

Journal of
Science

ON CENTRALIZERS OF PRIME GAMMA RINGS

Heba.A.Shaker

University of Baghdad, Collage of Science, Department of Mathematics.Baghdad-Iraq

Abstract

In this paper, we introduce some results in a prime Γ-ring M with centralizer which is related to the quotient Γ-ring Q of M , and prove our main result; Let M be a prime Γ-ring with char $M \neq 2, U$ a non-zero right ideal of M and T_{1} and T_{2} two non-zero centralizers of M. If $T_{1} T_{2}(U)=(0)$, then there exists two elements p, q of Q such that $\mathrm{q} \Gamma \mathrm{U}=(0)$ and $\mathrm{p} \Gamma \mathrm{U}=(0)$.

تمركزت حلفتكاما الولية

هبة لماعاعلحشالكر
جلمعة بغداد، كلية العلوم، قم علوم الرياضيات. بغداد العراق

الظلاala

الالتسة

1.Introduction

Nobusawa [1] introduced the notion of a Γ ring, an object more general than a ring. Barnes [2] slightly weakened the conditions in the definition of Γ-ring in the sense of Nobusawa. Öztürk et al. [3,4] studied extended centroid of prime Γ-rings. In this paper, we consider the main results as follows.1) Let M be a prime Γ-ring of characteristic 2 , U a nonzero ideal of M, and T_{1} and T_{2} two non-zero centralizers of M. If $T_{1} T_{2}(U)=(0)$, there exists $\lambda \in \mathrm{C}_{\Gamma}$ such that $\mathrm{T}_{2}=\lambda \alpha \mathrm{T}_{1}$ for all $\alpha \in \Gamma$ where C_{Γ} is the extended centroid of M . (2) Let M be a prime Γ-ring, U a non-zero right ideal of M and T a non-zero centralizer of M . If $\mathrm{T}(\mathrm{U}) \Gamma \mathrm{a}=(0)$ where a is a fixed element of M , then there exists an element q of Q such that $\mathrm{q} \alpha \mathrm{a}=0$ and $\mathrm{q} \beta \mathrm{u}=0$ for all $\mathrm{u} \in \mathrm{U}$ and $\alpha, \beta \in \Gamma$. (3) Let M be a prime Γ-ring with char $\mathrm{M} \neq 2$, U a non-zero right ideal of M and T_{1} and T_{2} two non-zero centralizers of M. If $T_{1} T_{2}(U)=$ (0), then there exists two elements p, q of Q such that $\mathrm{q} \Gamma \mathrm{U}=(0)$ and $\mathrm{p} \Gamma \mathrm{U}=(0)$.

1. Preliminaries

Let M and Γ be (additive) abelian groups. If for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$ the conditions:
(1) $\mathrm{a} \alpha \mathrm{b} \in \mathrm{M}$,
(2) $(a+b) \alpha c=a \alpha b+a \alpha c$,
$a(\alpha+\beta) b=a \alpha b+a \beta b$,
$a \alpha(b+c)=a \alpha b+a \alpha c$
(3) $\quad(a \alpha b) \beta c=a \alpha(b \beta c)$.
are satisfied, then we call $\mathrm{Ma} \Gamma$-ring. Let M be a Γ-ring. The subset
$\mathrm{Z}=\{\mathrm{x} \in \mathrm{M} \mid \mathrm{x} \gamma \mathrm{m}=\mathrm{m} \gamma \mathrm{x}$ for all $\mathrm{m} \in \mathrm{M}$ and $\gamma \in \Gamma\}$ is called the center of M. By a right (resp. left) ideal of a Γ-ring M we mean an additive subgroup U of M such that $U \Gamma M \subseteq U$ (resp. $\mathrm{M} \Gamma \mathrm{U} \subseteq \mathrm{U})$. If U is both a right and a left ideal, then we say that U is an ideal of M. For each a of a Γ-ring M the smallest right ideal containing a is called the principal right ideal generated by a and is denoted by $\langle a\rangle_{r}$. Similarly we define $\langle\mathrm{a}\rangle_{1}$ (resp. $\langle\mathrm{a}\rangle$), the principal left (resp. two sided) ideal generated by a. An ideal P of a Γ-ring M is said to be prime if for any ideals U and V of $\mathrm{M}, \mathrm{U} \Gamma \mathrm{V} \subseteq \mathrm{P}$ implies U $\subseteq \mathrm{P}$ or $\mathrm{V} \subseteq \mathrm{P}$. A Γ-ring M is said to be prime if the zero ideal is prime.

