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Abstract

Based on the conjugacy condition often which is satisfy by quasi-Newton method, the
new version of DY nonlinear conjugate gradient method is proposed, which is descent
methods even with inexact line searches. The search direction of the proposed method

has the form d,,, =—6,.,9,.,4.d,. When exact line search is used, the proposed

method reduce to the standard DY method. Convergence properties of the proposed
method is discussed. Numerical results are reported.
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1-Introduction:

We concerned with
minimization problem

Minimize f(x), xe R" 1)
where f:R" — R is smooth and its gradient
g(x) =Vf(x) is available. There are several kinds
of numerical methods for solving [1], which
include for example, the steepest descent, the
Newton method and quasi-Newton method.

the unconstrained

1y,

Among them, the conjugate gradient method is

one choice for solving large scale problems,

because it does not need any matrices [1,2,3]

Conjugate gradient methods are iterative methods

of the form given by:
X =X T dy, (2)

where «, >0 is a positive step size and d, is a

search direction. The search direction are usually
defined by:
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if k=0
if k>1

3)

_ {_ gk+1

- gk+1 + ﬁkdk 1
where g,,=Vf(x,) and S eRis scalar
parameter which characterizes conjugate gradient
methods [4].

Usually the parameter g, is chosen so that [2,3]
reduces to linear conjugate gradient method if f(x)
is strictly convex quadratic function and if «, is
calculated by the exact line search. Several kind of
formulas for g, has been proposed, for example,
the Hestens-Stiefel (HS), Fletcher-Reeves (FR),
Polak-Ribie're (PR), Liu-Storey (LS) and Dai-
Yaun (DY) formula [5], [6], [7], [8]. [9]& [10].

T
o _ G Y

k+1

- 4
k d:’yk ( )
2
kFR — ||gk+12 (5)
o]
T
kPR — gk+1y2k (6)
lg.|
s oY
=2kt 7
k d:—gk ( )
DY — ||gk+1 i (8)
Cdy,

where y, =g,,,—9, and || denote the Euclidean
norm. If f(x) is strictly convex quadratic function

f(x) %XTGx+bTx 9)

where G eR™ is a symmetric positive definite
matrix, and if o, is the exact one-dimensional

minimizer then the method (2) and (3) is called
the linear conjugate method, within the
framework of linear conjugate gradient methods,
the conjugacy condition is defined by

d'Gd, =0, i ]

(10)

for search direction, and this condition guarantees
the finite termination of the linear conjugate
gradient methods. On the other hand, the method
(2) and (3) is called the nonlinear conjugate
gradient method for several unconstrained
optimization problem. The conjugacy condition is
replaced by

vy
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dy.Y, =0 (11)
for search direction, because the relations:

1
d|<T+1Gdk = a_ d|<T+1G(Xk+1 - Xk)

k

1
= dkT+1(gk+1_gk)
a

k

zid|<T+1yk
ay

holds for strictly convex quadratic objective
function. The extension of the conjugacy
condition was studied by Perry [11] and also
Shanno [15].

However, both the conjugacy condition (10) and
(11) depend on exact line search. In particular
computation, one normally carries on inexact line
search instead of exact line search. In the case
when g,,,d, #0 , the conjugacy condition (10)
and (11) may have some disadvantages, for this
season the extension of the conjugacy condition
studied by Perry [11]. He tried to accelerate the
conjugate gradient method by incorporating the
second-order information into it, specifically, he
used the quasi-Newton method, when the search

direction d, can be calculated in the form:

(12)

d = _Hk+lgk+l (13)

where H, ., is nxn symmetric and positive definite
and with quasi-Newton condition defined by:

He 1Y =S¢ (14)
where s, =X, —X, =«,d,. For quasi-Newton
method, by (13) and (14), we have that
dkT+1yk = _(Hk+1gk+1)T Yy
= _g:+1(Hk+1yk)
= _gIJrlSk

equation (15) is called Perry's condition, which
implies (11) hold if the line search is exact, since

in this case g, s, = 0.

k+1

(15)

However, practical algorithms normally adopt
inexact line searches instead of exact line
searches. Recently Dai and Liao [13] replace the
conjugacy condition (11) with the condition:

dkT+1yk = _tgll-lsk (16)
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where t>0 is a scalar. In the case t=0, (16)
reduces to the usual conjugacy condition (11). On
the other hand, in then case t=1, (16) becomes
Perry's condition (15).

