
Shakir and Hamad                                            Iraqi Journal of Science, 2012, vol.53, No.3, pp 633-643 

 633 

 
SOME GENERALIZATIONS ON  -LIFTING MODULES 

 
Sarah Shakir , Bahar Hamad  

 sarahshakir_87@yahoo.com 
Department of math. ,College of science, University of Baghdad . Baghdad-Iraq 

 

 
AAbbssttrraacctt  

     In this note we study the concept  -lifting and we add some new results. Also 

we introduce weak  -lifting modules and FI- -lifting modules as two 

generalizations of  -lifting modules. We obtain some properties, characterizations 

and decompositions of weak  -lifting modules and FI- -lifting modules. 

Keywords: c-singular submodule,  -small submodule,  -lifting module, FI- -

lifting module, weak  -lifting module 

 

 (بعض تعميمات مقاسات الرفع من الصنف )
 

 شاكر، بهار حمد سارة
 العراق-قسم الرياضيات ، كمية العموم، جامعة بغداد. بغداد

 

 الخلاصة
عي  احسايا ا احي ةي كذ كي حم اي مسا ( مأضيفسا ثمي  احنيس   اح في  مقاسيا  مفهيم في  ذي ا احث يد سي         

 اح في  حمقاسيا ( كاعمةميا  -FIمي  احنيس    اح في  ( ممقاسيا -Wمي  احنيس   اح في  اع ة  مقاسيا 
-Wا ا ع  ثع  احخماص, ماحمكاف ا , مايز ي  احمقاسيا  مي  احنيس  م نلسا على سا (م  احنس  

 (ذ- FIماحمقاسا  م  احنس   (

م   اح ف  مقاسا ,(م  احنس  (, مقا  يز   نغة  (c:مقا  يز   شا  م  احنس الكممات المفتاحية
 ذ(-FIم  احنس    اح ف  مقاسا , (-Wم  احنس   اح ف مقاسا  ,(احنس  

1. Introduction and preliminaries : 

     Throughout this paper, R  is a ring with 

identity and every R -module is unitary left                      

R -modules. Let M  be an R -module, a 

submodule A  of M  is called essential 

(notation MeA ), if for every nonzero 

submodule of M  has a nonzero intersection 

with A  (see [1]). Let M  be an R -module and 

A  be a submodule of M , then annihilator of 

A  (denoted by )(AAnn ) is defined as follows 

}0|{)(  rARrAAnn , (see [1]).                         

Let M  be an R -module, then 

})(:{)( ReAAnnMxMZ   is called the 

singular submodule of M . If MMZ )( , 

then M  is called the singular module. If 

0)( MZ  then M  is called nonsingular 

module,  (see [1]). Let M  be an R -module. A 

submodule A  of M  is called c-singular          

( A M
sc


.

 ) if 
A

M
 is a singular module. 

Following Zhou [2], a submodule A  of a 
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module M  is called a        -small submodule 

of M  ( MA ), if BAM  , for any 

proper c-singular submodule B of M . Let 

  AMAM |{)(  is  -small 

submodule of }M  is the  -radical of M  and 

)(Msoc  will indicate the socle of M . Let M  

be an R -module and let B  and A  submodules 

of M  such that MAB  , then B  is 

called a  -coessentail submodule of A  in M  

( AB ce .  in M  ) if  
B

M

B

A
   following 

Lomp [3], a submodule A  of M  is called     

 -coclosed submodule of M  if AX sc .  and 

AX ce .  in M  for some AX  , then 

XA  . An R -module M  is called an 

projective R -module if given any 

epimorphism BAf : and any 

homomorphism BMg : , there exists a 

homomorphism AMh :  such that 

gfh  . Let M  be an R -module, then an 

R -module P  is called projective  -cover of 

M , if P  is projective and there exists 

anepimorphism MP :  with 

P)ker( , (see [2]). 

Following Kosan [4], a module M  is called              

 -lifting if for every submodule A  of M , 

there exists a direct summand B  of M  such 

that AB ce .  in M . Let A  and B  be a 

submodules of an R -module M . Recall that 

B  is called   -supplement of A  in M , if 

BAM  , and BBA   . If every 

submodule of M  has a     -supplement in 

M , then M  is called  -supplemented 

module. Recall that a submodule A  of M  is 

called fully invariant if AAf )(  for all 

)(MEndf  . If every submodule of M  is 

fully invariant then M  is called a duo-module. 