Theorem 2.1 ([5, Theorem 4]). If M is a Γ ring, the following conditions are equivalent:
(i) M is a prime Γ-ring.
(ii) If $\mathrm{a}, \mathrm{b} \in \mathrm{M}$ and $\mathrm{a} \Gamma \mathrm{M} \Gamma \mathrm{b}=(0)$, then $\mathrm{a}=0$ or $b=0$.
(iii) If $\langle\mathrm{a}\rangle$ and $\langle\mathrm{b}\rangle$ are principal ideals of M such that $\langle\mathrm{a}\rangle \Gamma\langle\mathrm{b}\rangle \quad=\quad(0), \quad$ then $\mathrm{a}=0$ or $\mathrm{b}=0$.
(iv) If U and V are right ideals of M such that $U \Gamma V=(0)$, then $U=(0)$ or $V=(0)$.
(v) If U and V are left ideals of M such that $U \Gamma \mathrm{~V}=(0)$, then $\mathrm{U}=(0)$ or $\mathrm{V}=(0)$.
Let M be a prime Γ-ring such that $\mathrm{M} \Gamma \mathrm{M} \neq \mathrm{M}$. Denote
$M:=\{(U, f) \mid U(\neq 0)$ is an ideal of M and $f: \mathrm{U} \rightarrow \mathrm{M}$ is a right M -module homomorphism $\}.$ Define a relation \sim on M by
$(\mathrm{U}, \mathrm{f}) \sim(\mathrm{V}, \mathrm{g}) \Leftrightarrow \exists \mathrm{W}(\neq 0) \subset \mathrm{U} \cap \mathrm{V}$ such that f $=\mathrm{g}$ on W .
Since M is a prime Γ-ring, it is possible to find a non-zero W and so " \sim " is an equivalence relation. This gives a chance for us to get a partition of M . We then denote the equivalence class by $\mathrm{Cl}(\mathrm{U}, \mathrm{f})=\hat{\mathrm{f}}$, where
$\hat{\mathrm{f}}:=\{\mathrm{g}: \mathrm{V} \rightarrow \mathrm{M} \mid(\mathrm{U}, \mathrm{f}) \sim(\mathrm{V}, \mathrm{g})\}$,
and denote by Q the set of all equivalence classes. Then Q is a Γ-ring, which is called the quotient Γ-ring of M (see [4]). The set
$\mathrm{C}_{\Gamma}:=\{\mathrm{g} \in \mathrm{Q} \mid \mathrm{g} \gamma \mathrm{f}=\mathrm{f} \gamma \mathrm{g}$ for all $\mathrm{f} \in \mathrm{Q}$ and $\gamma \in$ $\Gamma\}$
is called the extended centroid of M (See [4]).
Lemma 2.2. Let M be a prime Γ-ring, U a non-zero ideal of M, and T a centralizer of M. If $\mathrm{a} \Gamma \mathrm{T}(\mathrm{U})=(0)(\mathrm{T}(\mathrm{U}) \Gamma \mathrm{a}=(0))$ for all $\mathrm{a} \in \mathrm{M}$, then $\mathrm{a}=0$ or $\mathrm{T}=0$.

Proof: clear by the primness condition on M.
Theorem 2.3 ([6, Theorem 3.5]). The Γ-ring Q satisfies the following properties:
(i) For any element $\mathrm{q} \in \mathrm{Q}$, there exists an ideal $\mathrm{U}_{\mathrm{q}} \in \mathrm{F}$ such that $\mathrm{q}\left(\mathrm{U}_{\mathrm{q}}\right) \subseteq \mathrm{M}$ (or $\mathrm{q} \gamma \mathrm{U}_{\mathrm{q}}$ $\subseteq \mathrm{M}$ for all $\gamma \in \Gamma$).
(ii) If $q \in Q$ and $q(U)=(0)$ for some $U \in F$ (or $q \gamma \mathrm{U}_{\mathrm{q}}=(0)$ for some $\mathrm{U} \in \mathrm{F}$ and for all $\left.\gamma \in \Gamma\right)$, then $\mathrm{q}=0$.
(iii) If $U \in F$ and $\Psi: U \rightarrow M$ is a right $M-$ module homomorphism, then there exists an element $\mathrm{q} \in \mathrm{Q}$ such that $\Psi(\mathrm{u})=\mathrm{q}(\mathrm{u})$ for all $u \in U$ (or $\Psi(u)=q \gamma u$ for all $u \in U$ and $\gamma \in \Gamma$).
(iv) Let W be a submodule (an(M,M)subbimodule[7]) in Q and $\Psi: \mathrm{W} \rightarrow \mathrm{Q}$ a right M -module homomorphism. If W contains the ideal U of the Γ-ring M such that $\Psi(U) \subseteq M$
and $\mathrm{AnnU}=\mathrm{Ann}_{\mathrm{r}} \mathrm{W}$, then there is an element q $\in \mathrm{Q}$ such that $\Psi(\mathrm{b})=\mathrm{q}(\mathrm{b})$ for any $\mathrm{b} \in \mathrm{W}$ (or $\Psi(\mathrm{b})=\mathrm{q} \gamma \mathrm{b}$ for any $\mathrm{b} \in \mathrm{W}$ and $\gamma \in \Gamma$) and $\mathrm{q}(\mathrm{a})$ $=0$ for any $\mathrm{a} \in \mathrm{Ann}_{\mathrm{r}} \mathrm{W}$ (or q $\gamma \mathrm{a}=0$ for any $\mathrm{a} \in$ $\mathrm{Ann}_{\mathrm{r}} \mathrm{W}$ and $\gamma \in \Gamma$).
Let M be a Γ-ring. A map $\mathrm{T}: \mathrm{M} \rightarrow \mathrm{M}$ is called a centralizer if
$T(x+y)=T(x)+T(y)$ and $T(x \gamma y)=T(x) \gamma y=x \gamma T(y)$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\gamma \in \Gamma$.

Lemma 2.4 : A) Let M be a 2-torsion free prime Γ-ring, T_{1} and T_{2} the symmetric centralizers of M . If
$\mathrm{T}_{1}(\mathrm{x}) \gamma \mathrm{T}_{2}(\mathrm{y})=\mathrm{T}_{2}(\mathrm{x}) \gamma \mathrm{T}_{1}(\mathrm{y})$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\gamma \in \Gamma$ and $\mathrm{T}_{1} \neq 0$, then there exists $\lambda \in \mathrm{C}_{\Gamma}$ such that $\mathrm{T}_{2}(\mathrm{x})=\lambda \alpha \mathrm{T}_{1}(\mathrm{x})$ for $\alpha \in \Gamma$, where C_{Γ} is the extended centroid of M.
B) Let M be a 2-torsion free prime Γ-ring, T_{1}, T_{2}, T_{3} and T_{4} the symmetric centralizers of M. If
$\mathrm{T}_{1}(\mathrm{x}) \gamma \mathrm{T}_{2}(\mathrm{y})=\mathrm{T}_{3}(\mathrm{x}) \gamma \mathrm{T}_{4}(\mathrm{y})$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\gamma \in \Gamma$ and $\mathrm{T}_{1} \neq 0 \neq \mathrm{T}_{4}$, then there exists $\lambda \in \mathrm{C}_{\Gamma}$ such that $\mathrm{T}_{2}(\mathrm{x})=\lambda \alpha \mathrm{T}_{4}(\mathrm{x})$ and $T_{3}(x)=\lambda \alpha T_{1}(x)$ for $\alpha \in \Gamma$ where C_{Γ} is the extended centroid of M

