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Abstract 

     Based on the conjugacy condition often which is satisfy by quasi-Newton method, the 

new version of DY nonlinear conjugate gradient method is proposed, which is descent 

methods even with inexact line searches. The search direction of the proposed method 

has the form 
kkkkk

dgd 
111 

 . When exact line search is used, the proposed 

method reduce to the standard DY method. Convergence properties of the proposed 

method is discussed.  Numerical results are reported. 

Key Words: Conjugate gradient algorithm, DY-Algorithm, descent direction, global 

convergence.  

 

 غادة مؤيد رشيد**هدى عصام أحمد، *

 العراق -كمية عموم الحاسوب والرياضيات، جامعة الموصل. الموصلقسم بحوث العمميات والتقنيات، *
 العراق -**قسم الرياضيات، كمية عموم الحاسوب والرياضيات، جامعة الموصل. الموصل

 
 الخلاصة

 Dai and Yuanتتحقددق بواسددلة هرددبان نيددوتن ،النسدد ة الجةيددةة المعةلددة للريقددةإن قاعدةة رددرل التراعددق عدداةة      

(DY)     لمتةرج المتراعق لمةوال غيدر ال ليدة قدة اقترحدت عد  لدحا البحدث. لدحن اللريقدة تحقدق  اصدية ا نحدةار حتد
 إحا است ةمنا لريقة بحث غير المضبول.

 لددحن اللريقددة المقترحددة تعددر  بالرددكل ا تدد  
kkkkk

dgd 
111 

 و عنددةما يكددون  ددل  البحددث المسددت ةم .
 .DYمضبول عأن اللريقة المقترحة تعوة إل  الصيغة العامة للريقة  

 ع  لحا البحث قمنا بةراسة   واص التقارب الرمول  ، ووضعت المبرلنات ال اصة بها الت  تعزز لحن ال واص.

1-Introduction: 
     We concerned with the unconstrained 

minimization problem 

   Minimize f(x), nRx                                 (1) 

where RRf n : is smooth and its gradient 

)()( xfxg   is available. There are several kinds 

of numerical methods for solving [1], which 

include for example,  the steepest descent, the 

Newton method and quasi-Newton method. 

Among them, the conjugate gradient method is 

one choice for solving large scale problems, 

because it does not need any matrices [1,2,3] 

Conjugate gradient methods are iterative methods 

of the form given by: 

  
kkkk

dxx 
1

,                      (2)  

where 
k

 >0 is a positive step size and 
k

d  is a 

search direction. The search direction are usually 

defined by: 



Ahmed and Al-Naemi                                    Iraqi Journal of Science, 2012, vol.53, No.3, pp 620-628 

 

 026 

  














1,

0

1

1

1
kifdg

kifg
d

kkk

k

k


          (3)  

where )(
11 


kk

xfg  and R
k
 is scalar 

parameter which characterizes conjugate gradient 

methods [4]. 

Usually the parameter 
k

  is chosen so that [2,3] 

reduces to linear conjugate gradient method if f(x) 

is strictly convex quadratic function and if 
k

  is 

calculated by the exact line search. Several kind of 

formulas for 
k

  has been proposed, for example, 

the Hestens-Stiefel (HS), Fletcher-Reeves (FR), 

Polak-Ribie're (PR), Liu-Storey (LS) and Dai-

Yaun (DY) formula [5], [6], [7], [8], [9]& [10]. 
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where 
kkk

ggy 
1

 and .  denote the Euclidean 

norm. If f(x) is strictly convex quadratic function 

xbGxxxf TT 
2

1
)(                    (9) 

where nxnRG  is a symmetric positive definite 

matrix, and if k  is the exact one-dimensional 

minimizer then the method (2) and (3) is called 

the linear conjugate  method, within the 

framework of linear conjugate gradient methods, 

the conjugacy condition is defined by 

   0
j

T

i
Gdd , ji                       (10)       

for search direction, and this condition guarantees 

the finite termination of the linear conjugate 

gradient methods. On the other hand, the method 

(2) and (3) is called the nonlinear conjugate 

gradient method for several unconstrained 

optimization problem. The conjugacy condition is 

replaced by 

   0
1


 k

T

k
yd                      (11) 

for search direction, because the relations: 

)(
1

111 kk

T

k

k

k

T

k
xxGdGdd 
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1

11 kk

T

k

k

ggd 



 

             
k

T

k

k

yd
1

1





                     (12) 

holds for strictly convex quadratic objective 

function. The extension of the conjugacy 

condition was studied by Perry [11] and also 

Shanno [15]. 

