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Abstract
Let R be a prime ring and | a nonzero left Ideal of R which is a semi prime as a ring.
For a right (o,7) — derivations 0.R — R, we prove the following results:
(1) If 6 acts as a homomorphism on I, then 6= 0 on R.
(2) If 0 acts as an anti- homomorphism on I, then either =0 on R or | = Z(R).
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1. Introduction:

Throughout the present paper R will be denote
an associative ring with center Z(R). Recall that R
is prime if aRb={0} implies that either a=0 or
b=0. Letx,yeR, the commutator [x,y] will
denoted xy-yx. An additive mapping d:R — R is
called a derivation (resp.,Jordan derivation) on R
if d(xy)=d(x)y+xd(y) (resp., d(x®)=d(x)x+xd(x))
holds, for all X,y € R. Let o,z are two mappings
of R. An additive mapping d:R — R is called a
(o,7)- derivation (resp., Jordan (o,7)- derivation) on
R if  d(xy)=d(x)a(y)+z(x)d(y)(resp.,d(x’)=d(x)
a(X)+ 7(x)d(x)) holds, for all X,y eR. Clearly
every (1,1)- derivation (resp., Jordan (1,1)-
derivation), where 1 is the identity mapping on R
is derivation (resp., Jordan derivation) on R. An
additive mapping 6: R — R is called a left
derivation (resp., Jordan left derivation) if

S(xy)= x 8(y)+y o(x) (resp.,0(x*)=2xd(x)) holds,
for all X,yeR. In view of the definition of a
(6,7)- derivation the notion of left (o,7)- derivation
can be extended as follows:

An additive mapping : R — R is called a left
(6,7)- derivation (resp., Jordan left (o,7)-
derivation) on R if  d(xy)=a(X)o(y)+ z(y)o(X)
(resp., o(x)= o(x)d(x)+ z(x)o(x)) holds, for all
X,yeR. Clearly every left (1,1)- derivation
(resp., Jordan left (1,1)-derivation) is a left
derivation (resp., Jordan left derivation) on R. An
additive mapping 6: R — R is called a right
derivation (resp., Jordan right derivation) on R

if 5(xy)=d(y) x+3(X)y (resp.,6(x*)= 26(x)x) holds,
forall x,yeR.

An additive mapping ¢: R — R is called a right
(6,7)- derivation (resp., Jordan right (o,7)-
derivation) on R if d(xy)= d(y)o(X)+d(X) z(y)
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(resp.,0(x%)= o(X)a(x)+o(X)z(x))  holds, for all
X,y €R. Clearly, every right (1,1)- derivation
(resp., Jordan right (1,1)-derivation) on R is a right
derivation (resp.,Jordan right derivation) on R.
Bell and Kappe [1] proved that if d is a
derivation of a prime ring R which acts as a
homomorphism or as an anti- homomorphism on a
nonzero right ideal 1 of R, then d=0 on R, further
Yenigul and Arac [2] obtained the above result for
a-derivation in prime rings. Recently  Ashraf, et
al. [3] extended the result for (o,7)-derivation in
prime and semiprime ring. Also in [4] O.Glbasi
and N. Aydin proved that if d is a (o,7)-derivation
which acts homomorphism or as an anti-
homomaorphism on a prime ring R, then d=0 on R.
In [5] Majeed and Hamdi Asawer extended the
above results for (o, o)-derivation which acts as a
homomorphism or as an anti- homomorphism on a
nonzero Jordan ideal and a subring J of a 2-torsion
-free prime ring R, then they generalized the
above extension for generalized (o, o)-derivation.
Also they proved that if d:R — R is a (0,7)-
derivation which acts as a homomorphism on a
nonzero Jordan ideal and a subring J of a 2-
torsion-free prime ring R, then either d=0 on R or
JcZ(R).
In [6] Zaidi, et al. proved that if R is a 2-torsion-
free prime ring, J a nonzero Jordan ideal and a
subring of R and d is a left (o, o)-derivation of R,
which acts as a homomorphism or as an anti-
homomorphism on R, then d=0 on R. Hamdi
Asawer in[7] extended this result to a left (o,7)-
derivation which acts as a homomorphism or as an
anti- homomorphism on a nonzero Jordan ideal
and a subring J of R.
As for more details and fundamental results used
in this paper without mention we refer to
[1,3,4,8,9,10,12].
The aim in this paper is to extend the above results
and the theorem of O.Glbasi and N. Aydin [4]
which state that if d is a nonzero (o,7)- derivation
which acts as a homomorphism or as an anti-
homomaorphism on a nonzero left ideal | of prime
ring R which is a semiprime as a ring, then d=0 on
R to a right (o,7)- derivation on R which acts as a
homomaorphism or as an anti- homomorphism on
a nonzero left ideal I of prime ring R which is a
semiprime as a ring, then either 6 =0 on R or
I cZ(R).
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2. Right
homomorphism
homomorphism:

Let R be a ring and d is a derivation of R. If
d(xy)=d(x)d(y)(resp., d(xy)=d(y) d(x)) holds, for
all x,yeR, then we say that d acts as a
homomorphism (resp., anti- homomorphism) on
R.

