

RIGHT (σ , τ)-DERIVATIONS ON LEFT IDEALS

Asawer D. Hamdi

asawerduraid@yahoo.com

Department of Mathematics , College of Science , University Of Baghdad. Baghdad-Iraq

Abstract

Let *R* be a prime ring and *I* a nonzero left Ideal of *R* which is a semi prime as a ring. For a right (σ, τ) – derivations $\delta: R \to R$, we prove the following results: (1) If δ acts as a homomorphism on *I*, then $\delta = 0$ on *R*. (2) If δ acts as an anti- homomorphism on *I*, then either $\delta = 0$ on *R* or $I \subseteq Z(R)$.

Keywords: derivation, right derivation, (σ, τ) - derivation, right (σ, τ) -derivation

المشتقات (٥,٦) اليمنى على المثاليات اليسرى

اساور دريد حمدي قسم الرياضيات ، كلية العلوم ، جامعة بغداد. بغداد-العراق

الخلاصة التكن
$$R$$
 حلقة اولية و I مثالي ايسر غير صفري ل R شبه مثالي كحلقة، بر هنا للاشتقاق (σ, τ) الايمن $\delta: R$ $\longrightarrow R$ النتائج الاتية :
 $R \to R$ النتائج الاتية :
(۱) اذا كان δ هو تشاكل على I ، فأن $\delta = \cdot$ على R .
(۲) اذا كان δ هو تشاكل مضاد على I ، فأن اما $\delta = \cdot$ على R او $Z(R)$.

1. Introduction:

Throughout the present paper R will be denote an associative ring with center Z(R). Recall that R is prime if $aRb = \{0\}$ implies that either a=0 or b=0. Let $x, y \in R$, the commutator [x,y] will denoted xy-yx. An additive mapping $d: R \rightarrow R$ is called a derivation (resp.,Jordan derivation) on R if d(xy)=d(x)y+xd(y) (resp., $d(x^2)=d(x)x+xd(x)$) holds, for all $x, y \in R$. Let σ, τ are two mappings of R. An additive mapping $d: R \to R$ is called a (σ,τ) - derivation (resp., Jordan (σ,τ) - derivation) on if $d(xy)=d(x)\sigma(y)+\tau(x)d(y)(\operatorname{resp.},d(x^2)=d(x))$ R $\sigma(x) + \tau(x)d(x)$ holds, for all $x, y \in R$. Clearly every (1,1)- derivation (resp., Jordan (1,1)derivation), where 1 is the identity mapping on Ris derivation (resp., Jordan derivation) on R. An additive mapping $\delta: R \rightarrow R$ is called a left derivation (resp., Jordan left derivation) if $\delta(xy) = x \ \delta(y) + y \ \delta(x)$ (resp., $\delta(x^2) = 2x\delta(x)$) holds, for all $x, y \in R$. In view of the definition of a (σ, τ)- derivation the notion of left (σ, τ)- derivation can be extended as follows:

An additive mapping $\delta: R \to R$ is called a left (σ, τ) - derivation (resp., Jordan left (σ, τ) derivation) on R if $\delta(xy)=\sigma(x)\delta(y)+\tau(y)\delta(x)$ (resp., $\delta(x^2)=\sigma(x)\delta(x)+\tau(x)\delta(x)$) holds, for all $x, y \in R$. Clearly every left (1,1)- derivation (resp., Jordan left (1,1)- derivation) is a left derivation (resp., Jordan left derivation) on R. An additive mapping $\delta: R \to R$ is called a right derivation (resp., Jordan right derivation) on R if $\delta(xy)=\delta(y)x+\delta(x)y$ (resp., $\delta(x^2)=2\delta(x)x)$ holds, for all $x, y \in R$.