However, both the conjugacy condition (10) and 

(11) depend on exact line search. In particular 

computation, one normally carries on inexact line 

search instead of exact line search. In the case 

when 0
1


 k

T

k
dg  , the conjugacy condition (10) 

and (11) may have some disadvantages, for this 

season the extension of the conjugacy condition 

studied by Perry [11]. He tried to accelerate the 

conjugate gradient method by incorporating the 

second-order information into it, specifically, he 

used the quasi-Newton method, when the search 

direction kd  can be calculated in the form: 

   
111 


kkk

gHd                         (13) 

where 
1k

H  is nxn symmetric and positive definite 

and with quasi-Newton condition defined by: 

   
kkk

syH 
1

                                       (14) 

where 
kkkkk

dxxs 
1

. For quasi-Newton 

method, by (13) and (14), we have that 

   
k

T

kkk

T

k
ygHyd )(

111 
   

            )(
11 kk

T

k
yHg


  

            
k

T

k
sg

1
                          (15) 

equation (15) is called Perry's condition, which 

implies (11) hold if the line  search is exact, since 

in this case .01  k

T

k sg  

      However, practical algorithms normally adopt 

inexact line searches instead of exact line 

searches. Recently Dai and Liao [13] replace the 

conjugacy condition (11) with the condition: 

   
k

T

kk

T

k
stgyd

11 
                        (16) 
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where 0t  is a scalar. In the case t=0, (16) 

reduces to the usual conjugacy condition (11). On 

the other hand, in then case t=1, (16)  becomes 

Perry's condition (15).  

 

To establish convergence properties of any 

method, it is usually required that the step size 
k

  

should satisfy the strong Wolfe conditions: 

 

)18()(

)17()(

k

T

kk

T

kkk

k

T

kkkkkk

dgddxg

dgxfdxf








   

where 1 o   [14]. On other hand, many 

other numerical methods (e.g. the steepest descent 

and quasi-Newton methods) for unconstrained 

optimization are proved to be convergent under 

the Wolfe conditions, which are weaker than the 

strong Wolfe conditions: 

)20()(

)19()()(

k

T

kk

T

kkk

T

k

T

kkkkkk

dgddxg

dgxfdxf








 

thus it is an interesting to study global 

convergence of conjugate gradient methods under 

the Wolfe conditions  instead of the strong Wolfe 

condition [15] &[16]. 

Besides conjugate gradient methods, the following 

gradient type methods 

)21(
1,

0,

11

1

1















kifdg

kifg
d

kkkk

k

k


 

have also been studied extensively by many 

authors, here 
1k

  and 
k

  are two parameters. 

Clearly, if 1
1


k
 , the methods (21) becomes 

conjugate gradient method (3). Zhang et al [17] 

proposed a modified FR-method where the 

parameter in(21) are given by: 

21

k

k

T

k

k

g

yd



 and

2

2

1

k

kFR

kk

g

g


   

This method satisfied 
2

111 


kk

T

k
gdg . 

Moreover, this method convergences globally for 

general function with Armijo or Wolfe line search. 

Brigin and Martinez [4] proposed a special  

conjugate gradient method by combining 

conjugate gradient method and spectral gradient 

method [18] in the following way 

kkkkk
dgd  

 111
, 

where 
1k

  and 
k

 is parameter and  

k

T

k

k

T

k

k

k
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k

kkk

k
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ss
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yd
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1

1
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 , 

Andrei [2] proposed another conjugate gradient  

method where the search direction is selected as  

   
k

DL

kkkk
dgd  

 111
, 

where 

   
k

k

T

k

k

T

k

k

k

T

k

k

T

kDL

k
s

sy

gs
ts

sy

gy
)()( 11    . 