To establish convergence properties of any
method, it is usually required that the step size «,

should satisfy the strong Wolfe conditions:
f(x +ead,)-f(x)<da9.d, A7)

9(x, + e, d,)"d,|<~0g/d, 19
where 0<d <o <1 [14]. On other hand, many
other numerical methods (e.g. the steepest descent
and quasi-Newton methods) for unconstrained
optimization are proved to be convergent under
the Wolfe conditions, which are weaker than the
strong Wolfe conditions:

f(Xk +akdk)_ f(xk)gé‘akgldk (19)

9" (X +,d,)"d, 209,d, (20)

thus it is an interesting to study global
convergence of conjugate gradient methods under
the Wolfe conditions instead of the strong Wolfe
condition [15] &[16].
Besides conjugate gradient methods, the following
gradient type methods

,if k=0

_gk+1
dia = 27
- {_ekﬂgku + p.d.if k=1 20

have also been studied extensively by many
authors, here 6,,, and p, are two parameters.

Clearly, if 6,, =1, the methods (21) becomes

conjugate gradient method (3). Zhang et al [17]
proposed a modified FR-method where the

parameter in(21) are given by:
2

;
0k+1 = dk y: and ﬂk — kFR — ||gk+12

.l lo.]
This  method satisfied  gy,,d,,, =9, 2

Moreover, this method convergences globally for
general function with Armijo or Wolfe line search.
Brigin and Martinez [4] proposed a special
conjugate gradient method by combining
conjugate gradient method and spectral gradient
method [18] in the following way

dk+1 = _9k+1gk+1 + ﬁkdk )

vy
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where 6,,, and p.is parameter and
_ T
ﬂk — (eka-l):'k Sk) and 9k+1 — s1k' Sk ,
de Vi S Vi

Andrei [2] proposed another conjugate gradient
method where the search direction is selected as

DL
dk+1 = _ek+1gk+1 +:Bk dk )
where

T sT
kDL :(ykTgk+1)Sk —t( kgkﬂ)sk .
k Yk k Yk
In this paper, we are concerned with the methods

(21) with the parameter S, = B, , because Dai

and Yaun method always generates descant
direction and under Lipschitz assumption its
globally convergent. Then we try to construct new
6,., by using the idea of DY method [10].

This paper is organized as follows. In Section 2,
we present new formulas for 6,,, corresponding
algorithms, and prove a descent search direction.
In section 3, we analyze global properties of the
proposed method with inexact line searches, In
Section 4, we report numerical comparison with
existing conjugate gradient methods.

2-New Formula for ¢,,, and Algorithms

In this section we present a modified of the Dai
and Yuan computational method, we describe the
following two-terms DY conjugate gradient type
method

Jifk=0

_gk+1
Gy = 22
o {_(1+9kl+1)gk+1+ﬁkDde,ifk21( )

=146,

where, for convenience, we write 6, ,, i1

and 6,

.., IS positive parameter.

In order to get the formula for 6, in our method,
multiply both sides of (22) by vy, .

dlj—+l yk = _g;-lyk - 011+1g:+1yk + ﬂkDY dlj yk (23) SUb
stituting (16) and (8) into (23), we have

T T I AT 2
—109,.18¢ =0k Y _9k+1gk+lyk +||gk+1" SO, we

have



Ahmed and Al-Naemi

9kI+lgI+lyk :tgl—-ﬂS +||gk+1||2 - g;—lyk
1 gIJrlSk ||gk+1||
0k+1 _t T ’
Ok Y gk+1yk
0k|+1 =t gI‘Fl ||gk+l (gk+1 k) 1
gk+1yk gk+lyk gk+1
then
.
0|<I+1 gk+1 ||gk+l ( gk+1 ) -1 (24)
gk+lyk Sy Yk ”9“1
since, t is parameter, let t be defined by:
T T
t= glfr+lyk _ ng+1yk (25)
gk+lsk sk yk
where p isconstantand p [0,1) . Then, we have
2
| ||gk+l gk+1 k gk+1sk
k+l ( ) T
S STy,
since s, =, d,
kI+1 — DY gIJrldI; _ gd;—-:ldk (26)
||gk+l k yk
then the new scalar 6, ,, is defined by
9k+l :1+ 0!14—1
:1+ﬁkDY g|1—+ldl; gk:l k ( )
lowal™ — deve

For convenience, we summarize the above method
as the following algorithm which we call the two-
term DY method.

2.1 Algorithm of two-term DY method
(modified DY method)

Step(0):
d1 -0,
Step (1): Find «, >0 satisfying the Wolfe
condition (19) and (20)

Step(2): Let x,,, =X+, d, and g,,; = 9(X,..)-
If |g..|<e. then stop; Otherwise continue.
Step(3): Compute fg,,6,,, by the formula (8),
(27), respectively and generate the new search
direction d,,, by (22).