In this note, as two generalizations of  -lifting 

modules we introduce weak  -lifting modules 

and FI- -lifting modules as follows. Any 

module M  is called weak  -lifting, if for 

each semisimple submodule A  of M , there 

exists a direct summand B  of M  such that 

AB ce .  in M . Any module M  is called FI-

 -lifting, if for each fully invariant submodule 

A  of M , there exists a direct summand B  of 

M  such that AB ce .  in M .  

We starting by the following lemmas which 

one can easily prove it.  

 

 

Lemma 1.1: 

      Let A  be a submodule of any module M . 

Then: 

1. every submodule of a singular module is    

c-singular. 

2. If MA sc .  and NMf :  is an 

epimorphism, then NscAf  .)( . 

3. If NB sc .  and NMf :  is a 

homomorphism, then MscBf 


.)(
1

. 

 

     The following lemmas show the properties 

of c-singular submodules. 

Lemma 1.2:  

    Let A  and B  be submodules of an                    

R -module M .  

1. If MA sc .  and MB sc . , then 

MBA sc . . 

2. If BA and MA sc . , then MB sc . .  

3. If BA sc . , then XBXA sc  .  , for 

any submodule X  of M . 

     The following lemma shows some 

properties of  -small submodules, which is 

appear in [2]. 

 

Lemma 1.3:  

Let M  be a module. 

1. Let MA  and BAM  . Then 

BAM  , for projective semisimple 

submodule Y  of A .  

2. If MA  and NMf :  is a 

homomorphism, then NAf )( . In 

particular, if NMA  , then NA . 

3. Let MMA  11 , MMA  22 , and 

MMM 21 . Then 

MMAA 2121    if and only if 

MA 11 and MA 22 . 

4. If  M iM
Ii




 then )()( MM i

Ii

 


 . 

 
      The following lemma shows some  

properties of  -coessential submodules, which 

one can easily prove it. 
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Lemma 1.4:  

    Let M  be an R -module and let CBA ,,  

and  submodules of M .  

1. BX ce .  in M  if and only if  
A

B

A

X
ce .  

in  
A

M
. 

2. If MCBA  . Then CA ce .  in 

M  if and only if BA ce .  in M  and 

CB ce .  in M . 

3. If BA ce .  in M  and CX ce .  in M , 

then CBXA ce  .  in M . 

4. If BA ce .  in M  and NMf :   be an 

epimorphism, then )()( . BfAf ce   in 

N . 
 

     The following proposition gives some   

properties of  -supplements. 

Lemma 1.5: 

     Let A  and B  be submodules of an                        

R -module M  such that B  is  -supplement 

of A . then: 

1. If BXM  , for some submodule X  

of A , then B  is  -supplement of X . 

2. If MC , then B  is a     -supplement 

of CA . 

3. For any submodule Y  of A , then 

Y

YB )( 
 is a  -supplement of  

Y

A
 in 

Y

M
. 

2.  -Lifting Modules 

     In this section we study the properties of   

 -lifting modules. Also we add some new 

results. 

Lemma 2.1: [4] 

     The following are equivalent for a module 

M  : 

1. M  is  -lifting. 

2. For every submodule A  in M ,  there is a 

decomposition MMM 21   such that 

AM 1  and MMA 22  . 

3. Every submodule A  of M  can be written 

as SBA  ,  where B  is a direct 

summand of M  and MS  . 

 

Proposition 2.2: [4] 
    Any direct summand of  -lifting module is 

 -lifting. 

 

 

Definition 2.3:   

Let M  be an R -module. We say that M  

satisfies the condition ( *), if for every direct 

summands M 1  and M 2  of M  with 

MMM  21 , then 021 MM . 

Lemma 2.4: 

     Let M  be an R -module satisfies ( *) 

condition, then each direct summand of M  

satisfies ( *) condition. 

Proof: clear. 

 

Proposition 2.5:  

     Let M  be a  -lifting module satisfies the 

condition ( *). If M 1  and M 2  are  direct 

summands of M , then MM 21  is a direct 

summand of M . 

Proof:  

     Assume that 021 MM . Since M  is a 

 -lifting module, then there is a submodule A  

of MM 21 . such that BAM   and 

BBMM  )( 21 . Hence 

MBMM  )( 21 , by lemma (1.2). 