An additive mapping $\delta: R \to R$ is called a right (σ, τ) - derivation (resp., Jordan right (σ, τ) - derivation) on R if $\delta(xy) = \delta(y)\sigma(x) + \delta(x) \tau(y)$

(resp., $\delta(x^2) = \delta(x)\sigma(x) + \delta(x)\tau(x)$) holds, for all $x, y \in R$. Clearly, every right (1,1)- derivation (resp., Jordan right (1,1)-derivation) on *R* is a right derivation (resp.,Jordan right derivation) on *R*.

Bell and Kappe [1] proved that if d is a derivation of a prime ring R which acts as a homomorphism or as an anti- homomorphism on a nonzero right ideal I of R, then d=0 on R, further Yenigul and Arac [2] obtained the above result for α -derivation in prime rings. Recently Ashraf, et al. [3] extended the result for (σ,τ) -derivation in prime and semiprime ring. Also in [4] Ö.Glbasi and N. Avdin proved that if d is a (σ,τ) -derivation which acts homomorphism or as an antihomomorphism on a prime ring R, then d=0 on R. In [5] Majeed and Hamdi Asawer extended the above results for (σ, σ) -derivation which acts as a homomorphism or as an anti-homomorphism on a nonzero Jordan ideal and a subring J of a 2-torsion -free prime ring R, then they generalized the above extension for generalized (σ , σ)-derivation. Also they proved that if $d: R \to R$ is a (σ, τ) derivation which acts as a homomorphism on a nonzero Jordan ideal and a subring J of a 2torsion-free prime ring R, then either d=0 on R or $J \subset Z(R)$.

In [6] Zaidi, *et al.* proved that if *R* is a 2-torsionfree prime ring, *J* a nonzero Jordan ideal and a subring of *R* and *d* is a left (σ, σ) -derivation of *R*, which acts as a homomorphism or as an antihomomorphism on *R*, then d=0 on *R*. Hamdi Asawer in[7] extended this result to a left (σ, τ) derivation which acts as a homomorphism or as an anti- homomorphism on a nonzero Jordan ideal and a subring *J* of *R*.

As for more details and fundamental results used in this paper without mention we refer to [1,3,4,8,9,10,12].

The aim in this paper is to extend the above results and the theorem of Ö.Glbasi and N. Aydin [4] which state that if *d* is a nonzero (σ, τ) - derivation which acts as a homomorphism or as an antihomomorphism on a nonzero left ideal *I* of prime ring *R* which is a semiprime as a ring, then d=0 on *R* to a right (σ, τ) - derivation on *R* which acts as a homomorphism or as an anti- homomorphism on a nonzero left ideal *I* of prime ring *R* which is a semiprime as a ring, then either $\delta = 0$ on *R* or $I \subseteq Z(R)$.

2. Right (σ, τ) -derivation as a homomorphism or as an anti-homomorphism:

Let R be a ring and d is a derivation of R. If d(xy)=d(x)d(y)(resp., d(xy)=d(y) d(x)) holds, for all $x, y \in R$, then we say that d acts as a homomorphism (resp., anti- homomorphism) on R.

To prove the main result the following lemma is needed.

Lemma(2.1):[4]

Let *R* be a prime ring, *I* a nonzero left ideal of *R* which is semiprime as a ring. If Ia=0 (aI=0), for $a \in R$, then a=0.

We are now well- equipped to prove the main theorem:

Theorem (2.2):

Let *R* be a prime ring, *I* a nonzero left ideal of *R* which is a semiprime as a ring. Suppose σ, τ are automorphisms of *R* and $\delta: R \to R$ is a right (σ, τ) -derivation of *R*. Then the following are holds:

(i) If δ acts as a homomorphism on *I*, then $\delta = 0$ on *R*.

(ii) If δ acts as an anti-homomorphism on *I*, then either $\delta = 0$ on *R* or $I \subseteq Z(R)$.

