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Abstract 

    In this paper consideration is given to viscose, incompressible, time-depended and 

non-Newtonian fluid flowing in a straight pipe with square cross-section under the 

action of pressure gradient. In particular consideration is given to second order fluid 

flow which can be represented by the equation of state of the form:  
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Where η viscosity coefficient and ζ is normal stress coefficient and, Tij and eij , i,j =1,2 

are the stress and rate of strain respectively. Cartesian coordinate system has been used 

to describe the fluid motion and it is found that equations of motion are controlled by 

Reynolds number and non-Newtonian parameter. The motion equations are solved by an 

explicit method namely MAC. Our study is ended with studying the effect of Reynolds 

number and non-Newtonian parameter on the fluid flow. 
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  MACمسألة مائع لانيوتيني غير مستقر في المستوي محمولة باستخدام خوارزمية 
 

 محمد صباح حسين
 العراق-. بغدادجاهعة بغداد، كلية العلوم ، قسن الرياضيات 

 
 الخلاصة

فدد  مق ددل  ر دد  مرّ ددل ت دد   , دد, , ريددر    ددغ   ن دد    نيوتددون  مدد  ل ا جريدد      رثسدد ِ  يقدد ه هددلب ث   دد      
 :م  ث نوع ث لي يُمْكُِ  أَْ  يُمثّغَ  مع   ِ      ِ       ث ث ني ث م  ل م  ث رت أ ت ر شكغ خ ص و  ث   ِ . تأثير

kjikijij eeeT  4 2     i,j = 1,2 

همدددد  مرك دددد   ثاجكدددد   و مرك دددد   معدددد غ ث مروندددد    دددد  ث تددددوث  . ن دددد ه  eijو  Tijهددددو  ث  دددد    مدددد  ل و   η يدددد   
ثسدددتخ ثمو  وحددد   ركددد  ث مددد  ل و ددد  وجددد  أ  معددد  ا  ث  ركددد  مُسدددي ر   يكددد  مددد    دددغ  ثلإ ددد ثثي   ث متع مددد   تددده

 MAC قدد إّ  معدد  اَ  ث  ركددَ  مَْ ُ و دد    ري وسددي ي    يمدد  ثد عدد   وهمدد   دد    رينو دد , وث وسددي  ث دد  نيددوتين . و
 .حري     ريق   ك  ي  أن  

 ر , ستوكث فرو    ث منتكي  ومع  ا  ن يفي -الكممات المفتاحية:
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1-Introduction 
     There was a prolific development of 

computational fluid dynamics (CFD) methods in 

the fluid dynamics group at Los Alamos 

Laboratories in the year's from1958 to the late 

1960s. This development was largely due to the 

energy, creativity and leadership of Francis 

Harlow. 

The MAC method first appeared in 1965. It was 

developed by Harlow and Welch [1] specifically 

for free surface flows, and this method is a finite 

difference solution technique for investigating the 

dynamic of an incompressible viscose fluid, it 

employs the primitive variables of pressure and 

velocity. 

In 1970 Amsden and Harlow [2] subsequently 

developed a simplified MAC method (SMAC) 

which circumvented difficulties with the original 

method by splitting the calculation cycle into two 

parts, namely: a provisional velocity field 

calculation followed by a velocity revision 

employing an auxiliary potential function to 

ensure incompressibility throughout. 

Miyata [3], in 1986 used SMAC for the simulation 

of both water waves generated by ships and 

breaking waves over circular and elliptical bodies. 

In the 1990s many authors considered different, 

but related methods, like volume of fluid (VOF), 

[4] for example, in [5] developed an Improvement 

version for general regions called GENSMAC, an 

adaptation for generalized Newtonian flow. 

More recently, the MAC method has been 

extended to cope the generalized Newtonian flows 

in both two and three dimensions by [6], In 2004, 

Oishi CM. et.al, they are studied two dimensional 

time dependent incompressible fluid flow problem 

by GENSMAC.[7] 

In 2008, McKee S. et.al,[8] they study the MAC 

method and it will be applied to several problems 

such as free surface, hydraulic jump, rising 

bubbles and jet buckling.  