In this paper, we are concerned with the methods 

(21) with the parameter DY

kk 11 
  , because Dai 

and Yaun method always generates descant 

direction and under Lipschitz assumption its 

globally convergent. Then we try to construct new 

1k
  by using the idea of DY method [10]. 

This paper is organized as follows. In Section 2, 

we present new formulas for 
1k

  corresponding 

algorithms, and prove a descent search direction. 

In section 3, we analyze global properties of the 

proposed method with inexact line searches, In 

Section 4, we report numerical comparison with 

existing conjugate gradient methods. 

2-New Formula for  
1k

  and Algorithms 

     In this section we present a modified of the Dai 

and Yuan computational method, we describe the 

following two-terms DY conjugate gradient type 

method    

)22(
1,)1(
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1

1
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d

k

DY

kk

l

k

k
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where, for convenience, we write l

kk 11
1


  , 

and l

k 1
  is positive parameter. 

In order to get the formula for l

k 1
  in our method, 

multiply both sides of (22) by 
k

y . 

)23(
1111 k

T

k

DY

kk

T

k

l

kk

T

kk

T

k
ydygygyd  


sub

stituting (16) and (8) into (23), we have 

2

11111 


kk

T

k

l

kk

T

kk

T

k
gygygstg  so, we 

have 
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since, t is parameter, let t be defined by: 
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where   is constant and )1,0[ . Then, we have 
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then the new scalar 
1k

  is defined by  
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For convenience, we summarize the above method 

as the following algorithm which we call the two-

term DY method. 

2.1 Algorithm of two-term DY method 

(modified DY method) 

Step(0): Given nRx 
1

 , 0 , set 

)(
111

xfgd  , if 
1

g  then stop. 

Step (1): Find 0
k

  satisfying the Wolfe 

condition (19) and (20) 

Step(2): Let 
kkkk

dxx 
1

 and  )(
11 


kk

xgg . 

If  
1k

g , then stop; Otherwise continue. 

Step(3): Compute 
1

,
kk

  by the formula (8), 

(27), respectively and generate the new search 

direction 
1k

d  by (22). 

Step(4): If k=n or 
2

11
2.0




kk

T

k
ggg  is satisfy, 

go to step (0), else k=k+1 and go to step (1). 

Note, if exact line search is used, it is easily to see 

that the algorithm (2.1) reduce to the standard DY 

method. 

2.2 The Sufficient Descent Condition. 

     In the global convergence analysis for many 

methods, the sufficient descant condition, namely 

for some constant c>0 (c is positive constant). 

   
2

111 


kk

T

k
gcdg                      (28) 

This condition has been used to analyze the global 

convergence of conjugate gradient Algorithms 

with inexact line searches [1]. The following 

result shows that algorithm (2.1) produces 

sufficient descent directions. 

 

Lemma 2.2.1 

 

      Let {
k

x } and {
k

d } be generated by 

Algorithm (2.1), and let 
k

  be obtained by the 

Wolfe line search (19) and (20), if  )1,0[ , then 

we have  

   c
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where )]1(1[  c . 

Proof: 

  Note, that when 0  in (27) then (22), 

become: 
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initial direction (k=1) we have : 
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11111
 ggdgd T   

Suppose  
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     We  have from (22) and the definition of  DY  

(8) that: 
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Since 10   then let )]1/(1[  c  is 

positive constant  i.e. 
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The proof is complete. 

3- Convergence Analysis 
     For the global converge analysis of many 

methods, the following assumption is often 

needed. 

