



# THE STUDY OF ELECTRIC QUADRUPOLE TRANSITION (E2) IN 58Ce AND 60Nd NUCLEI

#### \*F. A. Abd-Al amir Jassim , \*\*Z. A. Dakhil ,\*Y. H. Jaber

Z\_dakhil@yahoo.com

\*Department of Physics, College of Education, University of Baghdad. Baghdad-Iraq \*\* Department of Physics, College of Science, University of Baghdad. Baghdad-Iraq

#### Abstract

Transition strengths  $|\mathbf{M}(\mathbf{E}\,2)|_{w.u.}^2 \downarrow$  for gamma transition from first excited  $2_1^+$  states to the ground states that produced by pure electric quadrupole emission in even – even nuclei of  ${}_{58}$ Ce and  ${}_{60}$ Nd have been calculated as a function of neutron number (N). The life times for  $2_1^+$  excited states together with the intensities of  $\gamma_{0-}$  transitions measurements are used in calculations. The results thus obtained have shown that; the nuclei with magic neutron number such as  ${}_{58}$ Ce<sup>140</sup> and  ${}_{60}$ Nd<sup>142</sup> have minimum value for  $|\mathbf{M}(\mathbf{E}\,2)|_{w.u.}^2 \downarrow$ . The reduced transition probabilities B(E2) are also calculated and compared with the experimental data and other theoretical models.

PACS:- 27.60-j, 23.20-g, 23.20.Ck, 23.20.Gq.

**Keywords:-** Electromagnetic transition, lifetime and transition probability, multiple mixing ration

دراسة أنتقال رباعي القطب الكهربائي للنوى Ce و 80 ه

\*فاطمة عبد الأمير جاسم ، \*\*زاهدة أحمد دخيل ، \*يوسف هاشم جابر
\*قسم الفيزياء، كلية التربية، جامعة بغداد. بغداد-العراق
\*\* قسم الفيزياء ،كلية العلوم، جامعة بغداد. بغداد-العراق

#### الخلاصة

تم حساب قوى الانتقال 
$$\left|M(E2)\right|_{w.u.}^{2}$$
 لانتقالات أشعة كاما من المستوي المتهيج الأول  $\left|\frac{2}{W}\right|_{w.u.}^{2}$  إلى مستوي الأرضي والناتج عن إشعاع رباعي قطب كهربائي نقي للنويات الزوجية- زوجية لكل من ,  $_{60}^{0}$ Nd , معدل النيوتروني. حيث حسبت قوى الانتقال  $\left|M(E2)\right|_{w.u.}^{2}$  بالاعتماد على معدل العمر للمستوي المتهيج الأول  $_{21}^{+2}$  والشدة النسبية لأشعة كاما المنبعثة من ذالك المستوي المحفز إلى العمر للمستوي المتهيج الأول  $_{21}^{+2}$  والشدة النسبية لأشعة كاما المنبعثة من ذالك المستوي المحفز إلى المستوي المحفز إلى المستوي الأرضي. أوضحت النتائج الحالية بأن اصغر قيمة لهما المنبعثة من ذالك المستوي النويات المونيات المستوي المحفز إلى المحفز إلى المستوي المحفز التي المستوي المحفز التي المستوي المحفز إلى المنبعثة من ذالك المستوي المحفز الى المستوي المحفز إلى المستوي المحفز إلى المستوي المحفز المستوي المحفز التي المستوي المحفز التي المستوي المحفز التي المستوي المحفز الى المستوي المحفز الى المستوي المحفز الى المستوي المحفز التي المستوي المحفز التي المستوي المحفز التي المستوي المحفز الى المستوي المحفز التي المستوي الأرضي المستوي الأرضي أوضحت النتائج الحالية بأن اصغر قيمة لهم الي المحفز التي المحفز التي المحفز التي المحفز التي المستوي المستوي الم محفز التي المستوي المستوي الم

#### Introduction

The study of electromagnetic transition strengths in nuclei provides available information on the ability of nuclear models to describe details of nuclear structure and transition properties. A good deal of works has been carried out on studying the electromagnetic transitions in nuclei. It is sufficient to indicate the several groups that have devoted their works to study the properties of some (even-even) nuclei [1,2].

The nuclear resonance florescence in  $^{142}$ Nd isotope have been studied by Metzger (1978) [1] for proton energies up to 5MeV. The radiative with for 13 levels were estimated. The E1 strength was compared with that measured in other even –even N=82 nuclei.