Step(4): If k=n or |g7,,09,[>0.2]g,.,| is satisfy,
go to step (0), else k=k+1 and go to step (1).

Given X, € R" ,e>0,  set

=-Vf (x), if |g,]|<& then stop.

vy
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Note, if exact line search is used, it is easily to see
that the algorithm (2.1) reduce to the standard DY
method.

2.2 The Sufficient Descent Condition.

In the global convergence analysis for many
methods, the sufficient descant condition, namely
for some constant ¢>0 (c is positive constant).

g:+ldk+l < _C||gk+1 i (28)
This condition has been used to analyze the global
convergence of conjugate gradient Algorithms
with inexact line searches [1]. The following
result shows that algorithm (2.1) produces
sufficient descent directions.

Lemma 2.2.1

Let {x,} and {d } be generated by
Algorithm (2.1), and let «, be obtained by the
Wolfe line search (19) and (20), if p<[01), then
we have

T
gk+1dk+l <—

: (29)
|9kl
where ¢ =[1+ po/(1-0o)].
Proof:
Note, that when p=0 in (27) then (22),
become:
4l aGea =9l — B 900, + B 910,
For
:_||gk+1
initial direction (k=1) we have :
dl =0, = le g, :_||gl||2<0
Suppose
g;d; <0, Vj=12..k

We have from (22) and the definition of A"
(8) that:

gk+1dk

_”g k+1||2 dT y ||gk+1|| (30)

Which implies that:
g;+1dk —

2

g:+ldk+1 = +p

gk+ldk

de y,

||gk+l
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=—(-p) - p(i- ?j FeaZe)
k k
;
since , [1— gk;ldk]z_gﬁdk
de Yy dey,
T T
gk+ldl; :_(1_ )_’_pg:dk
||gk+1 dk yk
from the Wolfe condition (20)
_(1_a)g;dk
gk+1 k+l g;'dk
TS (- p) = p
" Oy @ _G)g:dk

=1+ po/@L-0)] .
Since 0<o <1 then let c=[1+ po/l-o0)] is
positive constant i.e.

gk+l k+l— C||gk+1

The proof is complete.

3- Convergence Analysis

For the global converge analysis of many
methods, the following assumption is often
needed.

Assumption (1):
i-The level
bounded.

ii- In some neighborhood Q of V¥, f is
continuously differentiable and its gradient is
Lipschitz continuous, i.e. there exists a constant
L>o0, such that

Ja()—gy)| < Lx—y], vx,y e Q(31)

Clearly Assumption (1) implies that, their exists a
constant y >0, such that

lax)| <y, vxeQ

Y={xeR"/f(X)< f(x,)} is

(32)

The following Lemma, called the Zountendijk
condition is often used to prove global
convergence of conjugate gradient methods holds
and consider It was originally given by [19],[20].

Lemma 3.1
Suppose that Assumption (1) holds. Consider
any iteration method of the form (1) and (2),

where d, satisfies descent direction g;d, <0
and ¢, is obtained by the Wolfe conditions or the
strong Wolfe conditions, then the following holds

Ty ¢
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T 2
i (gk dkz) < 40 (33)
<o [d.]
or equivalently
k%Hgk"2 cos’ ¢, <o (34)

where ¢, is the angel between the search direction
d, and the steepest descent direction —g, [21].
Theorem 3.2

Suppose that Assumption (1) holds, if
p €[01), where the sequence {x, } generated by
Algorithm (2.1) with the Wolfe line search then
(19)& (20) satisfies

Ikiminf||gk||:0 (35)

Proof:
We will using the contradiction for prove
theorem (3.2), i.e. if the theorem is not true, then

|| =0, then there exists » >0, such that
loGo|>r.,  Vk.
Then, from (30)

gk+l k

T
dkk

d 2
k+lgk+1 = _”g k+1 ||g k+1

g;—+1dk

g;—+1dk+l +1= =
d ¥y

2
||g k+1

Use second Wolfe condition (20) and Lipschitz
condition (32) for d, y, < Ld,s,. Therefore

(36)

g;—+1dk+1 +12 g:dk
||gk+l i Ld:Sk
09, d,
> p———
Laklldkllz
Then
Lak ( k+1gk+1 +1) 2 g;d; (37)
PO |9, o]
Take the squares of both sides to (37), we get
(Lak) ( k+1gk+1 +1) (gkdk
loa]’ [
Since (9,d,)? =||gk|| ||dk|| cos’ ¢,
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Then
d Ij+lg k;rl + 1)
9kl

o

n( 2 2||gk||2cosz¢k > y%cos’ g w

L
el
pPo
Taking the summation from k=1 to k=0, we get
T T 2
in(gkudk? +1)2 > i (gk dkz)
k>1 ”gk+1 k>1 ”dk "

here, n=(

>Yy?cos’ g, =0
k>1

Contradiction  with  Zountendijk
Therefore Ikiminf||gk|| =0.

theorem.

