 \cap (A + B_1) \subseteq M_2$ and M_2 is δ -lifting, there exists a decomposition $M_2 = A_2 \oplus B_2$ such that $A_2 \subseteq A + B_1$ and $B_2 \cap (M_2 \cap (A + B_1)) = B_2 \cap (A + B_1) <<_{\delta} B_2$,

 $B_2 \cap (M_2 \cap (A + B_1)) = B_2 \cap (A + B_1) <<_{\delta} B_2,$ we have $M = A + (B_1 \oplus M_2) = A + (B_1 \oplus B_2).$ So $M = (A_1 \oplus A_2) \oplus (B_1 \oplus B_2).$ Since M_i is M_j -projective, then $A_1 \oplus A_2$ is $B_1 \oplus B_2$ projective, by [7, prop.2-1-6, 2-1-7]. Then there exists $Y \subseteq A$ such that $M = Y \oplus (B_1 \oplus B_2),$ by [6, 41.14]. Since $B_1 \cap (A + M_2) <<_{\delta} B_1$ and
$$\begin{split} B_2 &\cap (A + B_1) <<_{\delta} B_2, \qquad \text{then} \\ [B_1 &\cap (A + M_2) \oplus B_2 \cap (A + B_1)] <<_{\delta} B_1 \oplus B_2. \\ \text{But} \ A &\cap (B_1 \oplus B_2) \subseteq (B_1 \cap (A + B_2)) \oplus (B_2 \cap (A + B_1)), \\ \text{therefore} \ A &\cap (B_1 \oplus B_2) <<_{\delta} B_1 \oplus B_2. \quad \text{Thus} \\ M \ \text{is} \ \delta \ \text{-lifting module.} \end{split}$$

Corollary 2.11:

Let M be a projective R-module such that $M = \bigoplus_{i \in I} M_i$. Then M is δ -lifting if and only if M_i is δ -lifting (i = 1, ..., n).

Proof:

By proposition (2.2), M_i is δ -lifting for each (i = 1,...,n). Conversely, assume that each M_i (i = 1,...,n) is δ -lifting modules. Hence each of M_i is δ -supplemented for each (i = 1,...,n). Then by [8, propo.3.2] M is δ -supplemented. But M is projective, therefore M is δ -lifting module, by [4, propo.3.5].

3. weak δ -lifting modules

We introduce the concept of weak δ -lifting with example and basic properties.

Examples 3.1:

Clearly Z as a Z -module is w- δ -lifting, since Z has no semisimple submodule but not δ -lifting.

Proposition 3.2:

Every ring R is w- δ -lifting.

Proof:

First, we show that $soc(R) <<_{\delta} R$. Let R=soc(R)+I, where $I \subseteq_{c.s} R$, by [1, prop.1-20, p.32], $I \subseteq_{e} R$. But soc(R) is the intersection of all essential ideal of R, therefore $soc(R) \subseteq I$ and hence R = I. Now, let J be a semisimple ideal of R, then $J \subseteq soc(R)$. But $soc(R) <<_{\delta} R$, therefore $J <<_{\delta} R$. Thus R is w- δ -lifting.

Proposition 3.3:

Let M be an R-module. If M is nonsingular, then M is w- δ -lifting.

Proof:

Let A be a semisimple submodule of M. Then $A \subseteq soc(M)$. Claim that $A_{\leq \leq \delta}M$, let M = A + X where $X \subseteq_{cs} M$, then $X \subseteq_{e} M$, by [1, prop.1.21, p.32]. Clearly $A \subseteq soc(M) \subseteq X$. Hence M = X. Thus M is w- δ -lifting module.

Proposition 3.4:

Any direct summand of a w- δ -lifting module is w- δ -lifting.