Lobianco et al.(1989)[2] measured the ratio of the B(E2) values for  $2_1^+ \rightarrow 0_1^+$  transitions in <sup>138</sup>Ce and <sup>142</sup>Ce nuclei by coulomb excitation with  $\alpha$ -particules from the known value of the transition probability in <sup>142</sup>Ce the B(E2, <sup>138</sup>Ce,  $2_1^+ \rightarrow 0_1^+) = 0.45 \pm 0.03 \, e^2 b^2$ .Lifetime

measurements of the  $3_1^-, 5_1^- and 1_1^-$  states in <sup>144</sup>Nd show that the E2 and E3 transition rates from the  $5_1^- and 1_1^-$  states are consistent with their structure being formed by coupling of the lowest quadrupole  $2_1^+$  and octupole  $3_1^-$  excitations. This study was carried out by Robinson et al.(1994)[3].

The recent data on the ground state band and excited states based on the  $0^+_2$  level in <sup>150</sup>Nd and <sup>152</sup>Sm, especially the measurement B(E2) values had been well described by clark et al.(2003)[4] by including  $\Delta k = 0$  coupling between rotational bands.

Yazar and Uluer (2007)[5] carried out an analysis for even-even <sup>122,128</sup>Te core nucleus the band on IBM-2.The energy levels and the electric quadrupole transition probability B (E2) and  $\gamma - ray (\frac{E2}{M1})$  mixing rations had been calculated. Their results were in a good agreement with the existing experimental data.

In the present work, the calculations concentrate on the transition strengths  $|M(E2)|^2$  for  $\gamma$  transition from first excited  $2^+_1$  state to the  $0^+$  ground state for even-even nuclei of  ${}_{58}^{A}Ce(124 \le A \le 145)$  and  ${}_{60}^{A}Nd(128 \le A \le 150)$ .

## Theory

The WeissKoph single-particle transition probability B(EL,ML) is defined by as the ratio of the single-particle half-life time to the experimental half-life time for gamma transition[6],

B(EL,ML)<sub>W.u</sub> 
$$\downarrow = \frac{t_{1/2}^{\gamma} (EL, ML)_{SP}}{t_{1/2}^{\gamma} (EL, ML)_{exp}}$$
.....(1)

Where L is the multipolarities L=1,2,3,.....  $L \neq 0$ 

The  $\gamma$ -ray transition strength  $[M(EL,ML)]^2$  is defined as the ratio of gamma width to gamma width in Weiss Kopf unit (W.u) [7],

| $[\mathbf{M}(\mathbf{EL},\mathbf{ML})]^2_{W,u} \downarrow = \frac{\Gamma(\mathbf{EL},\mathbf{ML})_{\mathrm{exp}}}{1} \dots \dots$ | (2) |
|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| $\Gamma(EL, ML)_{W.u}$                                                                                                            |     |
| Since $\Gamma_{\gamma} T \approx \hbar$                                                                                           | (3) |
| Where;                                                                                                                            |     |
|                                                                                                                                   |     |

 $\Gamma_{\gamma}$  is the total width

 $\Gamma_{\gamma} = \sum \Gamma_{\gamma l} \quad \dots \quad (4)$  $\Gamma_{\gamma l} \text{ is the partial gamma width }$ 

The mean life time T of initial level is given by:

 $\hbar = \frac{h}{2\pi} = 0.65822 \text{ x} \quad 10^{-15} \text{ eV.s} \quad \text{h is Plank}$  constant.

If the transition is of mixed multi polarity M1 and E2 then [8],

$$\delta^2 = \frac{\Gamma(E2)}{\Gamma(M1)} \qquad (8)$$

Where  $\delta$  is the mixing ratio

and  $\Gamma_{\gamma} = \Gamma(M1) + \Gamma(E2)$  .....(9) For pure E2 transition,  $\delta = 0$  and hence

 $\Gamma(E2) = \Gamma_{\gamma}$  .....(10) Then the transition strength for electric quadruple transition E2 can be calculated by using equ. 2 and 7

On the basis of an extreme single particle model the value for the  $\Gamma(E2)_{W,u}$  in e .V.is given by [4]

Where E  $\gamma$  in KeV for nuclear of mass number A and the corresponding reduced transition probability is :

B <sub>W.u.</sub>(E2) = 0.05940 
$$A^{\frac{4}{3}}$$
 e<sup>2</sup> (fm)<sup>4</sup> .....(13)