To prove the main result the following lemma is
needed.

Lemma(2.1):[4]

Let R be a prime ring, | a nonzero left ideal of
R which is semiprime as a ring. If 1a=0 (al=0),
for ae R, then a=0.
We are now well- equipped to prove the main
theorem:

Theorem (2.2):

Let R be a prime ring, | a nonzero left ideal of
R which is a semiprime as a ring. Suppose o, are
automorphisms of R and 6: R — R is a right (o,7)-
derivation of R. Then the following are holds:
(i) If 0 acts as a homomorphism on I, then 6 =0
onR.
(if) If ¢ acts as an anti- homomorphism on I, then
either6=0onRor | cZ(R).

(o,7)-derivation
or as

Proof:

(i) If 0 acts as a homomorphism on I, then we
have o(uv)= d(v)a(u)+ o(u)z(v), forall u,vel ...
: (2.1)
Replacing u by ut , telin (2.1),we get
o(V)o(ut)+ o(ut)z(v)= o(ut) J(v) Since ¢ is a
homomorphism on R and ¢,z are automorphisms
of R, we have

o(v)a(u)a(t)+o(u)o(t)z(v)=o(u)o(t)o(v)=
o(u)o(tv)=o(u)[o(V)a(t)+d(t)z(Vv)], for all u,v,tel .
Or equivalently

o(V)a(u)a(t)=o(u)o(v)a(t),for all u,v,tel ..(2.2)
This implies that [ J (v) o (u) -0 (u) 0 (V)] o (t)
=0, forall u,v,itel .

Hence o™ ([6(v) o (u) - 5(u) 6(v)]) | = {0}, for
alluyvel and then we have o™ ([6(v) o (U) - 6(u)
o(v)]) RI = {0},for all u,vel, since R is a prime
ring and | is a nonzero left ideal of R, we have
o(V)a(u) - o(u) o(v) =0, forall u,vel ,sincedisa
homomorphism on R, we get

0 =4d(v) a(u) - o(uv)

=0(V) o (u) - 6(v) o (u) - o(u) z(v)
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- o(u) z(v), forall u,vel.
This implies that o(u) z(v) = 0, for all
u,vel .Replacingvby rv, re R, we get
0 o(u)z(rv) ou)z(r) z(v), for all
uvel,reR. Since Ris aprimering and I is a
nonzero left ideal of R, we have J(u) =0, for all
uel. Now, replacing replacinguby ru, reR,
we find
0=0(ru)

= o) o (r) + o(r) =(u) = o(r) z(u), for all
uel,reR. Since R isaprime ring, | a nonzero
left ideal of R and 7 is an automorphism of R, we
have 6= 0 on R.

(ii) If 0 acts as an anti- homomorphism on I, then
we have d(uv) = d(v)a(u)+ o(u)z(v)= d(v) o(u), for
alluvel. .. (2.3)

Replacing u by uv in (2.3), we get
o(V)a(uv)+o(uv)z(v)= o(v) o(uv) for all
uvel.

Since ¢ is a homomorphism on R and o,z are
automorphisms of R, we have 6(v)a(u) o(v)+ (V)
oWz(v)= (V) o(v) o(u)+ o(v) o(u) z(v), for all
uvel.

This implies that 6(v)o(u)a(Vv) = 6(v)d(v) o (u), for
alluvel. ... (24
Replacingu by ut, tel in (2.4), we get

o(V)o(Uo(t)a(v)= d(v) o(v) o(u)a(t), for all
uvtel. . (2.5)

In view of (2.4), the relation (2.5) yields that
o(V)o(U)o(t)a(V)= (V) oa(u) a(V)o(t), for

allu,v,t e, this implies that 6(v) ¢ (u) [o (V) , o
(t)] =0, for all u,v,tel and hence ¢ *(5(v)) | [v,t]
= {0}, forall vitel.

Since R is a prime ring, we have either 6(v) = 0 or
| [v,t] ={0}, forall v,itel.

If 6(v) =0, forall vel, replacing v by rv, where
r e R, to get o(rv)=4(v)a(r)+ o(r)z(v), this implies
that 6(r)z(v)=0, forall vel, reR.

Since R is a prime ring, | a nonzero ideal of R and
T is an automorphism of R, we have 6= 0 on R.

If I [v,t] = {0} thus by Lemma (2.1), we find that
[v,t] =0, forall v,itel.

Now, replacing
r e R,we get
0=[rvt]

=rlv,t] +[r,tlv

v by rv, where veland

IR
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=[rt]v, forall viteland reR and hence we
have [R,1]I ={0}

Since R is a prime ring, | a nonzero left ideal of
R, we have [R,] = {0} therefore we have
I cZ(R).
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