Claim that )( 1 BM   and )( 2 BM   are direct 

summand of B . By modular law  . Since M1  

is a direct summand of M , then 

)()( 1111 BMABAMMMM 

)1( BM   is a direct summand of M                       

and hence )1( BM  is a direct summand of 

B . Similarly, we have )( 2 BM   is direct 

summand of B . But M  satisfies ( *) 

condition, therefore  B  satisfies ( *) 

condition, by lemma (2.4). Since 

BBMMBMBM  )()()( 2121  

then 0)()( 21  BMBM . Thus we get 

0)( 21  BMM . By modular law 

)()()( 212121 MMMMMMM 

ABMMABA  )()( 21 . Thus 

)( 21 MM   is a direct summand of M . 

Theorem 2.6:  
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     Let M  be a  -lifting module. Then 

MMMM 321   , where  

1. M 1  is semisimple. 

2. M 2  is  -lifting with )( 2M   -small 

and essential in M 2 . 

3. M 3  is  -lifting module with 

MM 33)(  . 

Proof: 

     Clearly M  is  -supplemented. By [4, 

prop.2.13], we have a decomposition 

AMM  1  where M 1  is semisimple 

and AA e)( . So A  is  -lifting, by 

proposition (2.2). Hence MMA 21 , 

where )(3 AM   and MMA 22)(   . 

But )())()(()( 23222 MMMMMA   , 

therefore MM  )( 2 . Now, since 

AMMMMA e  3232 )()()(  , then 

MM e 22)(  , by [5, prop. 5.20]. Since 

MMMMAM 3211  , then M 3  is 

a direct summand of M . But )(3 AM  , 

therefore  

 ))()(()( 32333 MMMAMM   

)()( 333 MMM   . 

Proposition 2.7:  

     Let MMM 21  be a duo module such 

that M 1  and M 2  are  -lifting modules. Then 

M  is  -lifting module.  

Proof:  

     Assume that MMM 21  be a duo 

module and let A  be a submodule of M , then 

by assumption A  is fully invariant, hence 

)()( 21 MAMAA  . Since 

M 1 and M 2  are  -lifting, there exists a 

decompositions AAMA 12111    and  

AAMA 22212  , where A11  is a direct 

summand of M 1and A21 is a direct summand of 

M 2  and MA 112  and MA 222 . Then 

AA 2111  is a direct summand of M  and by 

lemma (1.3), MAA  2212 . Thus M  is            

 -lifting. 

 

Following [9], let M 1  and M 2  be R -modules, 

then M 1  is M 2 -projective if for every 

submodule A  of M 2  and any  homomorphism 

A

M
Mf 2

1:   there is a homomorphism 

MMg 21:   such that fg  , where 

A

M
M

2
2:   is the natural epimorphism.  

Theorem 2.8:  

     Let MMM 21 , where M 1  be a  -

lifting module and let M 2  is M 1 -projective. 

Then:       

1. M  is  -lifting module. 

2.  for every submodule A  of M  such that 

MAM 1 , there exists a direct 

summand X  of M  such that AX ce .  in 

M  

Proof: 

)2()1(  Clear. 

)1()2(   Let A  be a submodule of M  such 

that MAM 1 . Since M 2  is                 

M 1 -projective, then there exists a submodule 

AA 1  such that MAM  11 ,                   

by [6, 41.14]. But M1  is  -lifting and                       

M
MA

M

A

MA

A

M
1

11

1

1

11

1







 , by (the 

second isomorphism theorem), therefore 
A

M

1

 is 

 -lifting, so there exists a direct summand 
A

X

1

 

of 
A

M

1
  such that  

A

A

A

X
ce

1

.

1


 in 

A

M

1
. Hence 

AX ce .  in M , by lemma (1.4). Now, 

)()( 1111 MXAMAXMXX  , 

by modular law. But  
A

X

1

 is a direct summand 

of 
A

M

1
 so 

A

MXA

1

11 )( 
 is a direct 

summand of 
A

MA

1

11
 Hence MX 1  is a 

direct summand of M 1 , by (the second 

isomorphism theorem). Let 

YMXM  )( 11 , for some submodule Y  

of M . Thus 

YXYMXAMAM  )( 1111

and hence  M is -lifting module. 
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Proposition 2.9:  

     Let R  be a ring. If R  is -lifting, then 

every cyclic R -module M  has a projective 

 -cover. 

 

Proof:  

Assume that RaM  , for some Ma . By 

(the first isomorphism theorem), 

Ra
R


)ker(

. One can easy to show that 

)()ker( aAnn . Now, put )(aAnnA  . 

