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Abstract
Mullineux in 1979 presented two researches taking in them some special methods of
the partition theory, as he represented a kind of a special partition a mathematical sense
without any proof of it. Fayers in 2009 presented it with its conditions adding another
type pf partition and called the two partitions of Mullineux. The main aim of our work is
to find a suitable partition for the equivalence of these two partitions, where this

equivalence is not always occurred.
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1.  Introduction {8, f,,.. By} is said to be a set of
Let r be a non-negative integer. A S —numbers for z.”
composition g = (g, tty,.., it,) of 1 is a

sequence of non-negative
=Y py=r.Forall j=1 if u;>u,, the
j=1

composition g is called a partition. James [4]
defined S —numbers by : “Fix

A is a partition of r. Choose an integer b greater
than or equal to the number of parts of & and
Li=u+b—i, 1<i<b.  The set

integers such that

define:
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We can represent S —numbers in many of
runners (run.1, run.2, ..., run.e) as the following:

runl run.2 run.e
0 1 e-1
e e+l 2e—-1 diag.(A).

2e 2e+1 3e-1

Where every £ will be represented by a bead
which takes its location in diag.(A). For example,
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if 12=(7,5333,2,11) and if we take b =9, then
£ —numbers are {15,12,9,8,7,5,3,2,0} and if
we choose e = 3, then diag.(A) is

01 2

345

6 7 8

9 1011 =
12 13 14

15 16 17

Fayers in [5] defined the following definitions:
“Given any partition x, the conjugate partition
pis defined by p ={j>1|u; >t}, the
partition u is e—regular, if there no exist
J=1 such that g =p;,.,>0, also u is
e—restricted if u;—p;, <€ Vj21 or if
4 is e —regular .”

2. Two Mullineux’s Partitions

In 1979 Mullineux presented a sense, see

[1, 2], of an existence of a type of the

main partition without any proof, but Fayres in
2009 [3] could find the necessary conditions for
this partition adding another type to it and called it
the two partitions of Mullineux, here are these
conditions:

Definition (2.1): [3, 6.1]
Suppose  is an e —regular partition, and
take an abacus display for g ; (diag.(A)), with

bbeads, for some b> . Let a,y be the

positions of the last bead and the first empty space
on the abacus, respectively; so «a is the beta

number 3, = i, +b—1, while y equals b— .
Assuming u # ¢, there is a unique sequence
a, >C, >...>a, >, of non-negative integers
satisfying the following conditions:
1- For each 1<i<l, position
occupied and position ¢; is empty.

a is

2- a,=«a.
3-For 1<i <, we have
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e a =¢C, (mode), and all the positions

a, —e,a; — 2e,...,C; + € are occupied,

° all the positions
c,—1c —-2,..,a,, +1 are empty.
4-Either:

e a =c, (mode), all the positions
a, —e,...,C, +e are occupied, and all the
positions

or

¢, —1,c, —2,..,y are empty:

e all the position a, —e,a, —2e,... are

occupied and ¢, = y.

We define x* to be the partition whose
abacus display is obtained by moving the
beads at positions a,,...,a, to position

Clyeenr Gy -

There exist another partition; “a conjugate”
definition to (2.1); as the following:

Definition (2.2): [3, 6.2]

Suppose A is an e — restricted partition, and
take an abacus display; (diag.(A)), for A with
b beads. Let J,& be the position of the last
bead and the first empty space on the abacus,
respectively. Assuming A # ¢, there is a unique

sequence f, > g, >...> f, > g, of non-negative
integers satisfying the following conditions:

1- For each 1<i<u, position f, is
occupied and position g; is empty.

2- g, =¢.

3- For 1<i<u, wehave

e f, =g, (mode), and all the positions

f.—e, f, —2e,...,0; + e are empty;
all the positions f, +1,f, +2,...,9, , —1 are

occupied.

4- Either:
e f =g, (mode), and all positions

f,—e,...,0,+e are empty, and all the

positions 0,0 —1,..., f, +1 are occupied; or
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e all the positions g, +e,g, +2e,...
areempty and f, = 9.