Proof (A):- Let $x, y, z \in M$ and $\beta, \gamma \in \Gamma$. Substituting $\mathrm{y}+\mathrm{z}$ for y in (2.1), we have
$\mathrm{T}_{1}(\mathrm{x}) \gamma \mathrm{DT} \mathrm{T}_{2}(\mathrm{y}, \mathrm{z})=\mathrm{T}_{2}(\mathrm{x}) \gamma \mathrm{T}_{1}(\mathrm{y}, \mathrm{z})$.
Replacing z by $z \beta y$ in (2.3), we have
$\mathrm{T}_{1}(\mathrm{x}) \gamma \mathrm{z} \beta \mathrm{T}_{2}(\mathrm{y})=\mathrm{T}_{2}(\mathrm{x}) \gamma \mathrm{z} \beta \mathrm{T}_{1}(\mathrm{y})$.
Now if we replace y by x in (2.4), then
$\mathrm{T}_{1}(\mathrm{x}) \gamma \mathrm{z} \beta \mathrm{T}_{2}(\mathrm{x})=\mathrm{T}_{2}(\mathrm{x}) \gamma \mathrm{z} \beta \mathrm{T}_{1}(\mathrm{x})$.
If $\mathrm{T}_{1}(\mathrm{x}) \neq 0$ then $\mathrm{T}_{2}(\mathrm{x})=\lambda(\mathrm{x}) \alpha \mathrm{T}_{1}(\mathrm{x})$ for all $\alpha \in \Gamma$ and for some $\lambda(x) \in C_{\Gamma}$. Thus if $T_{1}(x) \neq 0$
$\neq \mathrm{T}_{1}(\mathrm{y})$, then it follows from (2.4) that
$(\lambda(\mathrm{y})-\lambda(\mathrm{x})) \alpha \mathrm{T}_{1}(\mathrm{x}) \gamma \mathrm{z} \beta \mathrm{T}_{1}(\mathrm{y})=0$.
(2.6)

Since M is a prime Γ-ring, by using Lemma 2.2 we conclude that $\lambda(x)=\lambda(y)$. Hence we have proved that there exists $\lambda \in \mathrm{C}_{\Gamma}$ such that $\mathrm{T}_{2}(\mathrm{x})=\lambda \alpha \mathrm{T}_{1}(\mathrm{x})$ for all $\alpha \in \Gamma$ and $\mathrm{x} \in \mathrm{M}$ with $\mathrm{T}_{1}(\mathrm{x}) \neq 0$. On the other hand, if $\mathrm{T}_{1}(\mathrm{x})=0$ then $\mathrm{T}_{2}(\mathrm{x})=0$ as well. Therefore $\mathrm{T}_{2}(\mathrm{x})=\lambda \alpha \mathrm{T}_{1} \mathrm{Z}$

Proof (B): Let $x, y, z, w \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Replacing y by $y+z$ in (2.2), we get $\mathrm{T}_{1}(\mathrm{x}) \gamma \mathrm{T}_{2}(\mathrm{y}+\mathrm{z})=\mathrm{T}_{3}(\mathrm{x}) \gamma \mathrm{T}_{4}(\mathrm{y}+\mathrm{z})$.
If we substitute $z \beta x$ for z in (2.7), then
$\mathrm{T}_{1}(\mathrm{x}) \gamma \mathrm{z} \beta \mathrm{T}_{2}(\mathrm{y})=\mathrm{T}_{3}(\mathrm{x}) \gamma \mathrm{z} \beta \mathrm{T}_{4}(\mathrm{y})$.
Substituting $z \alpha \mathrm{~T}_{4}(\mathrm{w})$ for z in (2.8), we have
$\mathrm{T}_{1}(\mathrm{x}) \gamma \mathrm{z} \alpha \mathrm{T}_{4}(\mathrm{w}) \beta \mathrm{T}_{2}(\mathrm{y})=\mathrm{T}_{3}(\mathrm{x}) \gamma \mathrm{z} \alpha \mathrm{T}_{4}(\mathrm{w}) \beta \mathrm{T}_{4}(\mathrm{y})$. (2.9)

By (2.8), we know that
$\mathrm{T}_{1}(\mathrm{x}) \gamma \mathrm{z} \alpha \mathrm{T}_{2}(\mathrm{w})=\mathrm{T}_{3}(\mathrm{x}) \gamma \mathrm{z} \alpha \mathrm{T}_{4}(\mathrm{w}) \quad$ and so
$\mathrm{T}_{1}(\mathrm{x}) \gamma \mathrm{z} \alpha\left(\mathrm{T}_{4}(\mathrm{w}) \beta \mathrm{T}_{2}(\mathrm{y})-\mathrm{T}_{2}(\mathrm{w}) \beta \mathrm{T}_{4}(\mathrm{y})\right)=0$
which implies that $\mathrm{T}_{4}(\mathrm{w}) \beta \mathrm{T}_{2}(\mathrm{y})=\mathrm{T}_{2}(\mathrm{w}) \beta \mathrm{T}_{4}(\mathrm{y})$ since $\mathrm{T}_{1} \neq 0$ and M is a prime Γ-ring. It follows from $\mathrm{T}_{4} \neq 0$ and Lemma 3.6 that $\mathrm{T}_{2}(\mathrm{y})=\lambda \alpha \mathrm{T}_{4}(\mathrm{y})$ for some $\lambda \in \mathrm{C}_{\Gamma}$. Hence, by (2.8), we conclude that
$\left(\lambda \alpha \mathrm{T}_{1}(\mathrm{x})-\mathrm{T}_{3}(\mathrm{x})\right) \gamma \mathrm{z} \beta \mathrm{T}_{4}(\mathrm{y})=0$,
and so $T_{3}(x)=\lambda \alpha T_{1}(x)$. This completes the proof.