Proof:

Let X be a direct summand of M and let A be a semisimple submodule of X, so $A \subseteq M$. Then there exists a direct summand B of M such that $A \subseteq B$ and $A \subseteq_{\delta.ce} C$ in M. Claim that $\frac{X}{A}$ is δ -coclosed submodule of $\frac{M}{A}$, let $\frac{Y}{A}$ be a submodule of $\frac{X}{A}$ such that $\frac{Y}{A} \subseteq_{\delta.ce} \frac{X}{A}$ in $\frac{M}{A}$ with $\frac{Y}{A} \subseteq_{c.s} \frac{X}{A}$ Then $Y \subseteq_{c.s} X$, by (the third isomorphism theorem) and $Y \subseteq_{\delta.ce} X$ in M, by lemma (1.4). But X is direct summand of M, then X is δ -coclosed and $Y \subseteq_{c.s} X$ hence X = Y. Thus $\frac{X}{A}$ is δ -coclosed in $\frac{M}{A}$ Since $\frac{B}{A} \subseteq \frac{X}{A} \subseteq \frac{M}{A}$, therefore $\frac{B}{A} <<_{\delta} \frac{X}{A}$ by lemma (1.3). Thus X is w- δ -lifting.

Proposition 3.5:

The following statements are equivalent for an R-module M:

- 1. *M* is w- δ -lifting.
- 2. For every semisimple submodule A in M there is a decomposition such that $M_1 \subseteq A$ and $A \cap M_2 << _{\delta} M_2$.
- 3. Every semisimple submodule A of M can be written as $A = B \oplus S$ with B is a direct summand of M and S << S M.

Proof:

(1) \Rightarrow (2) let *A* be a semisimple submodule of *M*, then there exists a direct summand $M_1 \subseteq A$ and $M_1 \subseteq_{\delta,ce} A$ in *M*. Hence $M = M_1 \oplus M_2$ for some submodule M_2 of *M*. By modular law $A = A \cap M = A \cap (M_1 \oplus M_2) = M_1 \oplus (A \cap M_2)$. Now, let $\varphi: \frac{M}{M} \to M_2$ be a map defined by $\varphi((m_1 + m_2) + M_1) = m_2$, for all $m_1 \in M_1$ and $m_2 \in M_2$. Clearly that φ an isomorphism. Since $\frac{A}{M_1} <<_{\delta} \frac{M}{M_1}$, then $\varphi(\frac{A}{M_1}) <<_{\delta} M_2$, by (1.3). But $\varphi(\frac{A}{M}) = A \cap M_2$. lemma $(2) \Rightarrow (3)$ Let A be a semisimple submodule of M, then by (2) there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq A$ and $A \cap M_2 < <_{\delta} M_2.$ modular By law $A = A \cap M = A \cap (M_1 \oplus M_2) = M_1 \oplus (A \cap M_2).$ (3) \Rightarrow (1) Let A be a semisimple submodule of M. By (3) A can be written as $A = B \oplus S$, where B is a direct summand of M and $S_{<<\delta}M$. To show that $B_{\subseteq_{\delta,ce}}A$ in M, let $\pi: M \to \frac{M}{R}$ be the natural Since $S \ll M$, epimorphism. then $\pi(S) = \frac{S+B}{R} = \frac{A}{R} \ll M, \text{ by lemma (1.3)}.$ Thus *M* is w- δ -lifting.

Following [10], an *R*-module *M* is called an injective module if given any monomorphism $f: A \to B$ and any homomorphism $g: A \to M$, there exists a homomorphism $h: B \to M$ such that $h \circ f = g$.

Proposition 3.6:

Let $M = M_1 \oplus M_2$ be an *R*-module. If M_1 is w- δ -lifting and M_2 is injective w- δ -lifting, then *M* is w- δ -lifting.

