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Abstract
In this paper consideration is given to viscose, incompressible, time-depended and
non-Newtonian fluid flowing in a straight pipe with square cross-section under the
action of pressure gradient. In particular consideration is given to second order fluid
flow which can be represented by the equation of state of the form:

2
Tij =2n e; + 4; Zeikekj ij=12
k=1

Where 1 viscosity coefficient and { is normal stress coefficient and, Tj and e;, i,j =1,2
are the stress and rate of strain respectively. Cartesian coordinate system has been used
to describe the fluid motion and it is found that equations of motion are controlled by
Reynolds number and non-Newtonian parameter. The motion equations are solved by an
explicit method namely MAC. Our study is ended with studying the effect of Reynolds
number and non-Newtonian parameter on the fluid flow.
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1-Introduction

There was a prolific development of
computational fluid dynamics (CFD) methods in
the fluid dynamics group at Los Alamos
Laboratories in the year's from1958 to the late
1960s. This development was largely due to the
energy, creativity and leadership of Francis
Harlow.
The MAC method first appeared in 1965. It was
developed by Harlow and Welch [1] specifically
for free surface flows, and this method is a finite
difference solution technique for investigating the
dynamic of an incompressible viscose fluid, it
employs the primitive variables of pressure and
velocity.
In 1970 Amsden and Harlow [2] subsequently
developed a simplified MAC method (SMAC)
which circumvented difficulties with the original
method by splitting the calculation cycle into two
parts, namely: a provisional velocity field
calculation followed by a velocity revision
employing an auxiliary potential function to
ensure incompressibility throughout.
Miyata [3], in 1986 used SMAC for the simulation
of both water waves generated by ships and
breaking waves over circular and elliptical bodies.
In the 1990s many authors considered different,
but related methods, like volume of fluid (VOF),
[4] for example, in [5] developed an Improvement
version for general regions called GENSMAC, an
adaptation for generalized Newtonian flow.
More recently, the MAC method has been
extended to cope the generalized Newtonian flows
in both two and three dimensions by [6], In 2004,
Oishi CM. et.al, they are studied two dimensional
time dependent incompressible fluid flow problem
by GENSMAC.[7]
In 2008, McKee S. et.al,[8] they study the MAC
method and it will be applied to several problems
such as free surface, hydraulic jump, rising
bubbles and jet buckling.
In this paper I will steady the MAC method with a
non-Newtonian fluid and the effect of each of
Reynolds number and non-Newtonian parameter
on the flow with square cross section.

2-A Mathematical Formulation
Unsteady flow of fluid in the xy- plane is
considered. The non-Newtonian fluid is
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characterized by equation of state of the form:
2 - .
T, =2n¢; +44’k§1eikekj j=12  ..(1)

Where Tj , e and  ,  are stress , rate of strain
and viscosity coefficient and normal stress
coefficient respectively, where the strain and the

stress components are;
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Where U and V are the velocity component in the
direction coordinates x; and y; respectively

3-The Motion Equations and Continuity
Equation in stress form

The motion equations for two dimensional flow
in Cartesian coordinates my be written as:

(au ouU ouU J oP* T, T,
ol —+U—+V — |=— +—t 4
ot X M, 2 0%, oy,
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And the continuity equation
\Y
@ + a_ =0 . (4)
0% Oy
Where U,V is the dimensional velocity

components in x;,y; directions respectively and p
is density of the fluid and P” is the dimensional
pressure and the terms T,, ,T, . are the normal

XX 7 Y

stress in the directions x,y; and Tlel Ty1X1 are the

shear stress in the direction Xi,y; and Yyi,X
respectively. In the above equations, we assume
that the fluid is incompressible (i.e.,p = constant),
and the above equations is called Navier-Stokes
equations.
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4-Naiver-Stokes in  Non-
Dimensional Form
We can write down the motion and continuity
equation (2)-(4) in non-dimensional form through
using scaling and order of magnitude analysis.
This is can be done by introducing the

following new quantities;

equations

b

V,
’»Z-ziot u
a

u=2 v=Y po
a' v,

=+ ,y=
0 ,DVO2

a
Where a, V, are the diameter of pipe and free
stream velocity respectively. The substitution of
these quantities into equations (2, 3 and 4) gives

the motion and continuity equations in
dimensionless form which are:
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or OX oy ox Re
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The above equations are controlled by two
parameters namely the Reynold's

4

Number Re :a—VO, and non-Newtonian f = —-

14

where v,p is kinematics viscosity and density of
the fluid respectively.