Lemma 2.5 :([8, Lemma 1]). Let M be a prime Γ-ring and Z the center of M .

1. If $a, b, c \in M$ and $\beta, \gamma \in \Gamma$, then
$[\mathrm{a} \gamma \mathrm{b}, \mathrm{c}]_{\beta}=\mathrm{a} \gamma[\mathrm{b}, \mathrm{c}]_{\beta}+[\mathrm{a}, \mathrm{c}]_{\beta} \gamma \mathrm{b}+\mathrm{a} \gamma(\mathrm{c} \beta \mathrm{b})-$ $a \beta(c \gamma b)$
where $[\mathrm{a}, \mathrm{b}]_{\gamma}$ is $\mathrm{a} \gamma \mathrm{b}-\mathrm{b} \gamma$ a for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{M}$ and γ $\in \Gamma$.
2. If $\mathrm{a} \in \mathrm{Z}$, then $[\mathrm{a} \gamma \mathrm{b}, \mathrm{c}]_{\beta}=\mathrm{a} \gamma[\mathrm{b}, \mathrm{c}]_{\beta}$ where $[\mathrm{a}, \mathrm{b}]_{\gamma}$ is $\mathrm{a} \gamma \mathrm{b}-\mathrm{b} \gamma \mathrm{a}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{M}$ and $\gamma \in$ Γ.

Lemma 2.6 ([9, Lemma 2]). Let M be a prime Γ-ring, U a non-zero right (resp. left) ideal of M and $a \in M$. If $U \Gamma a=(0)($ resp. $a \Gamma U=(0)$), then $\mathrm{a}=0$.

2. Main results

In what follows, let M denote a prime Γ ring such that $\mathrm{M} \Gamma \mathrm{M} \neq \mathrm{M}, \mathrm{Z}$ is the center of M , C_{Γ} is the extended centroid of M and $[\mathrm{a}, \mathrm{b}]_{\gamma}=$ $\mathrm{a} \gamma \mathrm{b}$ - bya for all $\mathrm{a}, \mathrm{b} \in \mathrm{M}$ and $\gamma \in \Gamma$.
Lemma 3.1. Let M be a prime Γ-ring of characteristic 2. Let T_{1} and T_{2} two non-zero centralizers of M and right M -module homeomorphisms. If
$\mathrm{T}_{1} \mathrm{~T}_{2}(\mathrm{x})=0$ for all $\mathrm{x} \in \mathrm{M}$,
then there exists $\lambda \in \mathrm{C}_{\Gamma}$ such that $\mathrm{T}_{2}(\mathrm{x})=$ $\lambda \alpha \mathrm{T}_{1}(\mathrm{x})$ for all $\alpha \in \Gamma$ and $\mathrm{x} \in \mathrm{M}$.
Proof. Let $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$. Replacing x by $\mathrm{x} \gamma \mathrm{y}$ in (3.1), it follows from charM=2 that for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\gamma \in \Gamma$
$\mathrm{T}_{1}(\mathrm{x}) \gamma \mathrm{T}_{2}(\mathrm{y})=0$.
Replacing y by $\mathrm{T}_{1}(\mathrm{y})$ in (3.2), we get
$\mathrm{T}_{1}(\mathrm{x}) \gamma \mathrm{T}_{2}\left(\mathrm{~T}_{1}(\mathrm{y})\right)=0$.
for all $x, y \in M$ and $\gamma \in \Gamma$. Now, if we replace y by $\mathrm{z} \mathrm{\gamma y}$ in (3.3), then we obtain
$\mathrm{T}_{1}(\mathrm{x}) \gamma \mathrm{T}_{2}(\mathrm{y}) \gamma \mathrm{T}_{1}(\mathrm{z})=0$.
for all $\mathrm{x} \in \mathrm{M}$ and $\gamma \in \Gamma$. Now replace y by $\mathrm{z} \beta \mathrm{y}$ in (3.4), then we obtain
$\mathrm{T}_{1}(\mathrm{x}) \gamma \mathrm{z} \beta \mathrm{T}_{2}(\mathrm{y}) \gamma \mathrm{T}_{1}(\mathrm{z})=0$
Then

$\mathrm{T}_{2}(\mathrm{y}) \gamma \mathrm{T}_{1}(\mathrm{z})=0$

for all $\mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\gamma \in \Gamma$.since M is a prime Γ ring, then from(3.2)and(3.5)we obtain
$\mathrm{T}_{1}(\mathrm{x}) \gamma \mathrm{T}_{2}(\mathrm{y})=\mathrm{T}_{2}(\mathrm{y}) \gamma \mathrm{T}_{1}(\mathrm{x})$
If $T_{1}(x) \neq 0$, then there exists $\lambda(x) \in C_{\Gamma}$ such that $T_{2}(x)=\lambda(x) \alpha T_{1}(x)$ for all $x \in M$ and $\alpha \in$ Γ by Lemma 2.4. Thus, if $T_{1}(x) \neq 0 \neq T_{1}(y)$, then (3.3) implies that
$(\lambda(y)-\lambda(x)) \alpha \mathrm{T}_{1}(\mathrm{x}) \beta z \gamma \mathrm{~T}_{2}(\mathrm{x})=0$.
Since M is a prime Γ-ring, we conclude by using Lemma 2.2 that $\lambda(\mathrm{y})=\lambda(\mathrm{x})$ for all $\mathrm{x}, \mathrm{y} \in$ M. Hence we proved that there exists $\lambda \in \mathrm{C}_{\Gamma}$ such that $T_{2}(x)=\lambda \alpha T_{1}(x)$ for all $x \in M$ and α $\in \Gamma$ with $T_{1}(x) \neq 0$. On the other hand, if $T_{1}(x)$ $=0$, then $T_{2}(x)=0$ as well. Therefore, $T_{2}(x)=$ $\lambda \alpha \mathrm{T}_{1}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{M}$ and $\alpha \in \Gamma$. This completes the proof.