4- Numerical results

We testes the HS, FR, PR and DY formulas
(4, (5), (6) and (8) respectively and our new
method (modified of the DY method) (22), (27).
All results are obtained using Pentium 4
workstation and all programs are written in
Fortran Language. Our line search subroutine

compute ¢, such that the Wolfe condition (19)
&(20) holds with 6=0.001, and p=0.9 the
value of ¢, is always compute by cubic fitting

procedure which was described in details by
Bundy [22].

We have tested 14 nonlinear test functions with
different dimensions n=1000,10000 and also
higher dimension like n=100000, 1000000. The
numerical results are given in the form of NOI and
NOF ( number of iterations and number of
function evaluations). The stopping condition used
was |g,.,| <1x10°.

Comparing the new method with HS, FR, PR and
DY formulas we could say that the new method is
more Dbetter than all especially for large
dimensions.

In order to get relatively better o values in
Algorithm (2.1), we choose 14 complex problems
to test Algorithm (2.1) with different o values.
(Table 1) lists these numerical results where NOF
and NOI mean the number of function evaluations
and the number of iterations.

In (Table 1), we see that Algorithm (2.1) with
p=0.5 performed best. Moreover, we also

compared Algorithm (2.1) with other Algorithms

1Yo
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in the previous sections and numerical results
showed that they performed similarly. So in this
section, we only listed the numerical results for
Algorithms (2.1) with p=0.5. These results are

reported in (Table 2). The symbol * in (Table 1)
and (table 2) means that the algorithm is unable to

solve the particular problem.
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Table 1: Test results for Algorithm(2.1) with different o values.

Test Test
functions P NOI NOF functions P NOI NOF
() (n)
Powell 0.0 52 126 Wood 0.0 24 54
(1000) 0.1 30 68 (10000) 0.1 56 135
0.3 30 68 0.3 60 151
0.5 28 63 0.5 33 96
0.7 30 67 0.7 56 173
0.9 28 62 0.9 40 122
1.0 26 60 1.0 56 169
Rosen 0.0 27 69 Cubic 0.0 16 44
(100000) 0.1 27 69 (1000000) 0.1 16 44
0.3 27 69 0.3 16 44
0.5 27 69 0.5 16 44
0.7 29 76 0.7 16 45
0.9 30 76 0.9 16 45
1.0 30 76 1.0 16 45
Recipe 0.0 6 18 Shallow 0.0 10 25
(12000) 0.1 6 18 (1000000) 0.1 10 25
0.3 6 18 0.3 10 25
0.5 6 18 0.5 10 25
0.7 6 18 0.7 10 25
0.9 6 18 0.9 10 25
1.0 6 18 1.0 10 25
NOND 0.0 26 65 Strait 0.0 8 20
(1000) 0.1 26 65 (1000) 0.1 8 20
0.3 27 64 0.3 8 20
0.5 27 64 0.5 8 20
0.7 27 64 0.7 8 20
0.9 27 65 0.9 8 20
1.0 27 65 1.0 8 20
Wolfe 0.0 135 274 Sum 0.0 80 270
110000) 0.1 129 260 (1000000) 0.1 96 360
0.3 127 256 0.3 112 394
0.5 116 235 0.5 107 534
0.7 118 240 0.7 102 385
0.9 109 224 0.9 116 439
1.0 120 242 1.0 132 470
Dixon 0.0 470 1025 Raydan 0.0 45 49
(100000) 0.1 481 1044 (100) 0.1 45 49
0.3 484 1048 0.3 45 49
0.5 474 1017 0.5 45 49
0.7 465 1025 0.7 45 49
0.9 428 1046 0.9 45 49
1.0 483 1060 1.0 45 49
Powell-3 0.0 20 43 Quartc 0.0 1 4
(300000) 0.1 20 43 (1000000) 0.1 1 4
0.3 19 40 0.3 1 4
0.5 18 39 0.5 1 4
0.7 18 39 0.7 1 4
0.9 16 35 0.9 1 4
1.0 * * 1.0 1 4

* the algorithm fail converge

Y1
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Table 2: Comparison of different CG-algorithms with different test functions and different dimensions