In this paper I will steady the MAC method with a 

non-Newtonian fluid and the effect of each of 

Reynolds number and non-Newtonian parameter 

on the flow with square cross section.  

2-A Mathematical Formulation  
     Unsteady flow of fluid in the xy- plane is 

considered. The non-Newtonian fluid is 

characterized by equation of state of the form: 


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i,j=1,2       ...(1)                                          

Where Tij , eij and η , ζ are stress , rate of strain 

and viscosity coefficient and normal stress 

coefficient respectively, where the strain  and the 

stress components are; 
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Where U and V are the velocity component in the 

direction coordinates x1 and  y1 respectively 

3-The Motion Equations and Continuity 

Equation in stress form  
    The motion equations for two dimensional flow 

in Cartesian coordinates my be written as:  
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And the continuity equation  
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                                          .  (4)                                                                                                  

Where U,V is the dimensional velocity 

components in x1,y1 directions respectively and ρ 

is density of the fluid and P
*
 is the dimensional 

pressure and the terms  
11xxT ,

11 yyT are the normal 

stress in the directions x1,y1 and 
11 yxT

11xyT  are the 

shear stress in the direction x1,y1 and y1,x1 

respectively. In the above equations, we assume 

that the fluid is incompressible (i.e.,ρ = constant), 

and the above equations is called Navier-Stokes 

equations.    
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4-Naiver-Stokes equations in Non-

Dimensional Form  
    We can write down the motion and continuity 

equation (2)-(4) in non-dimensional form through 

using scaling and order of magnitude analysis.  

    This is can be done by introducing the 

following new quantities; 
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Where a, V0  are the diameter of pipe and free 

stream velocity respectively. The substitution of 

these quantities into equations (2, 3 and 4) gives 

the motion and continuity equations in 

dimensionless form which are: 
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The above equations are controlled by two 

parameters namely the Reynold's 

Number


0Re
aV

 , and non-Newtonian 
2a


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where ν,ρ is kinematics viscosity and density of 

the fluid respectively. 

5- Naiver-Stokes equations in conservative 

form:  
     In the last equations (5,6)  the left hand side of 

convective term are in the non-conservative form 

but to apply the MAC formulation we need to 

transform the convective term to conservative 

form which can be do this with the help of 

continuity equation (7) as ; 
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Hence the equations (5,6) have the form; 

 






















































































2

2

2

2

2

2
2

28

Re

1

x

v

yx

u

x

v

y

u

x

u

x

u

u
x

P

y

uv

x

uu





                       

                                                                  (8)   

 

 






















































































2

2

2

2

2

2
2

28

Re

1

y

u

yx

v

y

u

x

v

y

v

y

v

v
y

P

y

v

x

uvv





 

                                                            ... (9)                                                                                                                                                                                                                                                                  

6-MAC Formulation   
    One of the earliest, and most widely used 

method for solving (8,9) is the MAC method 

which is due to Harlaw and Welch (1965) [1].The 

method is characterized by use the staggered grid  

and the solution of a Poisson equation for pressure 

at every time-step.  

The MAC method was initially devised to solve 

problems with free surfaces, but it can be applied 

to any incompressible fluid flow. 

 6-1 Staggered Grid [9] 
    Computational solution of equations (8)-(9) are 

often obtain on a staggered grid, this implies that 

different dependent variables are evaluated at 

different grid point , It can be seen that pressures 

are defined at the center of each cell and that 

velocity components are defined at the cell faces, 

which is the prototype of MAC mesh distribution.  

6-2 Discretizations of MAC [9] 
    The spatial discretization makes use of the 

staggered grid (MAC mesh). We consider a very 

simple explicit discretization in time. We choose 

the conservative form of Navier-Stokes equations 

as in (sec.5). In discrediting (8), the finite 

difference expressions centered at grid point 

(j+1/2, k) are used. This allows ∂P/∂x to be 

discredited as (Pj+1,k-Pj,k)/Δx which is a second-

order discretization about grid point 

(j+1/2,k).Similarly equation (9) is discredited with 
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finite difference expressions centered at grid point 

(j,k+1/2)and ∂P/∂x is represented as (Pj,k+1-Pj,k)/Δy 

The use of the staggered grid primates coupling of 

the u,v and P solutions at adjacent grid points. 