Since R  is  -lifting, then there exists an ideal 

A1  of R  such that AA 1 , AAR 21  

and AAA 22  . Let 
A

R
R :  be the 

natural epimorphism. Clearly that 

A

R
AA

2:|
2

  is an epimorphism and 

AAAA 22)|ker(
2

  . So  

A

R
AA

2:|
2

  is a projective  -cover of 
A

R
. 

Thus M  has a projective  -cover. 

Theorem 2.10: 

     Let M 1  and M 2  be  -lifting modules 

such that M i  is M j -projective )2,1,( ji . 

Then MMM 21  is  -lifting.  

Proof:  

     Let A  be a submodule of M . Consider the 

submodule  )( 21 MAM   of M 1 . Since 

M 1  is  -lifting, there exists decomposition 

BAM 111   such that )( 211 MAMA   

and BBMAM 112
])(1[   . Therefore 

)( 1221121 BMAMBAMMM  . 

Since MBAM 212 )(   and M 2
 is         

 -lifting, there exists a decomposition 

BAM 222   such that BAA 12   

and

BBABBAMB 212122 )())((   , 

we have )()( 2121 BBAMBAM  . 

So )()( 2121 BBAAM  .  Since M i  is 

M j -projective, then AA 21  is BB 21 -

projective, by [7, prop.2-1-6, 2-1-7]. Then there 

exists AY   such that )( 21 BBYM  , 

by [6, 41.14]. Since BMAB 121 )(    and 

BBAB 212 )(   , then 

BBBABMAB 211221 )]()([   .  

But ))(())(()( 122121 BABBABBBA  , 

therefore BBBBA 2121 )(   . Thus 

M  is -lifting module. 

Corollary 2.11:  

    Let M  be a projective R -module such that 

M iM
Ii




 . Then M  is  -lifting if and only 

if M i  is  -lifting ),...,1( ni  . 

Proof:  

     By proposition (2.2), M i  is  -lifting for 

each ),...,1( ni  . Conversely, assume that each 

M i  ),...,1( ni   is  -lifting modules. Hence 

each of M i is  -supplemented for each 

),...,1( ni  . Then by [8, propo.3.2] M  is            

 -supplemented. But M  is projective, 

therefore M  is  -lifting module, by [4, 

propo.3.5]. 

 

3. weak  -lifting modules 

    We introduce the concept of weak  -lifting 

with example and basic properties. 

Examples 3.1: 

     Clearly Z  as a Z -module is  w- -lifting, 

since Z  has no semisimple submodule but not 

 -lifting. 

Proposition 3.2:  

Every ring R  is w- -lifting. 

Proof:  

     First, we show that RRsoc )( . Let 

R=soc(R)+I, where RI sc . , by [1, prop.1-20, 

p.32], RI e . But )(Rsoc is the intersection of 

all essential ideal of R , therefore IRsoc )(  

and hence IR  . Now, let J  be a semisimple 

ideal of R , then )(RsocJ  . But 

RRsoc )( , therefore RJ  . Thus R  is 

w- -lifting. 

Proposition 3.3: 

     Let M  be an R -module. If M  is 

nonsingular, then M  is w- -lifting. 

Proof:  

     Let A  be a semisimple submodule of M . 

Then )(MsocA . Claim that MA , let 

XAM   where MX sc . , then MX e , 
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by [1, prop.1.21, p.32]. Clearly 

XMsocA  )( . Hence XM  . Thus  M  

is w- -lifting module. 

 

 

Proposition 3.4:  

    Any direct summand of a w- -lifting 

module is w- -lifting. 

Proof:  

     Let X  be a direct summand of M  and let 

A  be a semisimple submodule of X , so 

MA . Then there exists a direct summand 

B  of M  such that BA  and CA ce .  in 

M . Claim that 
A

X
 is  -coclosed submodule 

of 
A

M
, let 

A

Y
 be a submodule of 

A

X
 such that 

A

X

A

Y
ce .

 in 
A

M
 with 

A

X

A

Y
sc .

 Then 

XY sc .
, by (the third isomorphism theorem) 

and XY ce .  in M , by lemma (1.4). But X  

is direct summand of M , then X  is             

 -coclosed and XY sc .
 hence YX  . Thus 

A

X
 is  -coclosed in 

A

M
 Since 

A

M

A

X

A

B
 , therefore 

A

X

A

B
  by lemma 

(1.3). Thus X  is w- -lifting. 