The relation between  $B(E2) \downarrow =B(E2; 2\rightarrow 1)$  and  $B(E2) \uparrow =B(E2; 1\rightarrow 2)$  is given by [8]:

## **Results of Calculations**

The electric quadrupole transition strengths  $|M(E2)|^2_{w.u.} \downarrow$  for the  $2^+ \rightarrow 0^+_{g.s.}$  transition have been calculated as a function of neutron number (N) using eq. 11 with the aid of the experimental data reported in ref. [6] for even – even isotopes. The results of calculations are

presented in table 1 for  ${}_{58}$ Ce nuclei , and in table 2 for  ${}_{60}$ Nd nuclei. For the sake of comparison, the  $|\mathbf{M}(\mathbf{E}\,2)|^2_{w.u.} \downarrow$  values are converted to B (E2)  $e^2 b^2 \uparrow$  using eq. 11 and then eq.14, the present B (E2)  $e^2 b^2 \uparrow$  values for;  ${}_{58}$ Ce (124 $\leq$ A $\leq$ 148) and  ${}_{60}$ Nd (128 $\leq$ A $\leq$ 152) which have only one transition for  $\gamma$  is  $\gamma_0$  with intensity (100%)E2. The results are compared with the experimental values as well as with other of various theoretical models. These comparison are presented in tables 3 and 4 and shown in Figuers 3 and 4 respectively

Table 1: Transition strengths  $[M(E2)]^2_{W,u} \downarrow$  of  $\gamma_0$ - rays from the transition  $2^+_1 \rightarrow 0^+_1$  in  ${}_{58}$ Ce nuclei with the partial gamma widths in W.u., total gamma widths ,mean life times for first excited states, The experimental data of ref.[6]are used in the present work

| A   | N  | E <sub>i</sub> (keV) | Εγ0<br>(keV) | t <sub>1/2</sub> (Ps) | τ <sub>m (Ps)</sub> | Γ <sub>tot</sub> (× 10 <sup>-6</sup> ) <sub>ev</sub> | Γ <sub>w.u.</sub> (E2)<br>(× 10 <sup>-6</sup> ) eV | $\left[\mathrm{M}(\mathrm{E2})\right]^2{}_{\mathrm{W.u}}\downarrow$ |
|-----|----|----------------------|--------------|-----------------------|---------------------|------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|
| 124 | 66 | 124                  | 142          | 880± 190              | 1269.84 (274.17)    | 0.518 (0.111)                                        | 0.00171                                            | 303.0726±65.4361                                                    |
| 126 | 68 | 169.59               | 169.59       | 658 ± 36              | 949.4949 (51.9481)  | 0.693(0.037)                                         | 0.00424                                            | 163.2973±8.93419                                                    |
| 128 | 70 | 207.3                | 207.3        | 296 ± 3               | 427.12849(4.3290)   | 1.541(0.015)                                         | 0.01183                                            | 130.2562±1.32017                                                    |
| 130 | 72 | 253.99               | 253.9        | 143 ± 7               | 206.3492(10.1010)   | 3.1897(0.1561)                                       | 0.03334                                            | 95.6511±4.6822                                                      |
| 132 | 74 | 325.54               | 325.5        | 41 ±3                 | 59.16306(4.32900)   | 11.1253 (0.8140)                                     | 0.11772                                            | 94.5067±6.9151                                                      |
| 134 | 76 | 409.1                | 409.1        | 23 ±2                 | 33.18903(2.88600)   | 19.83221(1.72450<br>)                                | 0.37652                                            | 52.6719±4.5802                                                      |
| 138 | 80 | 788.74               | 788.74       | 2.00 ±<br>0.15        | 2.886003(.216450)   | 228.07045(17.105<br>00)                              | 10.4292                                            | 21.8684±1.6401                                                      |
| 140 | 82 | 1596.227             | 1596.21      | .0078<br>±0.011       | 0.11255(0.01587)    | 5848.854<br>(824.6890)                               | 360.272                                            | 16.6306±2.4071                                                      |
| 142 | 84 | 641.286              | 641.285      | 5.56 ± 0.12           | 8.023088(0.173160)  | 82.0397 (1.7706)                                     | 3.8492                                             | 21.3132±0.4599                                                      |
| 146 | 88 | 258.46               | 258.42       | 250 ± 30              | 360.7504(43.2900)   | 1.8245 ( 0.2189)                                     | 0.04247                                            | 42.9526±5.1543                                                      |
| 148 | 90 | 158.468              | 158.468      | 1010 ±60              | 1457.431(86.580)    | 0.45162 (0.02680)                                    | 0.00374                                            | 120.5004±7.1584                                                     |