Proposition 3.2. Let M be a prime Γ-ring of characteristic 2 and T a non-zero centralizer of M. If $T(x) \in Z$ for all $x \in M$,
then there exists $\lambda(\mathrm{m}) \in \mathrm{C}_{\Gamma}$ such that $\mathrm{T}(\mathrm{m})=$ $\lambda(\mathrm{m}) \alpha \mathrm{T}(\mathrm{z})$ for all $\mathrm{m}, \mathrm{z} \in \mathrm{M}$ and $\alpha \in \Gamma$ or M is commutative.

Proof. From (3.8), we have
$[\mathrm{T}(\mathrm{x}), \mathrm{y}]_{\beta}=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\beta \in \Gamma$. (3.9)
Replacing x by $\mathrm{x} \gamma \mathrm{Z}$ in (3.9), it follows from Lemma 2.5 that
$\mathrm{T}(\mathrm{x}) \gamma[\mathrm{z}, \mathrm{y}]_{\beta}=0$
for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\gamma, \beta \in \Gamma$. Replacing x by $\mathrm{T}(\mathrm{x})$ in (3.10), we obtain
$\mathrm{T}^{2}(\mathrm{x}) \gamma[\mathrm{z}, \mathrm{y}]_{\beta}=0$
for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\gamma, \beta \in \Gamma$.
Now, substituting zam for z in (3.11) it
follows from char $\mathrm{M}=2$ that
$\mathrm{T}^{2}(\mathrm{x}) \alpha \mathrm{m} \gamma[\mathrm{z}, \mathrm{y}]_{\beta}=0$.
for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{m} \in \mathrm{M}$ and $\gamma, \beta, \alpha \in \Gamma$. Since M is a prime Γ-ring, we obtain
$\mathrm{T}^{2}(\mathrm{x})=0 \quad \forall \mathrm{x} \in \mathrm{M}$ or $[\mathrm{z}, \mathrm{y}]_{\beta}=0$
$\forall z, y \in M$ and $\forall \beta \in \Gamma$.
From (3.13), if $\mathrm{T}^{2}(\mathrm{x})=0$ for all $\mathrm{x} \in \mathrm{M}$, then replacing x by $\mathrm{x} \gamma \mathrm{m}$ in this last relation, it follows from $T(x) \in Z$ that $\mathrm{T}(\mathrm{x}) \gamma \mathrm{T}(\mathrm{m})=\mathrm{T}(\mathrm{m}) \gamma \mathrm{T}(\mathrm{x})$.
for all $\mathrm{x}, \mathrm{m} \in \mathrm{M}$ and $\gamma \in \Gamma$.
Replacing x by $\mathrm{x} \alpha \mathrm{n}$ in (3.14), it follows from (3.8) that for all $\mathrm{x}, \mathrm{m}, \mathrm{n} \in \mathrm{M}$ and $\gamma, \alpha \in \Gamma$
$\mathrm{T}(\mathrm{x}) \propto \mathrm{n} \gamma \mathrm{T}(\mathrm{m})=\mathrm{T}(\mathrm{m}) \propto n \gamma \mathrm{~T}(\mathrm{x})$.
If $T(x) \neq 0$, then there exists $\lambda(m) \in C_{\Gamma}$ such that $T(m)=\lambda(m) \alpha T(x)$ for all $z, m \in M$ and α $\in \quad \Gamma$ by Lemma 2.4. On the other hand, it follows from (3.13) that if $[\mathrm{z}, \mathrm{y}]_{\beta}=0$ for all z ,
$\mathrm{y} \in \mathrm{M}$ and $\beta \in \Gamma$, then M is commutative. This completes the proof.

Theorem 3.3. Let M be a prime Γ-ring of characteristic $2, \mathrm{~T}_{1}$ and T_{2} two non-zero centralizers of M and U a non-zero ideal of M . If
$\mathrm{T}_{1} \mathrm{~T}_{2}(\mathrm{u})=0$ for all $\mathrm{u} \in \mathrm{U}$
then there exists $\lambda \in \mathrm{C}_{\Gamma}$ such that $\mathrm{T}_{2}(\mathrm{x})=\lambda \alpha \mathrm{T}_{1}(\mathrm{x})$ for all $\alpha \in \Gamma$ and $\mathrm{x} \in \mathrm{M}$.

Proof. Let $\mathrm{u}, \mathrm{v} \in \mathrm{U}$ and $\gamma \in \Gamma$. Replacing u by $\mathrm{T}_{2}(\mathrm{u}) \gamma \mathrm{v}$ in (3.16), we get
$\mathrm{T}_{1} \mathrm{~T}_{2}\left(\mathrm{~T}_{2}(\mathrm{u}) \gamma \mathrm{v}\right)=0$,
for all $\mathrm{u}, \mathrm{v} \in \mathrm{U}$ and $\gamma \in \Gamma$. Then $\mathrm{T}^{2}{ }_{2}(\mathrm{u}) \gamma \mathrm{T}_{1}(\mathrm{v})=$ 0

Since $\mathrm{T}_{1} \neq 0$, it follows from Lemma 2.2 that $\mathrm{T}^{2}{ }_{2}(\mathrm{u})=0$ for all $\mathrm{u} \in \mathrm{U}$, so from char $\mathrm{M}=2$ that $\mathrm{T}^{2}{ }_{2}=0$. Now, substituting $\mathrm{u} \gamma \mathrm{T}_{2}(\mathrm{x})$ for u in (3.16), we get
$\mathrm{T}_{1}\left(\mathrm{~T}_{2}\left(\mathrm{u} \gamma \mathrm{T}_{2}(\mathrm{x})\right)\right)=0$,
for all $\mathrm{u} \in \mathrm{U}, \mathrm{x} \in \mathrm{M}$ and $\gamma \in \Gamma$.
Then $\mathrm{T}_{2}(\mathrm{u}) \gamma\left(\mathrm{T}_{1}\left(\mathrm{~T}_{2}(\mathrm{x})\right)\right)=0$
Since $T_{2} \neq 0$, we get $T_{1}\left(T_{2}(x)\right)=0$ for all $x \in M$ by Lemma 2.2.Hence there exists $\lambda \in \mathrm{C}_{\Gamma}$ such that $\mathrm{T}_{2}=\lambda \alpha \mathrm{T}_{1}$ for all $\alpha \in \Gamma$ by Lemma 3.1.