Proof:

Let A be a semisimple submodule of M. Then $A = (A \cap M_2) \oplus A_1$, for some submodule A_1 of A. Hence by (the second isomorphism theorem) $\frac{A_1 + M_2}{A_1} \cong \frac{M_2}{M_2 \cap A_1} \cong M_2$. Now, consider the short exact sequence $0 \rightarrow \frac{A_1 + M_2}{A_1} \xrightarrow{i} \frac{M}{A_1} \xrightarrow{\pi} \frac{M/A_1}{A_1 + M_2/A_1} \rightarrow 0$ Where *i* is the inclusion map and π is the

Where *i* is the inclusion map and π is the natural epimorphism. By [6, 16.3], this short exact sequence split. Let

 $\frac{M}{M} = \frac{A_1 + M_2}{M_3} \oplus \frac{M_3}{M_3} \quad \text{for} \quad \text{some } M_3 \subseteq M .$ Then $M = A_1 + M_2 + M_3 = M_2 + M_3$. Since $M = M_1 \oplus M_2 = M_2 \oplus M_3$, then $M_3 \cong M_1$ and hence M_3 is w- δ -lifting module. So there exists a direct summand Y of M_3 such that $Y \subseteq M_3$ and $Y \subseteq_{\delta,ce} A_1$ in M_3 . Now, since $A \cap M_2$ is semisimple submodule of M_2 , there exists a direct summand X of M_2 such that $X \subseteq_{\delta.ce} A \cap M_2$ in M_2 . It is clear that $X \oplus Y$ is a direct summand of M. Now, let $f_1: \frac{M}{X} \to \frac{M}{X \oplus Y}$ and $f_2: \frac{M}{Y} \to \frac{M}{X \oplus Y}$ be maps defined as follows $f_1(m+X) = m + (X \oplus Y)$ and $f_2(m+Y) = m + (X \oplus Y)$. Since $\frac{A \cap M_2}{Y} < <_{\delta} \frac{M}{Y} \quad \text{and} \quad \frac{M_1}{Y} < <_{\delta} \frac{M}{Y},$ then $f_1(\frac{A \cap M_2}{X}) = \frac{(A \cap M_2) \oplus Y}{X \oplus Y} < <_{\delta} \frac{M}{X \oplus Y}$ and $f_2(\frac{A_1}{V}) = \frac{A_1 \oplus X}{X \oplus V} < <_{\delta} \frac{M}{X \oplus V}$ by lemma (1.3). Hence $\frac{A}{X \oplus Y} = \frac{A \cap M_2}{X \oplus Y} \oplus \frac{A_1}{X \oplus Y} <<_{\delta} \frac{M}{X \oplus Y}$, by lemma (1.3). Thus M is w- δ -lifting module.

Proposition 3.7:

Let $M = M_1 \oplus M_2$ be an *R*-module. If M_1 is a w- δ -lifting module and M_2 is a semisimple module, then *M* is w- δ -lifting.

Proof:

Let A be a semisimple submodule of M. By modular law $A+M_1=(A+M_1)\cap (M_1\oplus M_2)=M_1\oplus [(A+M_1)\cap M_2].$ Since M_2 is semisimple then $(A + M_1) \cap M_2$ is a diect summand of M_2 . So $(A+M_1) \cap M_2$ is a direct summand of M. Therefore $A + M_1$ is a direct summand of M. Since A is semisimple, then there exists submodule Xof A such that $A = (A + M_1) \oplus X$. Hence $A + M_1 = [(A \cap M_1) \oplus X] + M_1 = X + M_1$. Now, since M_1 is w- δ -lifting, then there exists a direct summand B of M_1 such that $B_{\subset_{\delta} ce}(A \cap M_1)$ in M_1 and hence