This in turn prevents the appearance of oscillatory 

solutions, particularly for P, that can occur if 

centered differences are used to discretize all 

derivatives on non-staggered grid. The oscillatory 

behavior is usually worse at high Reynolds 

number where the dissipative terms which do 

introduce adjacent grid point coupling for u and v, 

are small. 

The following finite differences expressions are 

utilized: 
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Where ∆x, ∆y are the step size in the x and y axes, 

respectively. In the above expressions terms like 

uj+1,k appears. To evaluate such terms averaging is 

employed, i.e., uj+1,k= 0.5(uj+1/2,k+uj+3/2,k). Similarly 

(uv)j+1/2,k+1/2 is  evaluated as  

(uv)j+1/2,k+1/2=0.25(uj+1/2,k+uj+1/2,k+1)(vj+1,k+1/2+vj,k+1/2)

. In the MAC formulation the discretizations (10) 

allow the following explicit algorithm to be 

generated from (8) - (9);                                       
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Where; 
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                                                           … (12) 

Similarly the discredited form of equation (9) can 

be written as   

   1
,
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In equations (11) and (13) the pressure appears 

implicitly; however, P
n+1

 is obtained before 

equations (11) and (13) are used, as follows. 

    The continuity equation (7) is discredited as;  
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 The substitution 1
2/1,

1
,2/1  , 





n
kj

n
kj vu From (11),(13)  

allows the equations (7-9) to be rewritten as a 

discrete Poisson equation for pressure, i.e. 
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                                                            … (16)   

Equation (16) is solved at each time step, either 

using iterative techniques or the direct Poisson 

solvers [5]. For us we will use the Gauss-sidel 

method to get the solution for P
n+1

 which has been 
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obtained from (16), substitution into equations 

(11), (13)
 
permits 1

2/1,
1

,2/1  , 





n
kj

n
kj vu  to be computed.  

7-Treatment of Boundary Conditions for 

velocities and pressure   [10] 
    Let Γ be the boundary of the computational 

domain and assume that the velocity V is given on 

Γ; i.e., VΓ = (uΓ,vΓ) there is no condition for the 

pressure P. But in our problem there is boundary 

conditions for velocity which is Dirichelt 

boundary condition, i.e., u=v=0 on Γ. 

Hence we try to find a formulation for the 

pressure P on the boundary Γ,where the 

computational domain is a square-cross section 

named as ABCD. The grid is arranged so that 

boundaries pass through velocity points but not 

pressure points.  

v1,1/2 = v2,1/2 = .  .  . = 0, since BC is a solid wall 

and also u1/2,1 = u1/2,2 = .  .  . = 0, since AB is a 

solid wall or in general form: 

CDon   m, . . 1,2,3,. k each for  0  u

 ADon n , . . 1,2,3,.  jeach  for  0   v

 ABon   m, . . 1,2,3,. k each  for   0   u 

BCon n    , . . 1,2,3,.  jeach  for    0  v

k1/2,n

1/2mj,

k1/2,

j,1/2
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


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



   

                                                                 . (17)                                                                                                                                                                                                    

The evaluation of the Poisson equation for 

pressure (16) requires values of the pressure 

outside of the domain, when (16) is evaluated 

centered at node (2,1) values of P2,0 and v2,-1/2 are 

required. 