Theorem 3.4. Let M be a prime Γ-ring, U a non-zero right ideal of M and T a non-zero centralizer of M . If
$\mathrm{T}(\mathrm{u}) \gamma \mathrm{a}=0$ for all $\mathrm{u} \in \mathrm{U}$ and $\gamma \in \Gamma$
Where a is a fixed element of M , then there exists an element q of Q such that $\mathrm{q} \alpha \mathrm{a}=0$ and $\mathrm{q} \beta \mathrm{u}=0$ for all $\mathrm{u} \in \mathrm{U}$ and $\gamma \in \Gamma$

Proof. Let $u \in U, x \in M$ and $\beta \in \Gamma$. Since U is a right ideal of M , we have $u \beta \mathrm{x} \in \mathrm{U}$. Replacing u by $u \beta x$ in (3.19), we get
$\mathrm{T}(\mathrm{u} \beta \mathrm{x}) \gamma \mathrm{a}=0$ for all $\mathrm{u} \in \mathrm{U}, \mathrm{x} \in \mathrm{M}$ and $\gamma, \beta \in \Gamma$, then $\mathrm{T}(\mathrm{u}) \beta \mathrm{x} \gamma \mathrm{a}=0$, Hence $\mathrm{T}(\mathrm{u}) \beta \mathrm{x} \gamma \mathrm{a} \alpha \mathrm{m}=0$ for any $m \in M$ and $\alpha \in \Gamma$, and so $T(u) \beta\left(\sum x \gamma a \alpha m\right)=0$.Therefore, for any $u \in V$ $=$ МГаГМ which is a non-zero ideal of M , we have
$T(u) \beta f(v)=0$
for all $u \in U . f(v)$ is independent of u but it isdependent on v. Since M is a prime Γ ring, $\mathrm{f}(\mathrm{v})$ is well-defined and uni que for all $\mathrm{v} \in \mathrm{V}$. Note that $\mathrm{T}(\mathrm{u}) \beta \mathrm{f}(\mathrm{v}) \alpha \mathrm{y}=0$,