Proposition 3.5:  

     The following statements are equivalent for 

an R -module M : 

1. M  is w- -lifting. 

2. For every semisimple submodule A  in M  

there is a decomposition  such that 

AM 1  and MMA 22  . 

3. Every semisimple submodule A  of M  

can be written as SBA    with B  is a 

direct summand of M  and MS  . 

Proof:  

)2()1(   let A  be a semisimple submodule 

of M , then there exists a direct summand 

AM 1  and AM ce .1   in M . Hence  

MMM 21  for some submodule M 2  of 

M . By modular law 

)()( 2121 MAMMMAMAA 
.
 

Now, let M
M

M
2

1

:   be a map defined 

by mMmm 2121 ))((  , for all Mm 11  

and Mm 22 . Clearly that   an isomorphism. 

Since 
M

M

M

A

11

 , then M
M

A
2

1

)(  , by 

lemma (1.3). But MA
M

A
2

1

)(  . 

)3()2(   Let A  be a semisimple submodule 

of M , then by (2) there is a decomposition 

MMM 21  such that AM 1  and 

MMA 22  . By modular law 

)()( 2121 MAMMMAMAA  . 

)1()3(   Let A  be a semisimple submodule 

of M . By (3) A  can be written as 

SBA  , where B  is a direct summand of 

M  and MS  . To show that AB ce .  in 

M , let 
B

M
M :  be the natural 

epimorphism. Since MS  , then 

M
B

A

B

BS
S 


  )( , by lemma (1.3). 

Thus M  is w- -lifting. 

Following [10], an R -module M  is called an 

injective module if given any monomorphism 

BAf : and any homomorphism 

MAg : , there exists a homomorphism 

MBh :  such that gfh  .  

Proposition 3.6:  

     Let MMM 21  be an R -module. If  

M 1  is w- -lifting and M 2   is injective        

w- -lifting, then M  is w- -lifting. 

Proof:  

     Let A  be a semisimple submodule of M . 

Then AMAA 12
)(  , for some 

submodule  A1  of A . Hence by (the second 

isomorphism theorem) 

M
AM

M

A

MA
2

12

2

1

21 





. Now, consider 

the short exact sequence     

00
121

1

11

21 



 

AMA

AM

A

M

A

MA
i 

           

Where i  is the inclusion map and   is the 

natural epimorphism. By [6, 16.3], this short 

exact sequence split. Let 
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A

M

A

MA

A

M

1

3

1

21

1




  for some MM 3 . 

Then MMMMAM 32321  . Since 

MMMMM 3221  , then MM 13   

and hence M 3  is w- -lifting module. So there 

exists a direct summand Y  of M 3  such that 

MY 3  and AY ce 1.  in M 3 . Now, since 

MA 2  is semisimple submodule of M 2 , 

there exists a direct summand X  of M 2  such 

that MAX ce 2.   in M 2 . It is clear that 

YX   is a direct summand of M . Now, let 

YX

M

X

M
f


:

1
 and 

YX

M

Y

M
f


:

2
 be 

a maps defined as follows 

)()(
1

YXmXmf   and 

)()(
2

YXmYmf  . Since 

X

M

X

MA





2
  and 

Y

M

Y

M


1
,  then

 

YX

M

YX

YMA

X

MA
f












)(
)( 22

1
 and 

YX

M

YX

XA

Y

A
f







 

11

2
)(  by lemma (1.3). 

Hence 
YX

M

YX

A

YX

MA

YX

A















12
,  

by lemma (1.3). Thus M  is w- -lifting 

module. 

Proposition 3.7:  

     Let MMM 21  be an R -module. If 

M 1  is a w- -lifting module and M 2  is a 

semisimple module, then M  is w- -lifting. 

Proof:  

      Let A  be a semisimple submodule of M . 

By modular law 

])[()()( 2112111 MMAMMMMAMA  . 

Since M 2  is semisimple then MMA 21)(   

is a diect summand of M 2 . So 

MMA 21)(     is a direct summand of M . 

Therefore MA 1  is a direct summand of M . 

Since A  is semisimple, then there exists 

submodule X  of A  such that 

XMAA  )( 1 . Hence 

MXMXMAMA 1111 ])[(  . Now, 

since M 1  is w- -lifting, then there exists a 

direct summand B  of M 1  such that 

)( 1. MAB ce   in M 1  and hence 

)( 1. MAB ce   in M , by lemma (1.4). 