 $B_{\subseteq_{\delta_{ce}}}(A \cap M_1)$ in M, by lemma (1.4). Clearly $B \oplus X$ is a direct summand $M_1 \oplus X$, since $A + M_1 = X \oplus M_1$ and $A + M_1$ is a direct summand of M, then $B \oplus X$ is a direct summand of A. Claim that $\frac{A}{B \oplus X} = \frac{[(A \cap M_1) \oplus X]}{B \oplus X} <<_{\delta} \frac{M}{B \oplus X}$. Let $\frac{M}{B \oplus X} = \frac{[(A \cap M_1) \oplus X]}{B \oplus X} + \frac{Y}{B \oplus X}$ where $\frac{Y}{B\oplus X}\subseteq_{c.s}\frac{M}{B\oplus X}.$ Then $M = [(A + M_1) \oplus X] + Y = (A \cap M_1) + Y$ and hence $\frac{M}{R} = \frac{(A \cap M_1)}{R} + \frac{Y}{R}$. Since $\frac{Y}{B \oplus X} \subseteq_{c.s} \frac{M}{B \oplus X}, \quad \text{then by (the)}$ third isomorphism theorem) $Y \subset_{c_s} M$ and hence $\frac{Y}{B} \subseteq_{\delta.ce} \frac{M}{B}. \quad \text{But} \quad \frac{(A \cap M_1)}{B} < <_{\delta} \frac{M}{B}, \text{ therefore}$ M = Y. Thus $B \oplus X \subseteq_{\delta_{CC}} A B \oplus X$ in Mand hence M is w- δ -lifting.

Lemma 3.8:

Let M be a w- δ -lifting module. Then $M = M_1 \oplus M_2$, where M_1 is semisimple module and M_2 is w- δ -lifting module with $soc(M_2) << \delta M_2$.

Proof:

Assume that M is w- δ -lifting. Since soc(M) is semisimple submodule of M, then there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq soc(M)$ and $M_2 \cap soc(M) = soc(M_2) <<_{\delta} M_2$. Thus M_1 is semisimple by [8, lemma3.1], and M_2 is w- δ -lifting.

Proposition 3.9:

Let M be an indecomposable and not simple module. Then M is w- δ -lifting if and only if $soc(M)_{<<\delta}M$.

Proof:

Assume that $soc(M) \neq 0$. Since soc(M)is semisimple submodule of M, then $soc(M) = A \oplus S$, where A is a direct summand of M and $S_{<<\delta}M$. But M is indecomposable, therefore A = 0. Thus $soc(M)_{<<\delta}M$. Conversely, assume that $soc(M) <<_{\delta} M$ and let A be a semisimple submodule of M. Clearly $A \subseteq soc(M) <<_{\delta} M$, hence $A <<_{\delta} M$, by lemma (1.3). Thus M is w- δ -lifting module.

Proposition 3.10:

Let P be a projective module. Then the following statements are equivalent:

- 1. *P* is w- δ -lifting.
- 2. For every semisimple submodule A of P, $\frac{P}{-}$ has a projective δ -cover.

Proof:

(1) \Rightarrow (2) Let *A* is a semisimple submodule of *P*. Then there exists a submodule *X* of *A* such that $P = X \oplus Y$, for some $Y \subseteq P$ and $A \cap Y_{\leq \leq \delta} Y$. Now, consider the following short exact sequence:

$$0 \to A \cap Y \xrightarrow{i} Y \xrightarrow{\pi} \frac{Y}{A \cap Y} \to 0$$

Where *i* is the inclusion map and π be the natural epimorphism. By (the second isomorphism theorem), $\frac{P}{A} = \frac{A+Y}{A} \cong \frac{Y}{A \cap Y}$ Since P is projective and Y is a direct summand of M, then Y is projective. But $\ker(\pi) = A \cap Y_{\langle \langle \rangle} Y, \text{ therefore } Y$ is a projective δ -cover of $\frac{Y}{A \cap Y}$ Since $\frac{P}{A} \cong \frac{Y}{A \cap Y}$ Thus $\frac{P}{A}$ has a projective δ -cover. $(2) \Rightarrow (1)$ let A be a semisimple submodule of *P* and let $\pi: P \to \frac{P}{A}$ be the natural epimorphism. By (2), $\frac{P}{A}$ has a projective δ -cover. Thus by [2, lemma 2-3], there exists a decomposition $P = P_1 \oplus P_2$ such that $\pi|_{P_2}: P_2 \to \frac{P}{A}$ is a projective δ -cover and $P_1 \subseteq \ker(\pi)$. This implies that $P_1 \subseteq A$ and $\ker(\pi|_{P_2}) = A \cap P_2 <<_{\delta} P_2. \quad \text{Thus} \quad P \quad \text{is}$ w- δ -lifting module.