For any $y \in M$, and $\alpha \in \Gamma$. Now since $v \alpha y \in V$ for any $y \in \mathrm{M}, \mathrm{v} \in \mathrm{V}$. Replacing v by vay in (3.20) we get
$\mathrm{T}(\mathrm{u}) \beta \mathrm{f}(\mathrm{v} \alpha \mathrm{y})=0$ for all $\mathrm{y} \in \mathrm{M}$,
and so by using (3.21) and (3.22), we have
$T(u) \beta(f(v \alpha y)-f(v) \alpha y)=0$.which implies from Lemma 2.6 that
$f(v \alpha y)=f(v) \alpha y$,
for all $\mathrm{y} \in \mathrm{M}, \mathrm{v} \in \mathrm{V}$ and $\alpha \in \Gamma$.It follows from (3.23) that $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{M}$ is a right M -module homomorphism. In this case, $\mathrm{q}=\mathrm{Cl}(\mathrm{V}, \mathrm{f}) \in \mathrm{Q}$. Moreover, $\mathrm{f}(\mathrm{v})=\mathrm{q} \beta \mathrm{v}$ for all $\mathrm{v} \in \mathrm{V}$ and $\alpha \in \Gamma$ by Theorem 2.3. Let $x \in M, v \in V, u \in U$ and $\gamma, \beta \in \Gamma$. Replacing v by $\mathrm{x} \gamma \mathrm{v}$ in (3.20), we get $\mathrm{T}(\mathrm{u}) \beta \mathrm{f}(\mathrm{x} \gamma \mathrm{v})=0$, and
$\mathrm{T}(\mathrm{u}) \beta \mathrm{q} \beta \mathrm{x} \gamma \mathrm{v}=0$
Also, replacing u by $u \gamma x$ in (3.20), we get $\mathrm{T}(\mathrm{u} \gamma \mathrm{x}) \beta \mathrm{f}(\mathrm{v})=0$, we get $\mathrm{T}(\mathrm{u}) \gamma_{\mathrm{x}} \beta \mathrm{f}(\mathrm{v})=0$, and $\mathrm{T}(\mathrm{u}) \gamma \mathrm{x} \beta \mathrm{q} \beta \mathrm{v}=$
Now, replacing β by γ and replacing γ by β in (3.25), we get
$\mathrm{T}(\mathrm{u}) \beta \mathrm{x} \gamma \mathrm{q} \gamma \mathrm{v}=0$.
Thus, from (3.24) and (3.26) we obtain
$\mathrm{T}(\mathrm{u}) \beta(\mathrm{x} \gamma \mathrm{q}-\mathrm{q} \beta \mathrm{x}) \gamma \mathrm{v}=0$.
for all $\mathrm{x} \in \mathrm{M}, \mathrm{v} \in \mathrm{V}, \mathrm{u} \in \mathrm{U}$ and $\gamma, \beta \in \Gamma$.then by primness of Γ-ring we get $T(u) \beta(x \gamma q-q \beta x)=0$ for all $x \in M, u \in U$ and $\gamma, \beta \in \Gamma$, thus $T(u) \beta x \gamma q$ $-T(u) \beta q \beta x=0$, for all $x \in M$ and $\gamma, \beta \in \Gamma$, since T is centralizer then $\mathrm{u} \beta \mathrm{T}(\mathrm{x}) \gamma \mathrm{q}-\mathrm{u} \beta \mathrm{q} \beta \mathrm{T}(\mathrm{x})$ $=0$,replace x by $u \beta x$ in last equation we get $u \beta T(u \beta x) \gamma q-u \beta q \beta T(u \beta x)=0$, then we have $u \beta u \beta T(x) \gamma q-u \beta q \beta u \beta T(x)=0$, and so since M is prime Γ-ring we get $u \beta T(x) \gamma q-q \beta u \beta T(x)$ $=0$, then we have $\mathrm{u} \beta \mathrm{T}(\mathrm{x}) \gamma \mathrm{q} \alpha \mathrm{a}-\mathrm{q} \beta \mathrm{u} \beta \mathrm{T}(\mathrm{x}) \alpha \mathrm{a}$ $=0$, then we get
$\mathrm{u} \beta \mathrm{T}(\mathrm{x}) \gamma \mathrm{q} \alpha \mathrm{a}=\mathrm{q} \beta \mathrm{u} \beta \mathrm{T}(\mathrm{x}) \alpha \mathrm{a}$ by Lemma 2.6. Now, we shall prove that q can be chosen in Q such that $q \alpha a=0$ and $q \beta u=0$ for all $u \in U$ and $\gamma \in \Gamma$. If $q \alpha a=0$, then $q \beta u \beta T(x) \alpha a=0$, then $q \beta u=0$ and so since M is prime Γ-ring, we get $\mathrm{q} \Gamma \mathrm{U}=(0)$. On the other hand, if $\mathrm{q} \alpha \mathrm{a} \neq$ 0 , then $\mathrm{q} \beta \mathrm{u} \neq 0$. In fact, if $\mathrm{q} \beta \mathrm{u}=0$, then $\mathrm{q} \alpha \mathrm{a}=0$ since $u \beta T(x) \gamma q \alpha a=q \beta u \beta T(x) \alpha a$. Thus, we may suppose that $q \alpha a \neq 0$ and $q \beta u \neq 0$ for all u $\in U$ and $\alpha, \beta \in \Gamma$. In this case, we get
$\mathrm{u} \beta \mathrm{T}(\mathrm{x}) \gamma \mathrm{q} \alpha \mathrm{a}=\mathrm{q} \beta \mathrm{u} \beta \mathrm{T}(\mathrm{x}) \alpha \mathrm{a}$
for all $\mathrm{x} \in \mathrm{M}, \mathrm{u} \in \mathrm{U}$ and $\gamma, \beta, \alpha \in \Gamma$. It follows from Lemma 2.4 that there exists $\lambda \in \mathrm{C}_{\Gamma}$ such that $q \alpha a=\lambda \delta \mathrm{a}$ and $\mathrm{q} \beta \mathrm{u}=\lambda \delta \mathrm{u}$ for all $\mathrm{u} \in \mathrm{U}$ and $\gamma, \delta, \alpha, \beta \in \Gamma$. Hence, if $q^{\prime}=q-\lambda$, then $q^{\prime} \Gamma a=0$ and $q^{\prime} \Gamma \mathrm{U}=(0)$. This completes the proof.

Theorem 3.5. Let M be a prime Γ-ring with char $M \neq 2$, U a non-zero right ideal of M and T a non-zero centralizer of M. Then the subring of M generated by $T(U)$ contains no non-zero right ideals of M if and only if $T(U) \Gamma U=(0)$.

Proof. Let A be the subring generated by $\mathrm{T}(\mathrm{U})$. Let $S=A \cap \mathrm{U}, \mathrm{u} \in \mathrm{U}, \mathrm{s} \in \mathrm{S}$ and $\gamma \in \Gamma$. Then $\mathrm{T}(\mathrm{s} \gamma \mathrm{u})=\mathrm{T}(\mathrm{s}) \gamma \mathrm{u} \in \mathrm{A}$, and so we have $\mathrm{T}(\mathrm{s}) \gamma \mathrm{u}$ $\in \mathrm{S}$. Thus $\mathrm{T}(\mathrm{S}) \Gamma \mathrm{U}$ is a right ideal of M . In this case, $\mathrm{T}(\mathrm{S}) \Gamma \mathrm{U}=(0)$ by hypothesis. $\mathrm{T}(\mathrm{u} \gamma \mathrm{a})$ $=u \gamma T(a) \in S$. Therefore, $T(u \gamma T(a)) \beta u=0$, then $T(u) T(a) u=0$. Since M is a prime Γ-ring then $T(u) T(a)=0$
(3.28)