| with the partial gamma widths in W.u., total gamma widths ,mean life times for first excited states, the<br>experimental data of ref.[6]are used in the present work |    |                      |                       |                       |                        |                                                     |                    |                                           |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------|-----------------------|-----------------------|------------------------|-----------------------------------------------------|--------------------|-------------------------------------------|--|
| A                                                                                                                                                                    | Ν  | E <sub>i</sub> (keV) | Εγ <sub>0</sub> (keV) | t <sub>1/2</sub> (Ps) | τ <sub>m (Ps)</sub>    | $\Gamma_{\rm tot}$ (×10 <sup>-6</sup> ) $_{\rm ev}$ | $\Gamma_{w.u.}(E)$ | [M(E2)] <sup>2</sup><br><sub>W.u</sub> .↓ |  |
| 132                                                                                                                                                                  | 72 | 212.62               | 212.5                 | 216 ± 17              | 311.6883(24.<br>5310)  | 2.1118 (0.1662)                                     | 0.01399            | 150.94±11.87<br>93                        |  |
| 134                                                                                                                                                                  | 74 | 294.3                | 294.2                 | $64 \pm 4$            | 92.35209(5.7<br>7201)  | 7.1272 (0.4450)                                     | 0.0725             | 98.272±6.141<br>9                         |  |
| 142                                                                                                                                                                  | 82 | 1573.83              | 1573.85               | 0.11 ± 0.002          | 015873(0.002<br>89)    | 4146.735 (75.4)                                     | 342.1364           | 12.024±0.218<br>6                         |  |
| 144                                                                                                                                                                  | 84 | 696.513              | 696.51                | 4.51 ± 0.24           | 6.507937(0.3<br>46320) | $101.1340 \pm (5.38)$                               | 5.9273             | 17.063±0.908                              |  |
| 146                                                                                                                                                                  | 86 | 453.77               | 453.88                | $21.6 \pm 1.3$        | 31.16883(1.8<br>7590)  | 21.118 (1.271)                                      | 0.7085             | 29.803±1.793<br>7                         |  |
| 148                                                                                                                                                                  | 88 | 301.702              | 301.702               | 78 ± 1.2              | 112.5541(1.7<br>316)   | 5.848 (0.090)                                       | 0.0937             | 62.378±0.959<br>7                         |  |
| 150                                                                                                                                                                  | 90 | 130.21               | 130.23                | 1492 ± 15             | 2152.958(21.<br>645)   | 0.3057 (0.0031)                                     | 0.00142            | 213.92±2.150<br>7                         |  |

Table 2: Transition strengths  $[M(E2)]^2 W_{.u.} \downarrow$  of  $\gamma_0$  - rays from the transition  $2^+_1 \rightarrow 0^+_1$  in  $_{60}$ Nd nuclei with the partial gamma widths in W.u., total gamma widths ,mean life times for first excited states, the experimental data of ref.[6]are used in the present work

Table 3:The calculated reduced transition probabilities B (E2) e<sup>2</sup>b<sup>2</sup> ↑ values are compared with that of experimental [10], Global best fit and, theoretical predications for<sub>58</sub>Ce nuclei.