Proposition 3.11:

Let *P* be a projective module with $\delta(P)_{\leq\leq\delta}P$. Then *P* is w- δ -lifting if and only

if for every semisimple submodule X of P, there exists a direct summand A of P such that $\overline{X} = \overline{A}$ (where $\overline{X} = X + \delta(P)/\delta(P)$). **Proof:**

Assume that X is a semisimple submodule of P. Then $X = A \oplus S$, where A is a direct summand of Р and $S_{<<\delta}P$. $S \subset \delta(P)$ So and hence $X + \delta(P) = A + A + \delta(P) = A + \delta(P)$. Thus X = A. Conversely, let X be a semisimple submodule of P, then there exists a direct summand A of P such that $\overline{X} = \overline{A}$. Let for some $B \subset P$. $P = A \oplus B$ Since $\frac{P}{\delta(P)} = \frac{A + \delta(P)}{\delta(P)} \oplus \frac{B + \delta(P)}{\delta(P)} = \frac{X + \delta(P)}{\delta(P)} \oplus \frac{B + \delta(P)}{\delta(P)}$ then $P = X + B + \delta(P)$. Since $\delta(P) < <_{\delta} P$, then by lemma (1.3), $P = (X + B) \oplus Y$ for projective semisimple submodule Y of $\delta(P)$. By modular law $X + B = (X + B) \cap P = (X + B) \cap (A \oplus B) = ((X + B) \cap A) \oplus B.$ Since P is projective, then X + B is projective and hence X + B is *B*-projective, by [9, p.68]. So $(X+B) \cap A$ is B -projective by [7, prop.2-1-6]. So there exists $X_1 \subseteq X$ such that , by [6, 41.14]. So $P = (X + B) \oplus Y = X_1 \oplus B \oplus Y.$ Now, $X \cap (B \oplus Y) \subseteq X \cap (B + \delta(P)) \subseteq \delta(P)_{\langle \langle \rangle} P,$ hence $X \cap (B \oplus Y)_{\leq \leq \delta} P$. Thus P is w- δ lifting module.

Following [9], an R-module M is called quasi-projective if M is M-projective.

Theorem 3.12:

Let M be quasi-projective module. Then the following statements are equivalent:

- 1. M is w- δ -lifting.
- 2. Every semisimple submodule A of M has a δ -supplement which is a direct summand.

Proof:

(1) \Rightarrow (2) Let A be a semisimple submodule of M, then there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq A$ and $A \cap M_2 <<_{\delta} M_2$. Clearly $M = A + M_2$, then M_2 is a δ -supplement of A in M which is a direct summand. (2) \Rightarrow (1) Assume that every semisimple submodule has a δ -supplement which is a direct summand and let A is a semisimple submodule of M, then there exists a direct summand B of Msuch that $M = B \oplus B_1 = B + A$ and $A \cap B_{\langle \langle \rangle} B$ for some submodule B_1 of M. Let $\psi: M \to \frac{B}{A \cap B}$ where $\psi = \varphi \circ \pi$ and $\pi: M \to \frac{M}{4}$ be the natural epimorphism and $\varphi: \frac{M}{A} \to \frac{B}{A \cap B}$ be an isomorphism and let $\alpha: B \to \frac{B}{A \cap B}$ be an epimorphism. Now, since M is M-projective, then by [7, prop.2-1-5] M is B-projective and hence there exists a homomorphism $h: M \to B$ such that $\psi = \alpha \circ h$. So $\alpha \circ h(M) = \varphi \circ \pi(M)$, $\alpha(h(M)) = \varphi(\pi(M))$, $\frac{h(M)}{A \cap B} = \frac{B}{A \cap B}$, therefore h(M) = B. Thus his epimorphism. Since B is M-projective, by [7, pro.2-1-6], then *h* is split by [7, pro.2-1-8]. Hence there exists a homomorphism $g: B \rightarrow M$ such that $h \circ g = I_B$. By [10, coro.3-4-10], $M = \ker(h) \oplus \operatorname{Im}(g)$. $\ker(h) \subset A$. Clearly $A \cap \operatorname{Im}(g) = g(A \cap B)$. Since $A \cap B_{\langle \langle \rangle} B$, then $g(A \cap B) = A \cap \operatorname{Im}(g)_{\leq \leq \delta} \operatorname{Im}(g),$ by lemma (1.3). Thus M is w- δ -lifting module.

