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Abstract 

     Let R be a prime ring and I a nonzero left Ideal of R which is a semi prime as a ring.  

For a right (σ,τ) – derivations δ:R → R, we prove the following results: 

(1) If δ acts as a homomorphism on I, then δ= 0 on R. 

(2) If δ acts as an anti- homomorphism on I, then either δ = 0 on R or I Z(R). 
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 اليمنى على المثاليات اليسرى (σ,)المشتقات
 

 اساور دريذ حمذي 
 العراق-. بغدادجاهعة بغداد، كلية العلوم ، قسن الرياضيات 

 
 الخلاصة

 δ :Rالايوتتي  (σ,τ)شتت م هثتتالا ك,لقتتة، برشتتتا ل شتتنقاق  Rر صتتيرل   هثتتالا ايستتر  يتت Iحلقتتة ايليتتة ي  Rلتتن ي      
←R  : التنائج الاتية 

 .  Rعلى δ  =0، فأى  Iشو تشاكل على  δاذا كاى  (1)

Iاي    Rعلى δ  =0  ، فأى اها  Iشو تشاكل هضاد على  δاذا كاى  (2) Z(R) .   

 

1. Introduction:  
     Throughout the present paper R will be denote 

an associative ring with center Z(R). Recall that R 

is prime if aRb={0} implies that either a=0 or 

b=0. Let Ryx , , the commutator [x,y] will 

denoted xy-yx. An additive mapping d:R → R is 

called a derivation (resp.,Jordan derivation) on R 

if d(xy)=d(x)y+xd(y) (resp., d(x
2
)=d(x)x+xd(x))  

holds, for all Ryx , . Let σ,τ are two mappings 

of R. An additive mapping d:R → R is called a 

(σ,τ)- derivation (resp., Jordan (σ,τ)- derivation) on 

R if d(xy)=d(x)σ(y)+τ(x)d(y)(resp.,d(x
2
)=d(x) 

σ(x)+ τ(x)d(x))  holds, for all Ryx , . Clearly 

every (1,1)- derivation (resp., Jordan (1,1)- 

derivation), where 1 is the identity mapping on R 

is  derivation (resp., Jordan  derivation) on R. An 

additive mapping δ: R → R is called a left 

derivation (resp., Jordan left derivation) if    

δ(xy)= x δ(y)+y δ(x) (resp.,δ(x
2
)=2xδ(x))  holds, 

for all Ryx , . In view of the definition of a 

(σ,τ)- derivation the notion of left (σ,τ)- derivation 

can be extended as follows: 

An additive mapping δ: R → R is called a left 

(σ,τ)- derivation (resp., Jordan left (σ,τ)-

derivation) on R if  δ(xy)=σ(x)δ(y)+ τ(y)δ(x) 

(resp., δ(x
2
)= σ(x)δ(x)+ τ(x)δ(x))  holds, for all 

Ryx , . Clearly every left (1,1)- derivation 

(resp., Jordan left (1,1)-derivation) is a left 

derivation (resp., Jordan left derivation) on R. An 

additive mapping δ: R → R is called a right 

derivation (resp., Jordan right derivation) on R 

if  δ(xy)=δ(y) x+δ(x)y (resp.,δ(x
2
)= 2δ(x)x)  holds, 

for all Ryx , . 

An additive mapping δ: R → R is called a right 

(σ,τ)- derivation (resp., Jordan right (σ,τ)-

derivation) on R if  δ(xy)= δ(y)σ(x)+δ(x) τ(y) 



Hamdi                                                                    Iraqi Journal of Science, 2012, vol.53, No.3, pp 608-611 

  

 806 

(resp.,δ(x
2
)= δ(x)σ(x)+δ(x)τ(x))  holds, for all 

Ryx , . Clearly, every right (1,1)- derivation 

(resp., Jordan right (1,1)-derivation) on R is a right 

derivation (resp.,Jordan right derivation) on R. 