 

Assumption (1): 

i-The level )}()(/{
0

xfxfRx n   is 

bounded. 

 ii- In some neighborhood    of   , f is 

continuously differentiable and its gradient is 

Lipschitz continuous, i.e. there exists a constant 

L>o, such that 

yxLygxg  )()( ,  yx, (31) 

Clearly Assumption (1) implies that, their exists a 

constant 0 , such that  

   )(xg , x                            (32) 

The following Lemma, called the Zountendijk 

condition is often used to prove global 

convergence of conjugate gradient methods holds 

and consider It was originally given by [19],[20]. 

 

Lemma 3.1 

     Suppose that Assumption (1) holds. Consider 

any iteration method of the form (1) and (2), 

where 
k

d  satisfies descent direction 0
k

T

k
dg  

and k  is obtained by the Wolfe conditions or the 

strong Wolfe conditions, then the following holds 
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where 
k

 is the angel between the search direction 

kd   and the steepest descent direction 
k

g  [21]. 

Theorem 3.2 

     Suppose that Assumption (1) holds, if 

)1,0[ , where the sequence  
k

x  generated by 

Algorithm (2.1) with the Wolfe line search then 

(19)& (20) satisfies 

   0inflim 


k
k

g                                   (35) 

Proof: 

     We will using the contradiction for prove 

theorem (3.2), i.e. if the theorem is not true, then 
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Take the squares of both sides to (37), we get 
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4- Numerical results  
     We testes the HS, FR, PR and DY formulas 

(4), (5), (6) and (8) respectively and our new 

method (modified of the DY method) (22), (27). 

All results are obtained using Pentium 4 

workstation and all programs are written in 

Fortran Language. Our line search subroutine 

compute k such that the Wolfe condition (19) 

&(20) holds with 001.0 , and 9.0  the 

value of  
k

  is always compute by cubic fitting 

procedure  which was described in details by 

Bundy [22]. 

We have tested 14 nonlinear test functions with 

different dimensions n=1000,10000 and also 

higher dimension like n=100000, 1000000. The 

numerical results are given in the form of NOI and 

NOF ( number of iterations and number of 

function evaluations). The stopping condition used 

was 5

1
101 




k
g . 

Comparing the new method with HS, FR, PR and 

DY formulas  we could say that the new method is 

more better than all especially for large 

dimensions. 

In order to get relatively better   values in 

Algorithm (2.1), we choose 14 complex problems 

to test Algorithm (2.1)  with different   values. 

(Table 1) lists these numerical results where NOF 

and NOI mean the number of function evaluations 

and the number of iterations. 

In (Table 1), we see that Algorithm (2.1) with 

5.0  performed best. Moreover, we also 

compared Algorithm (2.1) with other Algorithms 

in the previous sections and numerical results 

showed that they performed similarly. So in this 

section, we only listed the numerical results for 

Algorithms (2.1)  with 5.0 . These results are 

reported in (Table 2). The symbol * in (Table 1) 

and (table 2)  means that the algorithm is unable to 

solve the particular problem.  
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Table 1: Test results for Algorithm(2.1) with different   values. 

Test 

functions 

    (n)               

 
          

 

   NOI     

 

   NOF         

Test 

functions    

(n)            

 
             

 

     NOI 

     

 

    NOF  

Powell 

(1000) 

0.0 

0.1 

0.3 

0.5 

0.7 

0.9 

1.0 

52 

30 

30 

28 

30 

28 

26 

126 

68 

68 

63 

67 

62 

60 

Wood 

(10000) 

0.0 

0.1 

0.3 

0.5 

0.7 

0.9 

1.0 

24 

56 

60 

33 

56 

40 

56 

54 

135 

151 

96 

173 

122 

169 

Rosen 

(100000) 

0.0 

0.1 

0.3 

0.5 

0.7 

0.9 

1.0 

27 

27 

27 

27 

29 

30 

30 

69 

69 

69 

69 

76 

76 

76 

Cubic 

(1000000) 

0.0 

0.1 

0.3 

0.5 

0.7 

0.9 

1.0 

16 

16 

16 

16 

16 

16 

16 

44 

44 

44 

44 

45 

45 

45 

Recipe 

(12000) 