|     |    |                    | B(E2; $2^+_1 \to 0^+_1$ ) $e^2 b^2$           |                     |                                               |            |            |  |
|-----|----|--------------------|-----------------------------------------------|---------------------|-----------------------------------------------|------------|------------|--|
|     | N  | E <sub>γ0</sub> (κ | Exporimontal                                  | Present work        | Clobal Bost fit of                            | Theoretica | l Ref.[10] |  |
| A   | IN | <b>eV</b> )        | of Ref.[10]                                   |                     | Ref.[10]                                      | SSANM      | FRDM       |  |
| 124 | 66 | 142                | $3.7  \pm \ 0.9$                              | 5.576 ± 1.204       | 2.44±0.43                                     | 2.355      | 2.866      |  |
| 126 | 68 | 169                | $2.68~\pm~0.48$                               | $3.069 \pm 0.160$   | $2.02 ~\pm~ 0.35$                             | 2.318      | 2.626      |  |
| 128 | 70 | 207                | $2.28 \hspace{0.2cm} \pm \hspace{0.2cm} 0.22$ | $2.50 \pm 0.025$    | $1.64 \pm 0.29$                               | 2.279      | 2.256      |  |
| 130 | 72 | 253                | $1.74	\pm	0.10$                               | $1.874 \pm 0.092$   | $1.23 \pm 0.23$                               | 2.057      | 1.82       |  |
| 132 | 74 | 325                | $1.87~\pm~0.17$                               | $1.890 \pm 0.138$   | $1.02 \ \pm \ 0.18$                           | 1.753      | 1.177      |  |
| 134 | 76 | 409                | $1.04 \hspace{0.1in} \pm \hspace{0.1in} 0.09$ | $1.074\pm\ 0.093$   | $0.81 \hspace{.1in} \pm \hspace{.1in} 0.14$   | 1.466      | 0.077      |  |
| 136 | 78 | 552                | $0.81~\pm~0.09$                               | -                   | $0.59  \pm 0.10 $                             | 1.205      | 0.0337     |  |
| 138 | 80 | 788                | $0.450 \pm 0.030$                             | $0.464 \pm 0.035$   | $0.41\pm0.07$                                 | 0.973      | < 0.001    |  |
| 140 | 82 | 1596               | $0.298 \pm 0.009$                             | $0.359 \pm 0.052$   | 0.201 ±0.035                                  | 0.707      | < 0.001    |  |
| 142 | 84 | 641                | 0.480 ±0.006                                  | $0.469 ~\pm~ 0.010$ | $0.49 \hspace{0.2cm} \pm \hspace{0.2cm} 0.09$ | 1.245      | < 0.001    |  |
| 144 | 86 | 397                | $0.83 \ \pm \ 0.09$                           | -                   | 0.79 ±0.14                                    | 1.661      | 0.0788     |  |
| 146 | 88 | 258                | $1.14 \pm 0.12$                               | 0.983 ± 0.118       | $1.20 \pm 0.21$                               | 2.104      | 1.349      |  |
| 148 | 90 | 158                | $1.96 \pm 0.18$                               | 2.807± 0.167        | $1.95 \pm 0.34$                               | 2.398      | 2.096      |  |
| 150 | 92 | 97                 | $3.3 \pm 0.8$                                 | -                   | 3.1 ± 0.6                                     | 2.663      | 3.061      |  |

| Table 4:The calculated reduced transition probabilities B (E2) $e^2b^2 \uparrow values$ are compared with that of |
|-------------------------------------------------------------------------------------------------------------------|
| experimental [10], Global best fit and, theoretical predications for 60Nd nuclei.                                 |

|     |    |                      | $\mathbf{B}(\mathbf{E2}; \ 2_1^+ \to 0_1^+) \ \mathbf{e}^2 \ \mathbf{b}^2$ |                   |                                 |                |         |
|-----|----|----------------------|----------------------------------------------------------------------------|-------------------|---------------------------------|----------------|---------|
|     |    |                      |                                                                            |                   |                                 | Theoretical Re | f. [10] |
| Α   | N  | $E_{\gamma_0}$ (keV) | Experimental<br>of Ref .[10]                                               | Present work      | Global Best fit of Ref.<br>[10] | SSANM          | FRDM    |
| 128 | 68 | 133                  | -                                                                          | -                 | 2.72±0.47                       | 2.797          | 3.607   |
| 130 | 70 | 158                  | $4.1~\pm~1.8$                                                              | -                 | $2.28~\pm~0.40$                 | 2.754          | 3.363   |
| 132 | 72 | 212                  | $3.5\ \pm 0.6$                                                             | $3.019 \pm 0.238$ | $1.68 \pm 0.29$                 | 2.504          | 2.99    |
| 134 | 74 | 294                  | $1.83\ \pm 0.37$                                                           | $2.005{\pm}0.125$ | $1.20 \pm 0.21$                 | 2.16           | 1.549   |
| 136 | 76 | 373                  | -                                                                          | -                 | 0.93 ±016                       | 1.832          | 0.931   |
| 138 | 78 | 520                  | -                                                                          | -                 | $0.66 \pm 0.12$                 | 1.533          | 0.487   |
| 140 | 80 | 773                  | -                                                                          | -                 | $0.44	\pm	0.08$                 | 1.263          | < 0.001 |
| 142 | 82 | 1575                 | $0.265\pm0.006$                                                            | $0.265 \pm 0.005$ | $0.215 \pm 0.038$               | 0.951          | < 0.001 |
| 144 | 84 | 696                  | $0.491 \pm 0.005$                                                          | $0.383 \pm 0.020$ | $0.48~\pm~0.08$                 | 1.579          | < 0.001 |
| 146 | 86 | 453                  | $0.760 \pm 0.025$                                                          | 0.682 ± 0.041     | 0.73 ± 0.13                     | 2.056          | 1.089   |
| 148 | 88 | 301                  | $1.35 \pm 0.05$                                                            | 1.453± 0.022      | $1.09 \pm 0.19$                 | 2.56           | 1.92    |
| 150 | 90 | 130                  | $2.760 \pm 0.040$                                                          | 5.073± 0.051      | $2.51 \pm 0.44$                 | 2.891          | 2.915   |