The P2,0 can be calculated by expand equation (9) 

at the center of the wall, since V at the boundary is 

not a function of time that implies  ∂v/∂τ = 0 and 

also ∂v
2
/∂y =  0 (by using boundary conditions 

(17)). And ∂uv/∂x, ∂
2
v/∂x

2
 will be vanished at the 

wall, hence the equation (9) will be  

2
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                                     .. (18)                                                                                                                                                  

    In discredited form this becomes; 
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We have  
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We apply equation (26) at the node (2, 1) 
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 For equation (21), we put v2,1/2 = 0 by using 

boundary conditions (17) , but we need the value 

of v2,-1/2 , the continuity equation (7) is satisfied at 

boundary, this implies that ∂v/∂y = 0 (Since ∂u/∂x 

= 0) which may be written in difference form as:   

0
1,1,




 

y

vv kjkj                               

From which, we obtain   vj,k+1 = vj,k-1 ; we have  

v2,3/2 = v2,-1/2                                            ... (22) 

The substitution of equation (22) in to (21) gives  
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v
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In general we have  
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                      ... (24)                                                                      

This is the pressure formulation at the boundary 

i.e., at the wall BC. 

By similar technique we can find respectively the 

pressure formulation at the walls BC, CD and AD 

which are:- 
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u
PP

kj

kjkj



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v
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
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2 2/1,

,1,
j=1,n and k= m   ..    . (27)                                                                                                  

Where m and n are the number of discretizations 

on x and y direction.   

9- Stability Conditions for Time [8] 
     A time-stepping procedure for computing the 

appropriate time-step size for every cycle is 

employed. It is based on the stability conditions 

(written in non-dimensional form) 

u

x
t                                                  ... (28) 

2

Re
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222

yzzxyx
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                   ... (29) 
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Where the first inequality is understood 

component wise. The restriction (28) requires that 

no particles should cross more than one cell 

boundary in a given time interval; this is an 

accuracy requirement. The second restriction (29) 

comes from the explicit discretization of the 

Navier–Stokes equations and is essentially a local 

von Neumann stability requirement. Since low 

Reynolds number flows (0 ≤ Re ≤ 10) are the 

primary concern, it is anticipated that (29) is 

generally the more restrictive condition. 

10- Discussion the Results 

     In this section I will analyze the result that 

obtain from solution equations (7)-(9) with 

different values for Reynolds number and non-

Newtonian parameter which is for the first one I 

take some values Re= 10,50,100,250 and 300, [8] 

and for the other I choose β = 0.01, 0.1 and 0.4; 

and also study all these values in separate cases, 

and it noted that all figure for cross section there is 

multiple vortices appear in the diagram of cross 

section but in different intensity which observe 

that appear one vortex with strong intensity 

located in the left side of cross section and there 

are many other vortices have different intensities 

and gradually decay with it 's intensity from 

strong to moderate to weak. 

Clearly that all vortices has symmetric and 

parallel to y-axis. For (figure 1-5) we note that as 

Re increase from 10 to 300 and β = 0.01 the main 

vortex have intensity with the range (9e-006 - 5e-

007) and we see there are many new vortex appear 

when the values of Reynolds number are increase 

with β still constant.  

For the (figures 6-15) we see that the flow has the 

same behavior as before but with β= 0.1 and 0.4 

respectively. But for Re=300 and the value of β 

increase from 0.01 to 0.4 we see the behavior of 

flow in cross section has change because in 

(fig.6,12) we see that there is five vortices that 

appear but in (fig.15) we see only four, that mean 

when β increase the number of vortices decrease 

with Re have constant value. 

 
Fig 1:The axial velocity for Re=10,β=0.01 

 
Fig 2: The axial velocity for Re=50,β=0.01 

 
Fig 3: The axial velocity for Re=100,β=0.01 

 
Fig 4: The axial velocity for Re=250,β=0.01 
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Fig 5: The axial velocity for Re=300, β=0.01 

 
Fig 6: The axial velocity for Re=10, β=0.1 

 

 
Fig 7: The axial velocity for Re=50, β=0.1 

 
Fig 8: The axial velocity for Re=100, β=0.1 

 

 
Fig 9: The axial velocity for Re=250, β=0.1 

 
Fig 10: The axial velocity for Re=300, β=0.1 

 

 

 
Fig 11: The axial velocity for Re=10, β=0.4 
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Fig 12: The axial velocity for Re=50, β=0.4 

 

 
Fig 13: The axial velocity for Re=100, β=0.4 

 
Fig 14: The axial velocity for Re=250, β=0.4 

 

 

 
Fig 15: The axial velocity for Re=300, β=0.4 
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