     Bell and Kappe [1] proved that if d is a 

derivation of a prime ring R which acts as a 

homomorphism or as an anti- homomorphism on a 

nonzero right ideal I of R, then d=0 on R, further 

Yenigul and Arac [2] obtained the above result for 

α-derivation in prime rings. Recently   Ashraf, et 

al. [3] extended the result for (σ,τ)-derivation in 

prime and semiprime ring. Also in [4] Ӧ.Glbasi 

and N. Aydin proved that if d is a (σ,τ)-derivation 

which acts homomorphism or as an anti- 

homomorphism on a prime ring R, then d=0 on R. 

In [5] Majeed and Hamdi Asawer extended the 

above results for (σ, σ)-derivation which acts as a 

homomorphism or as an anti- homomorphism on a 

nonzero Jordan ideal and a subring J of a 2-torsion 

-free prime ring R, then they generalized the 

above extension for generalized (σ, σ)-derivation. 

Also they proved that if  d:R → R is a (σ,τ)-

derivation which acts as a homomorphism on a 

nonzero Jordan ideal and a subring J of a 2-

torsion-free prime ring R, then either d=0 on R or 

)(RZJ  . 

In [6]  Zaidi, et al. proved that if R is a 2-torsion-

free prime ring, J a nonzero Jordan ideal and a 

subring of R and d is a left (σ, σ)-derivation of R, 

which acts as a homomorphism or as an anti- 

homomorphism on R, then d=0 on R. Hamdi 

Asawer in[7] extended this result to a left (σ,τ)- 

derivation which acts as a homomorphism or as an 

anti- homomorphism on a nonzero Jordan ideal 

and a subring J of  R. 

As for more details and fundamental results used 

in this paper without mention we refer to 

[1,3,4,8,9,10 ,12]. 

The aim in this paper is to extend the above results 

and the theorem of Ӧ.Glbasi and N. Aydin [4] 

which state that if d is a nonzero (σ,τ)- derivation 

which acts as a homomorphism or as an anti- 

homomorphism on a nonzero left ideal I of  prime 

ring R which is a semiprime as a ring, then d=0 on 

R to a right (σ,τ)- derivation on R which acts as a 

homomorphism or as an anti- homomorphism on  

a nonzero left  ideal I of prime ring R which is a 

semiprime as a ring, then either δ =0  on R or 

)(RZI  .  

2. Right (σ,τ)-derivation as a 

homomorphism or as an anti-

homomorphism: 
     Let R be a ring and d is a derivation of R. If 

d(xy)=d(x)d(y)(resp., d(xy)=d(y) d(x))  holds, for 

all Ryx , , then we say that d acts as a 

homomorphism (resp., anti- homomorphism) on 

R.  

To prove the main result the following lemma is 

needed. 

Lemma(2.1):[4]  

     Let R be a prime ring, I a nonzero left ideal of 

R which is semiprime as a ring. If Ia=0 (aI=0), 

for Ra , then a=0. 

We are now well- equipped to prove the main 

theorem: 

Theorem (2.2): 

     Let R be a prime ring, I a nonzero left ideal of 

R which is a semiprime as a ring. Suppose σ,τ are 

automorphisms of R and δ: R → R is a right (σ,τ)- 

derivation of R. Then the following are holds: 

(i) If δ acts as a homomorphism on I, then δ = 0 

on R. 

(ii) If δ acts as an anti- homomorphism on I, then 

either δ = 0 on R or )(RZI  . 

Proof: 

(i)  If δ acts as a homomorphism on I, then we 

have δ(uv)= δ(v)σ(u)+ δ(u)τ(v), for all Ivu , .. . 

.                                                               (2.1) 

Replacing u by  ut , It in (2.1),we get 

δ(v)σ(ut)+ δ(ut)τ(v)= δ(ut) δ(v) Since δ is a 

homomorphism on R and σ ,τ  are automorphisms 

of  R, we have  

δ(v)σ(u)σ(t)+δ(u)δ(t)τ(v)=δ(u)δ(t)δ(v)= 

δ(u)δ(tv)=δ(u)[δ(v)σ(t)+δ(t)τ(v)], for all Itvu ,, .                                                                         

Or equivalently  

δ(v)σ(u)σ(t)=δ(u)δ(v)σ(t),for all Itvu ,, ..(2.2)                                                                         

This implies that  [ δ (v)  σ (u)  -δ (u) δ (v)] σ (t) 

=0, for all Itvu ,, .     