Clearly XB  is a direct summand 

XM 1 , since MXMA  11   and 

MA 1  is a direct summand of M , then 

XB  is a direct summand of A . 

Claim that 
XB

M

XB

XMA

XB

A












])[( 1
.  

Let 
XB

Y

XB

XMA

XB

M











])[( 1
 where 

XB

M

XB

Y
sc





.

. Then 

YMAYXMAM  )(])[( 11  and 

hence 
B

Y

B

MA

B

M





)( 1
. Since 

XB

M

XB

Y
sc





.

, then by (the third 

isomorphism theorem) MY sc .
  and hence 

B

M

B

Y
ce .

. But 
B

M

B

MA





)( 1
, therefore 

YM  . Thus AXB ce . XB  in M  

and hence M  is w- -lifting. 

Lemma 3.8:  

     Let M  be a w- -lifting module. Then 

MMM 21 , where M1  is semisimple 

module and M 2  is w- -lifting module with 

MMsoc 22)(  .   

Proof:  

     Assume that M  is w- -lifting. Since 

)(Msoc  is semisimple submodule of M , then 

there is a decomposition  MMM 21  such 

that )(1 MsocM   and 

MMsocMsocM 222 )()(   . Thus 

M 1  is semisimple by [8, lemma3.1], and M 2  

is    w- -lifting. 

Proposition 3.9:  

     Let M  be an indecomposable and not 

simple module. Then M  is w- -lifting if and 

only if MMsoc )( . 

Proof:  

      Assume that 0)( Msoc . Since )(Msoc  

is semisimple submodule of M , then 

SAMsoc )( , where A  is a direct 

summand of M  and MS  . But M  is 

indecomposable, therefore 0A . Thus 

MMsoc )( . Conversely, assume that 
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MMsoc )(  and let A  be a semisimple 

submodule of M . Clearly 

MMsocA  )( , hence MA , by          

lemma (1.3). Thus M  is w- -lifting module. 

Proposition 3.10:  

     Let P  be a projective module. Then the 

following statements are equivalent: 

1. P  is w- -lifting. 

2. For every semisimple submodule A  of P ,  

A

P
 has a projective  -cover. 

Proof: 

)2()1(   Let A  is a semisimple submodule 

of P . Then there exists a submodule X  of A  

such that YXP  , for some PY   and 

YYA   . Now, consider the following short 

exact sequence:  

          00 


 
YA

Y
YYA

i 

   

Where i  is the inclusion map and   be the 

natural epimorphism. By (the second 

isomorphism theorem), 
YA

Y

A

YA

A

P





   

Since P  is  projective and Y  is a direct 

summand of M , then Y  is projective. But 

YYA   )ker( , therefore Y  is a 

projective  -cover of  
YA

Y


 Since 

YA

Y

A

P


  Thus 

A

P
 has a projective   -cover. 

)1()2(   let A  be a semisimple submodule 

of P  and let 
A

P
P :  be the natural 

epimorphism. By (2), 
A

P
 has a projective      

 -cover. Thus by [2, lemma 2-3], there exists 

a decomposition PPP 21  such that  

A

P
PP

2:|
2

  is a projective  -cover and 

)ker(1 P . This implies that AP 1  and 

PPA
P 22)|ker(

2
  . Thus P  is               

w- -lifting module. 

Proposition 3.11:  

     Let P  be a projective module with 

PP  )( . Then P  is w- -lifting if and only 

if for every semisimple submodule X  of P , 

there exists a direct summand A  of P  such 

that  AX   (where )()( PPXX  ). 

Proof:  

     Assume that X  is a semisimple submodule 

of P . Then SAX  , where A is a direct 

summand of P  and PS  .                           

So )(PS   and hence 

)()()( PAPAAPX   . Thus 

AX  . Conversely, let X  be a semisimple 

submodule of P , then there exists a direct 

summand A  of P  such that AX  . Let 

BAP   for some PB . Since 

)(

)(

)(

)(

)(

)(

)(

)(

)( P

PB

P

PX

P

PB

P

PA

P

P































then )(PBXP  . Since
 

PP  )( , 

then by lemma (1.3), YBXP  )(  for 

projective semisimple submodule Y  of )(P . 

By modular law 

BABXBABXPBXBX  ))(()()()( . 