We define A" to be the partition whose abacus
display is obtained by moving the beads at

positions f,..., f, to positions g,,...,d,.

For example, let z = (7,5%,2%,1) and b =6 then
it's 3-regular and 4-restricted. Also we can easy to
find 4" and x" by the following:

A

U

Our main aim of this research is to find a suitable
partition in which the two partitions of Mullineux
are equal. We have to remained that this partition
which we want to find, is mainly of:

H= (luluuzf“'uun) = (Vlr1 'szz !"'lvl:k)
k

such that |z =D v =
s=1

of u, forall 1<s<k.

r and rz, is a repetition

We will use the mathematical induction to find the
suitable partition for each case as the following:

Proposition (2.3):
Let (v, -v,,=¢€-1)
(r,=7,=..=7,=1) where 1<y<k-1

Then there exist two cases of the suitable partition
in each case there are many probabilities.

and

Proof: It is clear that when e > 2 then all the
possible cases of the equivalence of two partitions
of Mullineux will be under the following only two
cases:

Case (M ;) There exists just one column full of

beads, where all other columns are empty after
drawing diag.(A). This full column is always in
the runner (2), so this will be the first and unique
partition in the case when e=2. Take e =3,
then there exists another suitable partition when
the full column in runner (2) will move to runner
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(3). Now for e > 3, we will see that there exists
(e —1) suitable partitions, always beginning by
the existence of only one column full of beads in

runner (2), then this one will move to runner (3),
..., etc, till it will reach runner (e).

Case (M ,) When the column which full of beads

will reach runner (e) in case M, then it is
possible to move to runner (1), at this time we
must leave all the first row of diag.(A) to be
empty, then repeating the existence of the column
full of beads in runner (1) ®

Examples (2.4):
1- Let e =2, then

and for M, is

Finding the value of the suitable partition of
Proposition (2.3):

We introduced the explanation method of
finding the suitable partition, where we must find

its values in M, as the following:
(vi,(vi = (e=1) (vi - 2(e -2)), ..., 71, 7,)
(2.5)
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such that 7, =7r,+(e—-1)and
7, =12,...,(e —1) respectively, and there is very
clear the number of cases in M, is (e —1). Also,

the unique case in M,, is the same (2.5) such
that:
w,=7n,+(-1) and 7z, =e.

(2.6):
(z,,7, =1lor 2) and (r,=7,=..=7,, =2)

where 1<y <k —1. Then there exist three cases

of the suitable partition in each case posses many
probabilities.

Proposition Let (v,-v,,=6€-2),

Proof: It is clear that we must begin by e > 3.
Were we will determine three cases as the
following:

Case M, : If we choose e =3 then there is two
types of the suitable partition in which the
equivalence of the two partition of Mullineux will
verified as the 1% existence of two columns full of
beads exactly in runner (2) and runner (3), where
runner (1) will be empty of any bead. The 2™ it is
the same as the first one except the last bead in
runner (3) which will be empty. Now, taking
e =4, we will obtain the same two types when

e =3inM,, but we adding one step to the right

for each type to the M, i.e. all runner (2) will

move to runner (3), and all runner (3) to runner
(4). That is we have four probabilities here. If we
continue for e > 5 in this case, then there will be
2(e —2) types.

Case M, : For any e >3 we have a unique type

of suitable partition which will all the runners are
empty except the runner (e —1); (all the column

in this runner is occupied by the beads minus the
first position is empty) and the runner (e);

(without any position is empty in this runner).

Case M, : Because we reached to runner (€) in
both cases M,, and M,, and as happened in

case M,,, the movements will be in the same

position of runner (1), so for any e >3 we will
have just four probabilities: (P1) each of runner
(1) and runner (&) is full of beads except the other
runners which are completely empty, (P2) each of
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runner (1) and runner (e) is full of beads except
the last position of runner (€) which will be empty

and all other runners will be empty too, (P3) each
of runner (1) and runner (2) is full of beads except
the last position of runner (2) which will be empty
and all other runners will be empty too, and (P4)
each of runner (1) and runner (2) is full of beads
where all other runners will be empty always.