Proof:

(i) If δ acts as a homomorphism on *I*, then we have $\delta(uv) = \delta(v)\sigma(u) + \delta(u)\tau(v)$, for all $u, v \in I$... (2.1)

Replacing *u* by *ut*, $t \in I$ in (2.1),we get $\delta(v)\sigma(ut) + \delta(ut)\tau(v) = \delta(ut) \delta(v)$ Since δ is a homomorphism on *R* and σ, τ are automorphisms of *R*, we have

$$\begin{split} &\delta(v)\sigma(u)\sigma(t) + \delta(u)\delta(t)\tau(v) = \delta(u)\delta(t)\delta(v) = \\ &\delta(u)\delta(tv) = \delta(u)[\delta(v)\sigma(t) + \delta(t)\tau(v)], \text{ for all } u, v, t \in I . \\ &\text{ Or equivalently} \end{split}$$

$$\begin{split} \delta(v)\sigma(u)\sigma(t) = \delta(u)\delta(v)\sigma(t), \text{for all } u, v, t \in I ...(2.2) \\ \text{This implies that } [\delta(v) \sigma(u) - \delta(u) \delta(v)] \sigma(t) \\ = 0, \text{ for all } u, v, t \in I . \end{split}$$

Hence $\sigma^{-1}([\delta(v) \sigma(u) - \delta(u) \delta(v)]) I = \{0\}$, for all $u, v \in I$ and then we have $\sigma^{-1}([\delta(v) \sigma(u) - \delta(u) \delta(v)]) RI = \{0\}$, for all $u, v \in I$, since *R* is a prime ring and *I* is a nonzero left ideal of *R*, we have $\delta(v)\sigma(u) - \delta(u) \delta(v) = 0$, for all $u, v \in I$, since δ is a homomorphism on *R*, we get

 $\begin{array}{l} 0 = \delta(v) \ \overline{\sigma(u)} - \delta(uv) \\ = \delta(v) \ \overline{\sigma(u)} - \delta(v) \ \overline{\sigma(u)} - \delta(u) \ \tau(v) \end{array}$

 $= - \delta(u) \tau(v), \qquad \text{for all } u, v \in I.$

This implies that $\delta(u) \tau(v) = 0$, for all $u, v \in I$. Replacing *v* by *rv*, $r \in R$, we get

 $0 = \delta(u)\tau(rv) = \delta(u)\tau(r) \tau(v)$, for all $u, v \in I$, $r \in R$. Since *R* is a prime ring and *I* is a nonzero left ideal of *R*, we have $\delta(u) = 0$, for all $u \in I$. Now, replacing replacing *u* by ru, $r \in R$, we find

 $\theta = \delta(ru)$

 $= \delta(u) \sigma(r) + \delta(r) \tau(u) = \delta(r) \tau(u)$, for all $u \in I$, $r \in R$. Since *R* is a prime ring, *I* a nonzero left ideal of *R* and τ is an automorphism of *R*, we have $\delta = 0$ on *R*.

(ii) If δ acts as an anti- homomorphism on *I*, then we have $\delta(uv) = \delta(v)\sigma(u) + \delta(u)\tau(v) = \delta(v) \delta(u)$, for all $u, v \in I$ (2.3)

Replacing *u* by *uv* in (2.3), we get $\delta(v)\sigma(uv) + \delta(uv)\tau(v) = \delta(v) \ \delta(uv)$ for all $u, v \in I$.

Since δ is a homomorphism on *R* and σ, τ are automorphisms of *R*, we have $\delta(v)\sigma(u) \sigma(v) + \delta(v) \delta(u)\tau(v) = \delta(v) \delta(v) \sigma(u) + \delta(v) \delta(u) \tau(v)$, for all $u, v \in I$.