5- Naiver-Stokes equations in conservative
form:

In the last equations (5,6) the left hand side of
convective term are in the non-conservative form
but to apply the MAC formulation we need to
transform the convective term to conservative
form which can be do this with the help of
continuity equation (7) as ;
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Hence the equations (5,6) have the form;

2
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80— 2
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(8)
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.. (9)

6-MAC Formulation

One of the earliest, and most widely used
method for solving (8,9) is the MAC method
which is due to Harlaw and Welch (1965) [1].The
method is characterized by use the staggered grid
and the solution of a Poisson equation for pressure
at every time-step.
The MAC method was initially devised to solve
problems with free surfaces, but it can be applied
to any incompressible fluid flow.

6-1 Staggered Grid [9]

Computational solution of equations (8)-(9) are
often obtain on a staggered grid, this implies that
different dependent variables are evaluated at
different grid point , It can be seen that pressures
are defined at the center of each cell and that
velocity components are defined at the cell faces,
which is the prototype of MAC mesh distribution.

6-2 Discretizations of MAC [9]

The spatial discretization makes use of the
staggered grid (MAC mesh). We consider a very
simple explicit discretization in time. We choose
the conservative form of Navier-Stokes equations
as in (sec.5). In discrediting (8), the finite
difference expressions centered at grid point
(j+1/2, k) are used. This allows OP/ox to be
discredited as (Pj:1x-Pjk)/AXx which is a second-
order  discretization  about  grid  point
(1+1/2,k).Similarly equation (9) is discredited with
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finite difference expressions centered at grid point
(j.k+1/2)and OP/ox is represented as (Pjy+1-Pjk)/Ay
The use of the staggered grid primates coupling of
the u,v and P solutions at adjacent grid points.
This in turn prevents the appearance of oscillatory
solutions, particularly for P, that can occur if
centered differences are used to discretize all
derivatives on non-staggered grid. The oscillatory
behavior is usually worse at high Reynolds
number where the dissipative terms which do
introduce adjacent grid point coupling for u and v,
are small.

The following finite differences expressions are
utilized:

7@} _ (U?ﬁ/z,k _u?+1/2’k)+O(At)

L0t j+1/2,k At

LUZ} _ (UJ?+1/2,k *U;?.k)+o(sz)
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_@_ _ (UV)1+1/2.k+1/2 _(UV)j+1/2.k-1/2 4 O(Ayz)
LY Lk Ay

7@7 _ (uj+3/2.k =20k +uj71/2.k)+o(AX2)
_6)(2 Jjsr2k Ax?

_@_ _ (uj+1/2,k—1 —Ujgok uj+1l2,k+1) + O(Ayz)
_ayz Jirak Ay*

_E} _ (P 7Pj‘k)+o(AX2)

L OX juai2k Ax

[ o2 _ (uj+3/2,k+1 —Ujigoka ~Ujaka + Ujf1/2,k71)+ O(Ayz)
L OXY |, 10k Axay

(10)

Where AX, Ay are the step size in the x and y axes,
respectively. In the above expressions terms like
Uj+1x appears. To evaluate such terms averaging is
employed, i.e., Uj:1x= 0.5(Ujr1/2k+Uj+3i2). Similarly
(UV)jr12k+172 is evaluated as
(UV)j+272,k412=0.25(Ujs 112k F Ujs 12, k01) (Vi1 ke 172V s 12)
. In the MAC formulation the discretizations (10)
allow the following explicit algorithm to be
generated from (8) - (9);

g™ FD _AT[Pn+1 _
irtrak = Fiarzi = Pk

] (11)

Where;

o
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Similarly the discredited form of equation (9) can
be written as

n+l
Vi k1

Where;
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In equations (11) and (13) the pressure appears
implicitly; however, P™' is obtained before
equations (11) and (13) are used, as follows.
The continuity equation (7) is discredited as;

5 i), W —viitue) g .. (15)
AX Ay
The substitutionufy,,, ,vjiy, From  (11),(13)

allows the equations (7-9) to be rewritten as a
discrete Poisson equation for pressure, i.e.

k1~ 2P+ Pj,k+1) m
Ay?

{an+1/2,k — ':jn—llz.k }+ {G?.ku/z _GT.kllz}:l
AX Ay

(Pj—l,k — 2P + Piax ) + (Pj
AX?

1

[

AT

... (16)

Equation (16) is solved at each time step, either
using iterative techniques or the direct Poisson
solvers [5]. For us we will use the Gauss-sidel
method to get the solution for P™* which has been
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obtained from (16), substitution into equations
(11), (13) permits y1,, vt , to be computed.
7-Treatment of Boundary Conditions for
velocities and pressure [10]

Let I' be the boundary of the computational
domain and assume that the velocity V is given on
I'; i.e., Vr = (ur,vr) there is no condition for the
pressure P. But in our problem there is boundary
conditions for velocity which is Dirichelt
boundary condition, i.e., u=v=0 on T.