4. FI- δ -lifting modules

We introduce the concept of FI- δ -lifting with example and some basic properties.

Example 4.1:

Consider the Z-module $M = Z_8 \oplus Z_2$. One can easy show that M is FI- δ -lifting, but not δ -lifting.

Proposition 4.2:

The following statements are equivalent for an R-module M.

- 1. M is FI- δ -lifting module.
- 2. Every fully invariant submodule A in M can be written as $A = X \oplus S$ with X is a direct summand of M and $S_{<<\delta}M$.
- 3. Every fully invariant submodule A of M can be written as A = X + S with X is a direct summand of M and $S_{<<\delta}M$.

Proof:

 $(1) \Rightarrow (2)$ Let A is a fully invariant submodule of M, then there exists a direct summand X of M such that $Y_{\subseteq_{\delta,ce}}A$ in M. So $M = X \oplus X_1$, for some $X_1 \subseteq M$. By modular law $A = A \cap M = A \cap (X \oplus X_1) = X \oplus (A \cap X_1).$ То show that $A \cap X_1 \leq \leq X_1$, let $X_1 = (A \cap X_1) + Y$ where $Y \subseteq_{c.s} X_1$, then M = A + Y. Now, $\frac{M}{X} = \frac{A}{X} + \frac{Y}{X}$, by (the isomorphism theorems) $\frac{M/X}{Y+X/X} \cong \frac{M}{Y+X} = \frac{X \oplus X_1}{Y+X} \cong \frac{X_1}{Y}.$ Since then $\frac{Y+X}{X} \subseteq_{c.s} \frac{M}{X}$ $Y \subseteq_{c.s} X_1$, But $\frac{A}{Y} < <_{\delta} \frac{M}{Y}$, therefore M = Y + X. Since $M = X + X_1$ and $Y \subseteq X_1$, then $Y = X_1$. let $S = A \cap X_1$. Thus $A = X \oplus S$, where X is a direct summand of M and $S_{<<\delta}M$. $(2) \Rightarrow (3)$ Clear. $(3) \Rightarrow (1)$ Let A be a fully invariant submodule of M. Then A = X + S, where X is a direct summand of M and $S_{\leq \leq \delta} M$. So $M = X \oplus Y$ for some $Y \subseteq M$. Since Y is a δ -supplement of X in M and $S_{<<\delta}M$, then Y is a δ -supplement of X + S = A in M, by lemma (1.5). Hence M = A + Y and $A \cap Y_{<<\delta} Y$. To show that $X \subseteq_{\delta.ce} A$ in M, let $\varphi: Y \to \frac{M}{Y}$ be a map defined by $\varphi(y) = y + X$. Clearly φ is an isomorphism. Since $A \cap Y_{\leq \leq \delta} Y$, then $\varphi(A \cap Y) = \frac{A}{Y} < <_{\delta} \frac{M}{Y}$ by lemma (1.3). Thus M is FI- δ -lifting module.

Theorem 4.3:

The following statements are equivalent for an R-module M.