Hence    σ
 -1

 ([δ(v) σ (u) - δ(u) δ(v)]) I = {0}, for 

all u,vI  and  then we have σ
 -1

 ([δ(v) σ (u) -  δ(u) 

δ(v)]) RI = {0},for all u,vI, since R is a prime 

ring and I is a nonzero left ideal of R, we have 

δ(v)σ(u) - δ(u) δ(v) = 0, for all Ivu , , since δ is a 

homomorphism on R, we get 

0 = δ(v) σ(u) - δ(uv)  

= δ(v) σ (u) - δ(v) σ (u) - δ(u) τ(v)  
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 = - δ(u) τ(v),           for all Ivu , . 

    This implies that δ(u) τ(v) = 0, for all 

Ivu , .Replacing v by  rv , Rr , we get  

0 = δ(u)τ(rv) = δ(u)τ(r) τ(v),   for all 

Ivu , , Rr . Since R is a prime ring and I is a 

nonzero left ideal of R, we have δ(u) =0, for all 

Iu . Now, replacing replacing u by  ru , Rr , 

we find  

 0 = δ(ru)  

    = δ(u) σ (r) + δ(r) τ(u) = δ(r) τ(u),  for all 

Iu , Rr .  Since R is a prime ring, I a nonzero 

left ideal of R and τ is an automorphism of R, we 

have δ= 0 on R.  

(ii) If δ acts as an anti- homomorphism on I, then 

we have δ(uv) = δ(v)σ(u)+ δ(u)τ(v)= δ(v) δ(u), for 

all Ivu , .                                        ... (2.3) 

     Replacing u by  uv in (2.3), we get 

δ(v)σ(uv)+δ(uv)τ(v)= δ(v) δ(uv) for all 

Ivu , . 

Since δ is a homomorphism on R and σ,τ are 

automorphisms of R, we have δ(v)σ(u) σ(v)+ δ(v) 

δ(u)τ(v)= δ(v) δ(v) σ(u)+ δ(v) δ(u) τ(v), for all 

Ivu , . 

 This implies that δ(v)σ(u)σ(v) = δ(v)δ(v) σ (u), for 

all Ivu , .                                      . . . (2.4) 

Replacing u by  ut , It in (2.4), we get  

δ(v)σ(u)σ(t)σ(v)= δ(v) δ(v) σ(u)σ(t), for all 

Itvu ,, .                                            . (2.5) 

In view of (2.4), the relation (2.5) yields that  

δ(v)σ(u)σ(t)σ(v)= δ(v) σ(u) σ(v)σ(t), for 

all Itvu ,, , this implies that δ(v) σ (u) [σ (v) , σ 

(t)] =0, for all Itvu ,, and hence σ
 -1

(δ(v)) I [v,t] 

= {0}, for all Itv , . 

Since R is a prime ring, we have either δ(v) = 0 or 

I [v,t] = {0}, for all Itv , . 

If  δ(v) = 0, for all Iv , replacing v by rv, where 

Rr , to get δ(rv)=δ(v)σ(r)+ δ(r)τ(v), this implies 

that δ(r)τ(v)=0, for all Iv , Rr . 

Since R is a prime ring, I a nonzero ideal of R and 

τ is an automorphism of R, we have δ= 0 on R.  

If  I [v,t] = {0} thus by Lemma (2.1), we find that  

[v,t] = 0, for all Itv , . 

Now, replacing  v by rv, where Iv and  

Rr ,we get  

0 = [rv,t]  

   = r[v,t] +[r,t]v  

  = [r,t] v, for all  Itv , and  Rr  and hence we 

have [R,I]I ={0} 

   Since R is a prime ring, I a nonzero left ideal of 

R, we have [R,I] = {0},therefore we have 

)(RZI  . 
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