Here we must appoint that in case M, the first

row of all probabilities will be always empty and
then the existence of the beads will be repeat in
the same order e

Examples (2.7):

1- Let e=3, then the two Mullineux’s
partitions are equals about the Proposition

(2.6) are
— o 0 — o o — — e
— o @ — e @ — e o
’ and
— o @ — e @ — e o
— o @ — e — — o @
I\/|21 I\/|22
e — o e — o o o — o o —
e — o e — o o o — o o —
e — o o — — o — — e o —
MZS
2- If we choose e =4, then (#M,,) are:
— o0 — — o0 —
— o0 — — o0 —
— o 0 — — 0 — —
— — e e and — — e e
— — o @0 —- — e o

The unique diagram in M, is
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And (#M,,) are

e — — o e — — o
e — — e ® — — —
- - =-—- and - - - -
e o — — e o — —
e o — — e e — —
e — — — e o — —

Finding the value of the suitable partition of
Proposition (2.6):

The partition in (2.5) will be generalize and
will be as:
vit,(vi—(e—=2))%,(v, -2(e-2))",...,

2.7)

T T
Such that:

1- For M,;:
7, =12

7, =n,+(-2) and

7, =12,...,(e—2) respectivly.

T, =2

2- For M,,:

7, =2 7, =1

7, =n,+(-2) and
7, =(e-1).

3- For M,,:

7, =12 7, =12

7, =n,+(e—2) and
7, =e.
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Proposition  (2.8): Let (v, -v,, =€=3),
(r,,7, =1,20r 3) and
(r,=73=..=7,,=3) where 1<y<k-1.

Then there exist four cases of the suitable partition
in each case posses many probabilities.

Proof: Depending on Propositions (2.3) and (2.6),
then we have the following main cases:

M;:7,=.23 7, =3
1- n, =xm,+(e-3)and
7, =12,...,(e —3) respictivly.

Mg,:7,=23 1,=2
2- r,=m,+(e-3)and
7w, =(e-2).
My:7,=3 17,=1
3- n, =x,+(e-3)and
7, =(e-1).
M, :7, =123 17,=123
4- 7, =x,+(e-3)and
7[2 :e.

It is possible to generalize the Propositions (2.3),
(2.6) and (2.8) and the relations (2.5) and (2.7) in
the following theorem:

Theorem (2.9): Let (v,-v,,=¢€—g),
(r;,7 =1,2,..0re) and
(r,=13=..=7,,=8€)) where

1<y<k-land 1<e, <e.Thenthere
exist (e, +1) of possible cases of the suitable
partition in each case there is many probabilities.

Proof: Depending on all the propositions and the
relations in this work, then the possible cases are:
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M., 7,=12,...,e| =, =7, +(e—¢)

7y, =12,..,(e—e)
T, =€ respectivly

M, , 7,=23,..8 | 1, =7, +(e—¢)

=¢-1|r,=(-¢)+1

A/ 7,=34..8 | m,=7,+(e—g)

0, =6-2 | z,=(e—8)+2

Mel(91*1) b= (el —1),91 ﬂ'-l = 7[2 + (e_el)
Tk - 2 ;z'z =e— 2

wey | 71 =8 mo=m,+(e—e)
Tk :1 7[2 :e_l

r,=12,....e | 7, =7, +(e—e)
Ty =1,2,...,el 7[2 =e

e (e+1)

Theorem (2.10): The number of the probabilities
in every cases of (e, +1) in Theorem (2.9) will be
(e,-1)

(el(e_el)+ Z(el _Z)+(e1)2)'

Proof: It is easy to calculate the number of the
probabilities in all cases of (e, +1) in Theorem
(2.9), so will put the cases in three sorts. The 1%
sort in the first case, i.e. M, itis clear that the
number of this case is e,(e —e;) directly. Where
the 2" sort in all cases beginning from M, , till
M e(e)’
probabilities is
(e, =2)+D)+((e, -3)+D+...+

(((el - (el _l)) +1) + ((el - el) +1)

=, -D+(e,-2)+...+2+1

and the number of the possible

It remaining to us the 3" and the final sort, i.e.
2
#Mel(el—l) = (el) b
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