- 1. *M* is FI- δ -lifting module.
- 2. Every fully invariant submodule A of M has a δ -supplement B in M such that $A \cap B$ is a direct summand in A.

Proposition 4.4:

Let M be FI- δ -lifting R-module and A be a fully invariant direct summand of M, then A is FI- δ -lifting.

Proof:

Suppose that $M = A \oplus B$ is FI- δ -lifting module where A is a fully invariant submodule of M. Now, let X be a fully invariant submodule of A, so X is a fully invariant submodule of M, by [11, lemma2.1]. Then $X = Y \oplus S$, where Y is a direct summand of M and $S_{<<\delta}M$ and hence $S_{<<\delta}A$ and clearly Y is adirect summand of A. Thus A is FI- δ -lifting.

Proposition 4.5:

Let M be an indecomposable R-module. If M is FI- δ -lifting, then for every fully invariant submodule A of M, $\delta(A)_{<<\delta}M$.

Proof:

Let *A* be a fully invariant submodule of *M*. Since $\delta(A)$ is a fully invariant submodule of *A*, then $\delta(A)$ is a fully invariant submodule of *M*, by [11, lemma 2.1]. Hence $\delta(A) = B \oplus S$, where *B* is a direct summand of *M* and $S_{<\leqslant}M$. But *M* is an indecomposable, therefore B = 0. Thus $\delta(A) = S$ and hence $\delta(M)_{<\leqslant}M$.

Theorem 4.6:

Let $M = \bigoplus_{i \in I} M_i$ be a direct sum of

FI- δ -lifting modules. Then M is FI- δ -lifting.

Proof:

Let A be fully invariant submodule of M, then $A = \bigoplus_{i \in I} (A \cap M_i)$ and $A \cap M_i$ is a fully invariant submodule of M by [11]

invariant submodule of
$$M_i$$
, by [11,

lemma 2.1]. Since each of
$$M_i$$
 is FI- δ -

lifting, then $A \cap M_i = X_i \oplus S_i$, where X_i is a direct summand of M_i and $S_i << \delta M_i$. Let

 $X = \bigoplus_{i \in I} X_i$ and $S = \bigoplus_{i \in I} S_i$. It is clear that X

is a direct summand of M and $S <<_{\delta} M$.

Proposition 4.7:

Let M be FI- δ -lifting module satisfies the condition (δ *). If M_1 and M_2 are fully invariant direct summands of M, then $(M_1 \cap M_2)$ is a direct summand of M.

Proof:

Assume that $M_1 \cap M_2 \neq 0$. Since M_1 and M_2 are fully invariant, then $M_1 \cap M_2$ fully invariant, by [11, lemma 2.1]. Now, since M is FI- δ -lifting module, then there exists a Χ Msubmodule of such that $M = (M_1 \cap M_2) + X$, $(M_1 \cap M_2) \cap X < <_{\delta} X$, hence $(M_1 \cap M_2) \cap X \ll M$, by lemma (1.3) and $(M_1 \cap M_2) = [(M_1 \cap M_2) \cap X] \oplus Y$, for some $Y \subseteq (M_1 \cap M_2)$, by theorem (3.13). Clearly $M = X \oplus Y$. Claim that $(M_1 \cap X)$ and $(M_2 \cap X)$ are direct summand of X. By modular

law

 $M_1 = M_1 \cap M = M_1 \cap (X \oplus Y) = (M_1 \cap X) \oplus Y$. Since M_1 is a direct summand of M, then

 $(M_1 \cap X)$ is a direct summand of M and hence $(M_1 \cap X)$ is a direct summand of X. Similarly, we have $(M_2 \cap X)$ is direct summand of X. But M satisfies (δ^*) condition, therefore X satisfies (δ^*) condition, by lemma (2.4).Since $(M_1 \cap X) \cap (M_2 \cap X) = (M_1 \cap M_2) \cap X \ll X,$ then $(M_1 \cap X) \cap (M_2 \cap X) = 0$. Thus we get $(M_1 \cap M_2) \cap X = 0.$ By modular law $(M_1 \cap M_2) = (M_1 \cap M_2) \cap M = (M_1 \cap M_2) \cap (X \oplus Y)$ $((M_1 \cap M_2) \cap X) \oplus Y = Y.$ Thus $(M_1 \cap M_2)$ is a direct summand of M.