Hence we try to find a formulation for the
pressure P on the boundary I ,where the
computational domain is a square-cross section
named as ABCD. The grid is arranged so that
boundaries pass through velocity points but not
pressure points.
Vie = V21 = . .
and also U1 = Uypo = .
solid wall or in general form:
vjm:o foreach j=1,2,3,..,n onBC

Uy, =0 foreach k=1,2,3,..,m on AB
Vjmu =0foreach j=1,2,3,..,non AD

. =0, since BC is a solid wall
. =0, since AB is a

Up,apx =0foreachk=1,2,3,..,m onCD
.(27)

The evaluation of the Poisson equation for
pressure (16) requires values of the pressure
outside of the domain, when (16) is evaluated
centered at node (2,1) values of P,q and v, _y, are
required.

The P, can be calculated by expand equation (9)
at the center of the wall, since V at the boundary is
not a function of time that implies ov/dt = 0 and
also &v?/6y = 0 (by using boundary conditions
(17)). And duv/ox, 6°v/éx* will be vanished at the
wall, hence the equation (9) will be

oP 1 5°v

o __+ .. (18)
oy Re oy?
In discredited form this becomes;
Pix =Pixa _ 1 Vika —2Vi Vi
Ay Re (ayy
.(19)
We have
\ —2V., +V.
P. -P., — j.k+1 j.k j.k—1
MR Re(ay)
. (20)

1
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We apply equation (26) at the node (2, 1)

— 2V, + Vo 10

\%
P2,0 — P2'1 _r23/2 Re(Ay)

(21)

For equation (21), we put v,1, = 0 by using
boundary conditions (17) , but we need the value
of v,_11» , the continuity equation (7) is satisfied at
boundary, this implies that ov/0y = 0 (Since ou/0x

= 0) which may be written in difference form as:
A\ —V

Ay

jokr1 j.k—1

=0

From which, we obtain  Vjx:1 = Vjx1 ; We have
Vs = Vo112 .. (22)
The substitution of equation (22) in to (21) gives

2V, 3,2

P —P..— /2 .. (23
2,0 2,1 Re(Ay) ( )
In general we have
2v,
P. —p, T ik+liz .. (24
P Re(ay) @

This is the pressure formulation at the boundary
i.e., at the wall BC.

By similar technique we can find respectively the
pressure formulation at the walls BC, CD and AD
which are:-

2U,q/0k

P...=P,k— j=1,nand k=1 . . (25

LTI Re(AX) : (25)
2Uu; .

P... =P 2k k=1 nandj=m ...(26

i = i Relaw) J (26)

b _p 22zt nandk=m .. .(27)

j.k+1 j.k Re(Ay)

Where m and n are the number of discretizations
on x and y direction.

9- Stability Conditions for Time [8]

A time-stepping procedure for computing the
appropriate time-step size for every cycle is
employed. It is based on the stability conditions
(written in non-dimensional form)

At<&

Jul
AXPAY?AZ? Re
ACAY? + AXPAZ® + AZ°AY? 2

.. (28)

. (29)
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Where the first inequality is understood
component wise. The restriction (28) requires that
no particles should cross more than one cell
boundary in a given time interval; this is an
accuracy requirement. The second restriction (29)
comes from the explicit discretization of the
Navier—Stokes equations and is essentially a local
von Neumann stability requirement. Since low
Reynolds number flows (0 < Re < 10) are the
primary concern, it is anticipated that (29) is
generally the more restrictive condition.

10- Discussion the Results

In this section | will analyze the result that
obtain from solution equations (7)-(9) with
different values for Reynolds number and non-
Newtonian parameter which is for the first one |
take some values Re= 10,50,100,250 and 300, [8]
and for the other I choose f = 0.01, 0.1 and 0.4;
and also study all these values in separate cases,
and it noted that all figure for cross section there is
multiple vortices appear in the diagram of cross
section but in different intensity which observe
that appear one vortex with strong intensity
located in the left side of cross section and there
are many other vortices have different intensities
and gradually decay with it 's intensity from
strong to moderate to weak.
Clearly that all vortices has symmetric and
parallel to y-axis. For (figure 1-5) we note that as
Re increase from 10 to 300 and § = 0.01 the main
vortex have intensity with the range (9e-006 - 5e-
007) and we see there are many new vortex appear
when the values of Reynolds number are increase
with (3 still constant.
For the (figures 6-15) we see that the flow has the
same behavior as before but with = 0.1 and 0.4
respectively. But for Re=300 and the value of
increase from 0.01 to 0.4 we see the behavior of
flow in cross section has change because in
(fig.6,12) we see that there is five vortices that
appear but in (fig.15) we see only four, that mean
when P increase the number of vortices decrease
with Re have constant value.
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