This implies that $\delta(v)\sigma(u)\sigma(v) = \delta(v)\delta(v) \sigma(u)$, for all $u, v \in I$. (2.4)

Replacing *u* by ut, $t \in I$ in (2.4), we get

 $\begin{array}{lll} \delta(v)\sigma(u)\sigma(t)\sigma(v) = & \delta(v) & \delta(v) & \sigma(u)\sigma(t), \text{ for all} \\ u,v,t \in I \ . & . & (2.5) \end{array}$

In view of (2.4), the relation (2.5) yields that

$$\begin{split} \delta(v)\sigma(u)\sigma(t)\sigma(v) &= \delta(v) \quad \sigma(u) \quad \sigma(v)\sigma(t), \text{ for all } u, v, t \in I, \text{ this implies that } \delta(v) \quad \sigma(u) \quad [\sigma(v), \sigma(t)] = 0, \text{ for all } u, v, t \in I \text{ and hence } \sigma^{-1}(\delta(v)) \quad I \quad [v, t] = \{0\}, \text{ for all } v, t \in I. \end{split}$$

Since *R* is a prime ring, we have either $\delta(v) = 0$ or $I[v,t] = \{0\}$, for all $v, t \in I$.

If $\delta(v) = 0$, for all $v \in I$, replacing v by rv, where $r \in R$, to get $\delta(rv) = \delta(v)\sigma(r) + \delta(r)\tau(v)$, this implies that $\delta(r)\tau(v)=0$, for all $v \in I$, $r \in R$.

Since *R* is a prime ring, *I* a nonzero ideal of *R* and τ is an automorphism of *R*, we have $\delta = 0$ on *R*.

If $I[v,t] = \{0\}$ thus by Lemma (2.1), we find that [v,t] = 0, for all $v,t \in I$.

Now, replacing v by rv, where $v \in I$ and $r \in R$, we get 0 = [rv, t]= r[v, t] + [r, t]v = [r,t] v, for all $v,t \in I$ and $r \in R$ and hence we have $[R,I]I = \{0\}$

Since R is a prime ring, I a nonzero left ideal of R, we have $[R,I] = \{0\}$, therefore we have $I \subseteq Z(R)$.

References

- Bell, H. E., and Kappe, L. C.**1989**. Rings in which derivations satisfy certain algebraic conditions, *Acta Math. Hunger*, **53**:339 – 346.
- 2. Yenigul and Aragac. **1994**. On prime and semiprime rings with α derivations, *Turkish J. Math*, **18**:208 284.
- Ashraf, M., Rehman N. and Quadri, M. A.1999. On (σ,τ)– derivations in certain classes of rings, *Rad Math*.9:187 192.
- Golbasi,Ö. and Aydin, N.2002. Some results on endomorphisms of prime ring which are (σ, τ)– derivation, *East Asian Math. J.* 18:33 41.
- 5. Majeed, A.H. , and Hamdi Asawer, D.2009. (σ, τ) derivations on Jordan ideals, *Scientia Magna*, 5(3):111-116.
- Zaidi, S. M. A., Ashraf, M. and Ali, S.2004. On Jordan ideals and left (θ,θ)– derivations in prime rings, *IJMMS*,37:1957 – 1964.
- Hamdi Asawer, D. 2007. (σ,τ)derivations on prime rings. M.Sc., University of Baghdad, college of Science, Iraq, Baghdad .pp.78.
- Ali, A. and Kumar, D.2007. Derivation which acts as a homomorphism or as an anti- homomorphism in a prime ring, International Mathematical Forum, 2:1105 – 1110.
- Ashraf, M. and Rehman N.2000. On Lie ideals and Jordan left derivation of prime rings, *Arch. Math.(Brno)*,36:201 – 206.
- 10. Ashraf M.**2005**.On left (θ,ϕ) derivations of prime rings, *Archivum Mathematicum (Brno)*, *Tomus*, **41**:157-166.
- 11. Herestein, I. N.**1965**. Topics in ring theory, The University of Chicago Press, Chicago.pp.
- 12. Herestein, I. N.**1976**. Rings with involution, The University of Chicago Press, Chicago.

- 13. Jung,Y.S. and Park,K.H.**2006**. On generalized (α,β) derivations and commutivity in prime rings, Bull. *Korean Math.Soc.*, **43**:101-106.
- 14. Sheya Farhan,D.**2004**.Lie Ideal on prime rings with higher derivations and Jordan right derivations, M.Sc., University of Al-Mustansiriyah, college of Education.pp.