Since P  is projective, then BX   is 

projective and hence BX   is B -projctive, 

by [9, p.68]. So ABX  )(   is                 
B -projective by [7, prop.2-1-6]. So there exists 

XX 1  such that �, by [6, 41.14]. So 

YBXYBXP  1)( . Now, 

PPPBXYBX   )())(()( , 

hence PYBX  )( . Thus P  is w- -

lifting module. 

Following [9], an R -module M  is called 

quasi-projective if M  is M -projective. 

Theorem 3.12:  

     Let M  be quasi-projective module. Then 

the following statements are equivalent: 

1. M  is w- -lifting. 

2. Every semisimple submodule A  of M  has 

a  -supplement which is a direct 

summand. 

Proof:  

)2()1(   Let A  be a semisimple submodule 

of M , then there is a decomposition 

MMM 21  such that AM 1  and 

MMA 22  . Clearly MAM 2 , then 

M 2  is a  -supplement of A  in M  which is a 

direct summand. )1()2(   Assume that every 

semisimple submodule has a  -supplement 
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which is a direct summand and let A  is a 

semisimple submodule of M , then there exists 

a direct summand B of M   such that 

ABBBM  1  and BBA    for 

some submodule  B1  of M . Let 

BA

B
M


:  where    and 

A

M
M :  be the natural epimorphism 

and
BA

B

A

M


:  be an isomorphism and let 

BA

B
B


:  be an epimorphism. Now, since 

M  is  M -projective, then by [7, prop.2-1-5] 

M  is B -projective and hence there exists a 

homomorphism BMh :  such that h  . 

So )()( MMh    , ))(())(( MMh   , 

BA

B

BA

Mh






)(
,  therefore BMh )( . Thus h  

is epimorphism. Since  B  is M -projective, by 

[7, pro.2-1-6], then  h  is split by [7, pro.2-1-8]. 

Hence there exists a homomorphism 

MBg :  such that Igh B . By [10, 

coro.3-4-10], )Im()ker( ghM  . 

Ah )ker( . Clearly )()Im( BAggA  . 

Since BBA   , then 

)Im()Im()( ggABAg   , by         

lemma (1.3). Thus M  is w- -lifting module. 

 

4. FI- -lifting modules 

    We introduce the concept of FI- -lifting 

with example and some basic properties. 

Example 4.1: 

     Consider the Z -module  ZZM 28 . 

One can easy show that M  is FI- -lifting, but 

not  -lifting. 

Proposition 4.2:  

     The following statements are equivalent for 

an R -module M . 

1. M  is FI- -lifting module. 

2. Every fully invariant submodule A   in M  

can be written as SXA    with X  is a 

direct summand of M  and MS  . 

3. Every fully invariant submodule A  of M  

can be written as SXA    with X  is a 

direct summand of M  and MS  . 

Proof:  

)2()1(   Let A  is a fully invariant 

submodule of M , then there exists a direct 

summand X  of M  such that AY ce .  in M . 

So XXM 1 , for some MX 1 . By 

modular law 

)()( 11 XAXXXAMAA  . 

To show that XXA 11  , let 

YXAX  )( 11  where XY sc 1. , then 

YAM  . Now, 
X

Y

X

A

X

M
 , by (the 

isomorphism theorems)  

Y

X

XY

XX

XY

M

XXY

XM 11 









. Since 

XY sc 1. , then 
X

M

X

XY
sc


.

 But  

X

M

X

A
 , therefore XYM  . Since 

XXM 1  and XY 1 , then XY 1 . let 

XAS 1 . Thus SXA  , where X  is a 

direct summand of M  and MS  . 

)3()2(   Clear. )1()3(   Let A  be a fully 

invariant submodule of M . Then SXA  , 

where X  is a direct summand of M  and 

MS  . So YXM   for some MY  . 

Since Y  is a  -supplement of X  in  M  and 

MS  , then Y  is a  -supplement of 

ASX   in M , by lemma (1.5). Hence 

YAM   and  YYA   . To show that 

AX ce .  in M , let 
X

M
Y :  be a map 

defined by Xyy )( . Clearly   is an 

isomorphism. Since YYA   , then 

X

M

X

A
YA   )(  by lemma (1.3). Thus M  

is FI- -lifting module. 

Theorem 4.3: 

     The following statements are equivalent for an 

R -module M . 

1. M  is FI- -lifting module. 

2. Every fully invariant submodule A  of M  

has a  –supplement B  in M  such that 

BA  is a direct summand in A . 
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Proposition 4.4:  

     Let M  be FI- -lifting R -module and A  

be a fully invariant direct summand of M , 

then A  is FI- -lifting. 