Fig.1:Comp



Fig.2: Comparison between the B (E2) ↑ values of the present work for <sub>60</sub>Nd nuclei with Global experimental and other theoretical results.

# **Discussion and Conclusions**

In view of tables1 and 2 one can point out that the experimental values of partial gamma width  $\Gamma$  (E2) are larger than that estimated by Weisskopf unit  $\Gamma_{wu}(E2)$  especially when the nucleon number deviated more and more from the magic neutron number. Since the cooperative effects appear between nucleons. Also ,it appears that the single particle shell model is valid particularly near the closed shell, so that the calculated  $|\mathbf{M}(\mathbf{E}2)|_{\mathbf{w},\mathbf{u}}^2 \downarrow$  which are limited to the even – even nuclei and shown in table 1 and table 2 reproduce the diffraction minimum at the magic neutron number N=82which is included in 58Ce and 60Nd nuclei. The reduced transition probabilities B(E2) values of  $\gamma_0$  -transitions for the following nuclei :  $^{136}_{58}$ Ce, $^{144}_{58}$ Ce, in table 3 and for  ${}^{136}_{60}Nd, {}^{138}_{60}Nd, {}^{140}_{60}Nd$  in table 4 are not presented because the experimental data such as half life time  $t_{1/2}$  for  $2^+$  excited states and the intensities of  $\gamma_0$ -transitions are not available.

Figures 1, 2 show the comparison of the present values of B(E2) with those reported in ref.[10] of ; experimental, Global best fit, SSANM and FRDM values.

The present results together with the other results seem to be a good behavior at all regions of N and close to each other except the SSANM results of ref.[10] are departal by some amount.The FRDM results of ref. [10] are deviated for Nd at 80 < N < 84 but for Ce fall down at 76 < N < 84 nuclei. The observed diffraction minimum at N=82 are very well reproduced by the present work as well as by other models except for FRDM results [10]. The present results together with the Global best fits are in a good agreement with the experimental data[10].

# References

- 1. MetzgerF.R.**1978**, phys.Rev.C18, PP.16 03-160.
- 2. Lobianco G.,**1989;**Nucl.phys. vol.**322**,no.1 PP.103-104.
- 3. Robinson S.J., Julie J. ,Borrer H.G.,Schillebeechx.p,UIbig S. and Lieb K.P.

**1994**; phys.Rev.lett., vol.**73**, PP.412-415.

- Clark, R.M., Cromaz M., Deleplauque M.A., Diamound R.M., Fallon P., Gorgen A., Lee I.Y., Macchiavelli A.o., stephens Fis and Ward D.; 2003 phys. Rev. C67, PP.04130207.
- 5. Yazar H.R.and Ihsan Ulure; 2007,Int.J.phys.sci,vol.2,no.2,PP.050-055.
- Fore stone R.B., and Shirley V.S., 1999;Table of Isotopes, 8<sup>th</sup> edition, John Wiley and Sons.

- 7. Skerka S.J., Hertal J.and Retzschaidt, **1966**;Nucl. Data A2,341.
- 8. Martin M.J., 1982; Reduced Gamma-Matrix Elements, Ray Transition Single- Particle Probabilities, and Oak Ridge National Estimates., Laboratory, Operated by Union Nuclear Corporation, Division.(September 27).
- Brussard P.J. and Gland emans, P.W.M; 1977 "Shell –Model Applications in Nuclear Spectroscopy" North- Holland .Publishing Company Amsterdam , New York, oxford.
- Raman S., Nestor, C.W. and Tikkanen JR; 2001 Atomic Data and Nuclear Data. Tables Vol. 78, No.1 PP.29-30.