Iragi Journal of Science, 2012, vol.53, No.3, pp 620-628

Test New FR HS DY PR
algorithm algorithm algorithm algorithm algorithm
functions n p=05
NOI(NOF) NOI(NOF) NOI(NOF) NOI(NOF) NOI(NOF)
Powell 1000 33 (96) 31 (92) 41 (109) 48 (138) 54 (164)
10000 33(96) 36 (110) 41 (109) 56 (169) 56 (168)
100000 33 (96) 36 (110) 41 (109) 56 (196) 62 (203)
1000000 33 (96) 36 (124) 41 (109) 63 (210) 68 (242
Wood 1000 28 (36) 27 (61) 30 (67) 27 (60) 29 (67)
10000 28 (63) 29 (66) 33 (73) 26 (60) 29 (67)
100000 29 (65) 29 (66) 33(73) 27 (62) 29 (67)
1000000 29 (65) 29 (66) 34 (75) 27 (62) 30 (69)
Rosen 1000 27 (69) 29 (76) 30 (76) 30 (76) 29 (76)
10000 27 (69) 29 (76) 30 (76) 30 (76) 29 (76)
100000 27 (69) 30 (78) 30 (76) 30 (76) 30 (78)
1000000 27 (69) 30(78) 30 (76) 30 (76) 30 (78)
Cubic 1000 16 (44) 15 (43) 16 (44) 15 (43) 16 (44)
10000 16 (44) 16 (45) 16 (44) 15 (45) 16 (44)
100000 16 (44) 16 (45) 16 (44) 16 (45) 16 (44)
1000000 16 (44) 16 (45) 16 (44) 16 (45) 16 (44)
Recipe 1000 5 (16) 5 (16) 5 (16) 5 (16) 5 (16)
10000 6 (18) 6 (18) 6 (18) 6 (18) 6 (18)
100000 6 (18) 6 (18) 6 (18) 6 (18) 6 (18)
1000000 6 (18) 6 (18) 6 (18) 6 (18) 6 (18)
NOND 1000 26 (64) 30 (78) 27 (65) 27 (65) 30 (78)
10000 27 (64) 30 (78) 27 (65) 27 (65) 30 (78)
100000 27 (64) 30 (78) 27 (65) 27 (65) 30 (78)
1000000 27 (64) 31 (80) 29 (69) 27 (65) 33 (84)
Wolfe 1000 52 (105) 52 (105) 70 (141) 52 (105) 64 (129)
10000 116(235) 114(232) 98 (200) 120(242) 118 (238)
100000 123(250) 113(234) 108(220) 111(226) 111 (227)
1000000 122(249) 121(250) 97 (197) 108(220) 106 (215)
Dixon 1000 455(998) 252(994) 4214(8433) 479(1034) 1038(2086)
10000 481(1062) 521(994) 6597(13197) | 485(1068) | 6353(12709)
100000 482(1046) 521(1128) 4214(8433) 483(1060) 481(1065)
1000000 437(961) 486(8433) 522(1127) 471(1022) 524(1140)
Shallow 1000 10 (25) 10 (25) 10 (25) 10 (25) 10 (25)
10000 10 (25) 10 (25) 10 (25) 10 (25) 10 (25)
100000 10 (25) 10 (25) 10 (25) 10 (25) 10 (25)
1000000 10 (25) 10 (25) 10 (25) 10 (25) 10 (25)
Strait 1000 7 (18) 6 (15) 6 (15) 7 (18) 6 (14)
10000 7(18) 6 (15) 6 (15) 7(18) 6 (14)
100000 7(18) 7(18) 6 (15) 8 (20) 6 (14)
1000000 8 (20) 7(18) 6 (15) 8 (20) 6 (14)
Sum 1000 27 (115) 21(106) 18 (82) 25 (91) 21(110)
10000 41 (161) 23(102) 30 (107) 37 (175) 32(161)
100000 73 (336) 63(262) 68 (321) 61 (307) 71(315)
1000000 107(534) 98(380) 136(537) 132(470) 123(552)
Quartc 1000 1(4) 1(4) 1(4) 1(4) 1(4)
10000 1(4) 1(4) 1(4) 1(4) 1(4)
100000 1(4) 1(4) 1(4) 1(4) 1(4)
1000000 1(4) 1(4) 1(4) 1(4) 1(4)
Powell-3 3000 17 (37) 20 (43) 14 (31) 17 (36) 21 (46)
30000 18 (39) 20 (43) * * *
300000 18 (39) 21 (46) * * *
Raydan 100 13 (39) 45 (91) 46 (93) 13 (39) 45 (91)

* the algorithm fail converge

Yy
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