Proposition 4.8:

Let P be a projective module. Then the following statements are equivalent:

- 1. *P* is FI- δ -lifting module.
- 2. For every fully invariant submodule A of P, $\frac{P}{A}$ has a projective δ -cover.

Proof:

(1) \Rightarrow (2) Let A be a fully invariant submodule of P. Then $A = X \oplus S$, where X is a direct summand of P and $S << \delta P$. So

 $P = X \oplus Y$, for some $Y \subseteq P$. By modular law $A = A \cap P = A(X \oplus Y) = X \oplus (A \cap Y)$. Now, let $\pi: P \to \frac{P}{X}$ be the natural $S \ll P$, Since epimorphism. then $\pi(S)\frac{S+X}{Y} = \frac{A}{Y} < <_{\delta} \frac{P}{Y}.$ Let $f: \frac{P}{X} \to \frac{P}{S+X} = \frac{P}{A}$ be an epimorphism. One easily show that $\ker(\varphi|_X) = \frac{A}{X} \ll \frac{P}{X}$. Thus $\frac{P}{Y}$ has a projective δ -cover. (2) \Rightarrow (1) Let A be a submodule of P and let $\pi: P \to \frac{P}{A}$ be the natural epimorphism and let $\varphi: M \to \frac{P}{\Lambda}$ be a projective δ -cover of $\frac{P}{A}$ for every fully invariant submodule A of M. Then by [11, lemma 2-1], there exists a decomposition $P = X \oplus Y$ such that $\varphi|_X : X \to \frac{P}{A}$ is a projective δ -cover and $Y \subset \ker(\varphi)$, this implies that $Y \subset A$ and $\ker(\varphi|_X) = A \cap X \ll X \subseteq P,$ then $A \cap X \ll P$. Thus *P* is FI- δ -lifting.

References:

- 1. Goodearl, K.R.**1976**. Ring theory, Non-Singular Rings and Modules, Mercel Dekker, New York.pp.10-40.
- 2. Zhou, Y. **2000**. Generalization of Perfect, Semiperfect and Semiregular Rings, Algebra colloquium, **7**(3):305-318.
- 3. Lomp, C. and Büyükasik, E. **2009**, When δ -Semiperfect Rings are Semiperfect, Turk. J. Math. 33:1-8.
- 4. Kosan, M. T. **2007**, δ -Lifting and δ -Supplemented Modules, Algebra colloquium, **14** (1):53-60.
- 5. Anderson, F. W. and Fuller, K. R. **1974**. Rings and Categories of Modules, Sipringer-Verlag, New York.pp.65-105.
- 6. Wisbauer, R. **1991**. Foundations of Modules and Rings theory, Gordon and Breach, Philadelphia.pp.350-359.

- Abdelkader, B.H. 2001. On Lifting Modules, M.Sc. Thesis. Department of math, college of scince, University of Baghdad.pp.29-43.
- 8. Wang, Y. **2007**. δ -Small Submodules and δ -Supplemented Modules, International J. Math. and Mathematical Sciences. pp.1-8.
- Mohamad, S. H. and Muller, B. J. 1990. Continuous and Discrete Modules, London, Math. Soc. LNS 174 Cambridge University, press, Cambridge.pp.55-79.
- 10. Kasch, F. **1982**. Modules and Rings, Academic press., London.pp.61-116.
- Birkenmeier, G. F. Müller, B. J. and Rizvi, S. T. 2002. Modules in which every fully invariant submodules is essential in a direct summand, Comm. Algebra, 30:1395-1415.