Proof:  

     Suppose that BAM   is FI- -lifting 

module where A  is a fully invariant 

submodule of M . Now, let X  be a fully 

invariant submodule of A , so X  is a fully 

invariant submodule of M , by [11, lemma2.1]. 

Then SYX  , where Y  is a direct 

summand of M  and MS  and hence 

AS  and clearly Y  is adirect summand of 

A . Thus A  is FI- -lifting. 

Proposition 4.5: 

     Let M  be an indecomposable R -module. 

If M  is FI- -lifting, then for every fully 

invariant submodule A  of M , MA  )( . 

Proof:  

     Let A  be a fully invariant submodule of 

M . Since )(A  is a fully invariant submodule 

of A , then )(A  is a fully invariant 

submodule of M , by [11, lemma 2.1]. Hence 

SBA )( , where B   is a direct summand 

of M  and MS . But M  is an 

indecomposable, therefore 0B . Thus 

SA )(  and hence MM  )( . 

Theorem 4.6: 

     Let M iM
Ii




  be a direct sum of                     

FI- -lifting modules. Then M  is              FI-

 -lifting. 

Proof:  

     Let A  be fully invariant submodule of M , 

then )( MA iA
Ii




 and MA i  is a fully 

invariant submodule of M i ,              by [11, 

lemma 2.1]. Since each of M i  is             FI- -

lifting, then SXMA iii  , where X i  is a 

direct summand of M i  and MS ii . Let 

X iX
Ii




  and SiS
Ii




 . It is clear that X  

is a direct summand of M  and MS  .  

 

Proposition 4.7:  

      Let M  be FI- -lifting module satisfies the 

condition ( *). If M1  and M 2  are fully 

invariant direct summands of M , then 

)( 21 MM   is a direct summand of M . 

Proof:  

     Assume that 021 MM . Since M1  and 

M 2  are fully invariant, then MM 21  fully 

invariant, by [11, lemma 2.1]. Now, since M  

is FI- -lifting module, then there exists a 

submodule X  of M  such that 

XMMM  )( 21
, XXMM  )( 21

, 

hence MXMM  )( 21
, by lemma 

(1.3) and YXMMMM  ])([)( 2121
, for 

some )( 21 MMY  , by theorem (3.13). 

Clearly YXM  . Claim that )(
1

XM   

and )(
2

XM   are direct summand of X . By 

modular 

law

YXMYXMMMM  )()( 1111 . 

Since M1  is a direct summand of M , then 

)(
1

XM   is a direct summand of M  and 

hence )(
1

XM   is a direct summand of X . 

Similarly, we have )( 2 XM   is direct 

summand of X . But M  satisfies ( *) 

condition, therefore  X  satisfies ( *) 

condition, by lemma (2.4). Since 

XXMMXMXM  )()()( 2121
, 

then 0)()( 21
 XMXM . Thus we get 

0)( 21
 XMM . By modular law 

)()()()( 212121
YXMMMMMMM 

YYXMM  ))(( 21
. Thus 

)( 21 MM   is a direct summand of M . 

Proposition 4.8:  

    Let P  be a projective module. Then the 

following statements are equivalent: 

1. P  is FI- -lifting module. 

2. For every fully invariant submodule A  of 

P , 
A

P
 has a projective  -cover. 

Proof:  

)2()1(   Let A  be a fully invariant 

submodule of P . Then SXA  , where X  

is a direct summand of P  and PS  . So 
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YXP  , for some PY  . By modular 

law )()( YAXYXAPAA  . 

Now, let 
X

P
P :  be the natural 

epimorphism. Since PS  , then 

X

P

X

A

X

XS
S 


 )( . 

Let
A

P

XS

P

X

P
f 


:  be an epimorphism. 

One can easily show that 

X

P

X

A
X   )|ker( . Thus 

X

P
 has a 

projective  -cover. )1()2(   Let A  be a 

submodule of P  and let 
A

P
P :  be the 

natural epimorphism and let 
A

P
M :  be a 

projective  -cover of 
A

P
 for every fully 

invariant submodule A  of M . Then by       

[11, lemma 2-1], there exists a decomposition 

YXP   such that 
A

P
X

X
:|  is a 

projective -cover and )ker(Y , this 

implies that AY   and 

PXXA
X

  )|ker( , then 

PXA   .  Thus P  is FI- -lifting. 
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