0.0 

0.1 

0.3 

0.5 

0.7 

0.9 

1.0 

6 

6 

6 

6 

6 

6 

6 

18 

18 

18 

18 

18 

18 

18 

Shallow 

(1000000) 

0.0 

0.1 

0.3 

0.5 

0.7 

0.9 

1.0 

10 

10 

10 

10 

10 

10 

10 

25 

25 

25 

25 

25 

25 

25 

NOND 

(1000) 

0.0 

0.1 

0.3 

0.5 

0.7 

0.9 

1.0 

26 

26 

27 

27 

27 

27 

27 

65 

65 

64 

64 

64 

65 

65 

Strait 

(1000) 

0.0 

0.1 

0.3 

0.5 

0.7 

0.9 

1.0 

8 

8 

8 

8 

8 

8 

8 

20 

20 

20 

20 

20 

20 

20 

Wolfe 

!10000) 

0.0 

0.1 

0.3 

0.5 

0.7 

0.9 

1.0 

135 

129 

127 

116 

118 

109 

120 

274 

260 

256 

235 

240 

224 

242 

Sum 

(1000000) 

0.0 

0.1 

0.3 

0.5 

0.7 

0.9 

1.0 

80 

96 

112 

107 

102 

116 

132 

270 

360 

394 

534 

385 

439 

470 

Dixon 

(100000) 

0.0 

0.1 

0.3 

0.5 

0.7 

0.9 

1.0 

470 

481 

484 

474 

465 

428 

483 

1025 

1044 

1048 

1017 

1025 

1046 

1060 

Raydan 

(100) 

0.0 

0.1 

0.3 

0.5 

0.7 

0.9 

1.0 

45 

45 

45 

45 

45 

45 

45 

49 

49 

49 

49 

49 

49 

49 

Powell-3 

(300000) 

0.0 

0.1 

0.3 

0.5 

0.7 

0.9 

1.0 

20 

20 

19 

18 

18 

16 

* 

43 

43 

40 

39 

39 

35 

* 

Quartc 

(1000000) 

0.0 

0.1 

0.3 

0.5 

0.7 

0.9 

1.0 

1 

1 

1 

1 

1 

1 

1 

4 

4 

4 

4 

4 

4 

4 

* the algorithm fail converge 
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Table 2: Comparison of different CG-algorithms with different test functions and different dimensions 

Test 

 

functions 

 

 

n 

New 

algorithm 

5.0  

NOI(NOF) 

FR 

algorithm 

 

NOI(NOF) 

HS 

algorithm 

 

NOI(NOF) 

DY 

algorithm 

 

NOI(NOF) 

PR 

algorithm 

 

NOI(NOF) 

Powell 1000 

10000 

100000 

1000000 

33 (96) 

33 (96) 

33 (96) 

33 (96) 

31 (92) 

36 (110) 

36 (110) 

36 (124) 

41 (109) 

41 (109) 

41 (109) 

41 (109) 

48 (138) 

56 (169) 

56 (196) 

63 (210) 

54 (164) 

56 (168) 

62 (203) 

68 (242 

Wood 1000 

10000 

100000 

1000000 

28 (36) 

28 (63) 

29 (65) 

29 (65) 

27 (61) 

29 (66) 

29 (66) 

29 (66) 

30 (67) 

33 (73) 

33 (73) 

34 (75) 

27 (60) 

26 (60) 

27 (62) 

27 (62) 

29 (67) 

29 (67) 

29 (67) 

30 (69) 

Rosen 1000 

10000 

100000 

1000000 

27 (69) 

27 (69) 

27 (69) 

27 (69) 

29 (76) 

29 (76) 

30 (78) 

30 (78) 

30 (76) 

30 (76) 

30 (76) 

30 (76) 

30 (76) 

30 (76) 

30 (76) 

30 (76) 

29 (76) 

29 (76) 

30 (78) 

30 (78) 

Cubic 1000 

10000 

100000 

1000000 

16 (44) 

16 (44) 

16 (44) 

16 (44) 

15 (43) 

16 (45) 

16 (45) 

16 (45) 

16 (44) 

16 (44) 

16 (44) 

16 (44) 

15 (43) 

15 (45) 

16 (45) 

16 (45) 

16 (44) 

16 (44) 

16 (44) 

16 (44) 

Recipe 1000 

10000 

100000 

1000000 

5 (16) 

6 (18) 

6 (18) 

6 (18) 

5 (16) 

6 (18) 

6 (18) 

6 (18) 

5 (16) 

6 (18) 

6 (18) 

6 (18) 

5 (16) 

6 (18) 

6 (18) 

6 (18) 

5 (16) 

6 (18) 

6 (18) 

6 (18) 

NOND 1000 

10000 

100000 

1000000 

26 (64) 

27 (64) 

27 (64) 

27 (64) 

30 (78) 

30 (78) 

30 (78) 

31 (80) 

27 (65) 

27 (65) 

27 (65) 

29 (69) 

27 (65) 

27 (65) 

27 (65) 

27 (65) 

30 (78) 

30 (78) 

30 (78) 

33 (84) 

Wolfe 1000 

10000 

100000 

1000000 

52 (105) 

116(235) 

123(250) 

122(249) 

52 (105) 

114(232) 

113(234) 

121(250) 

70 (141) 

98 (200) 

108(220) 

97 (197) 

52 (105) 

120(242) 

111(226) 

108(220) 

64 (129) 

118 (238) 

111 (227) 

106 (215) 

Dixon 1000 

10000 

100000 

1000000 

455(998) 

481(1062) 

482(1046) 

437(961) 

252(994) 

521(994) 

521(1128) 

486(8433) 

4214(8433) 

6597(13197) 

4214(8433) 

522(1127) 

479(1034) 

485(1068) 

483(1060) 

471(1022) 

1038(2086) 

6353(12709) 

481(1065) 

524(1140) 

Shallow 1000 

10000 

100000 

1000000 

10 (25) 

10 (25) 

10 (25) 

10 (25) 

10 (25) 

10 (25) 

10 (25) 

10 (25) 

10 (25) 

10 (25) 

10 (25) 

10 (25) 

10 (25) 

10 (25) 

10 (25) 

10 (25) 

10 (25) 

10 (25) 

10 (25) 

10 (25) 

Strait 1000 

10000 

100000 

1000000 

7 (18) 

7 (18) 

7 (18) 

8 (20) 

6 (15) 

6 (15) 

7 (18) 

7 (18) 

6 (15) 

6 (15) 

6 (15) 

6 (15) 

7 (18) 

7 (18) 

8 (20) 

8 (20) 

6 (14) 

6 (14) 

6 (14) 

6 (14) 

Sum 1000 

10000 

100000 

1000000 

27 (115) 

41 (161) 

73 (336) 

107(534) 

21(106) 

23(102) 

63(262) 

98(380) 

18 (82) 

30 (107) 

68 (321) 

136(537) 

25 (91) 

37 (175) 

61 (307) 

132(470) 

21(110) 

32(161) 

71(315) 

123(552) 

Quartc 1000 

10000 

100000 

1000000 

1 (4) 

1 (4) 

1 (4) 

1 (4) 

1 (4) 

1 (4) 

1 (4) 

1 (4) 

1 (4) 

1 (4) 

1 (4) 

1 (4) 

1 (4) 

1 (4) 

1 (4) 

1 (4) 

1 (4) 

1 (4) 

1 (4) 

1 (4) 

Powell-3 3000 

30000 

300000 

17 (37) 

18 (39) 

18 (39) 

20 (43) 

20 (43) 

21 (46) 

14 (31) 

* 

* 

17 (36) 

* 

* 

21 (46) 

* 

* 

Raydan 100 13 (39) 45 (91) 46 (93) 13 (39) 45 (91) 

* the algorithm fail converge 
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