Replacing u by $u \beta v$ where $v \in U, \beta \in \Gamma$ in (3.28), we get, for all $u, v \in U, \beta, \gamma \in \Gamma$ and $a \in A$ $\mathrm{T}(\mathrm{u}) \beta \mathrm{v} \gamma \mathrm{T}(\mathrm{a})=0$.
Since M is a prime Γ-ring, we get $T(U) \Gamma U=$ (0) or $T(A) \Gamma U=(0)$. If $T(A) \Gamma U=(0)$, then $T^{2}(U) \Gamma U=(0)$, so $T^{2}(U)=0$. Let $u, v \in U$ and β $\in \Gamma$. Then
$\left.0=\mathrm{T}^{2}(\mathrm{u} \beta \mathrm{v})\right)=\mathrm{T}(\mathrm{T}(\mathrm{u} \beta \mathrm{v}))=\mathrm{T}(\mathrm{u}) \beta \mathrm{T}(\mathrm{v})$, for all u , $\mathrm{v} \in \mathrm{U}$ and $\beta \in \Gamma$ by char $\mathrm{M} \neq 2$. Replacing u by $\mathrm{u} \gamma \mathrm{w}$ where $\mathrm{w} \in \mathrm{U}, \gamma \in \Gamma$ in last relation, we have $\mathrm{T}(\mathrm{u}) \gamma \mathrm{w} \beta \mathrm{T}(\mathrm{v})=0$ which yields $\mathrm{T}(\mathrm{u}) \gamma \mathrm{v}=0$ for all $u, v \in U$ and $\gamma \in \Gamma$.
Conversely assume that $T(U) \Gamma U=(0)$. Then $A \Gamma U=(0)$. Since M is a prime Γ-ring, A contains no non-zero right ideals.
Theorem 3.6. Let M be a prime Γ-ring with char $\mathrm{M} \neq 2, \mathrm{U}$ a non-zero right ideal of M and T_{1} and T_{2} two non-zero centralizers of M . If $\mathrm{T}_{1} \mathrm{~T}_{2}(\mathrm{U})=(0)$, then there exists two elements p, q of Q such that $\mathrm{q} \Gamma \mathrm{U}=(0)$ and $\mathrm{p} \Gamma \mathrm{U}=(0)$.
Proof. If $T_{1} T_{2}(U)=(0)$, then $T_{1}(A)=(0)$ where A is a subring generated by $T_{2}(U)$. Since $T_{1} \neq 0$, A contains no non-zero right ideals of M . Thus, from Theorem 3.5, we have $\mathrm{T}_{2}(\mathrm{u}) \gamma \mathrm{v}=0$ for all $u, v \in U$ and $\gamma \in \Gamma$. Also, there exists q $\in \mathrm{Q}$ such that $\mathrm{q} \Gamma \mathrm{U}=(0)$ by Theorem 3.4. Therefore $T_{2}(u \gamma v)=u \gamma T_{2}(v)$ for all $u, v \in U$ and $\gamma \in \Gamma$. In this case, $0=\mathrm{T}_{1} \mathrm{~T}_{2}(\mathrm{u} \gamma \mathrm{v})=$ $\mathrm{T}_{1}\left(\mathrm{u} \gamma \mathrm{T}_{2}(\mathrm{v})\right)=\mathrm{T}_{1}(\mathrm{u}) \gamma \mathrm{T}_{2}(\mathrm{v})$, and since M is a prime Γ-ring, we get $\mathrm{T}_{2}(\mathrm{u}) \gamma \mathrm{v}=0$ for all $\mathrm{u}, \mathrm{v} \in$ U and $\gamma \in \Gamma$. Again, by Theorem 3.4, there exists $\mathrm{p} \in \mathrm{Q}$ such that $\mathrm{p} \Gamma \mathrm{U}=(0)$. This completes the proof.

Remark 3.7. Consider the following example. Let R be a ring. A centralizer $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ is called an inner centralizer if there exists $a \in R$ such that $T(x)=a x$ for all $x \in R$. Let S be the 2×2 matrix ring over Galois field $\{0,1, \mathrm{w}$, $\left.\mathrm{w}^{2}\right\}$, with inner centralizer T_{1} and T_{2} defined by
$\mathrm{T}_{1}(\mathrm{x})=\left(\begin{array}{cc}0 & x \\ 0 & 0\end{array}\right) \quad, \quad \mathrm{T}_{2}(\mathrm{x})=\left(\begin{array}{cc}0 & w X \\ 0 & 0\end{array}\right)$
for all $x \in S$. Then the characteristic of S is 2 and we have $\mathrm{T}_{1} \neq 0, \mathrm{~T}_{2} \neq 0, \mathrm{~T}_{1} \mathrm{~T}_{2}=0$ and $\mathrm{T}^{2}{ }_{2}=0$. Also, if we take
$\mathrm{M}:=\mathrm{M}_{1 \times 2}(\mathrm{~S})=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}, \mathrm{b} \in \mathrm{S}\}$ and $\Gamma:=\left\{\left.\binom{\mathrm{n}}{0} \right\rvert\, \mathrm{n}\right.$ is an int eger $\}$, then M is a prime Γ-ring of characteristic 2. Define an additive map $\mathrm{H}_{1}: \mathrm{M} \rightarrow \mathrm{M}$ by $\mathrm{H}_{1}(\mathrm{x}, \mathrm{y})=\left(\mathrm{T}_{1}(\mathrm{x})\right.$, $\left.T_{1}(y)\right) \cdot \operatorname{Sinc}(x, y)\binom{n}{0}(a, b)=(n x a, n x b)$, therefore T_{1} is a centralizer on M . Similarly $\mathrm{H}_{2}: M \rightarrow M$ given by $\mathrm{H}_{2}(\mathrm{x}, \mathrm{y})=\left(\mathrm{T}_{2}(\mathrm{x}), \mathrm{T}_{2}(\mathrm{y})\right)$ is a centralizer. In this case, we have $\mathrm{H}_{1} \neq 0$, $\mathrm{H}_{2} \neq 0, \mathrm{H}_{1} \mathrm{H}_{2}=0$ and $\mathrm{H}_{2}{ }_{2}=0$ (see [9]). Thus we know that there exist two centralizers $\mathrm{H}_{1}, \mathrm{H}_{2}$ of M such that $\mathrm{H}_{1} \mathrm{H}_{2}(\mathrm{M})=(0)$ but $\mathrm{H}_{1}(\mathrm{M}) \Gamma \mathrm{M} \neq(0)$ and $\mathrm{H}_{2}(\mathrm{M}) \Gamma \mathrm{M} \neq(0)$. Therefore the condition of char $\mathrm{M} \neq 2$ in Theorem 3.5 and 3.6 is necessary.

References

1. Nobusawa, N. 1964: On a generalization of the ring theory, Osaka Jl. Math. 1, 81-89.
2. Barnes, W. E. 1966: On the Γ rings of Nobusawa, Pacific J. Math. 18, 411-422.
3. Öztürk, M. A. and Jun, Y. B. 2000: On the centroid of the prime gamma rings, Comm. Korean Math. Soc. 15(3), 469-479.
4. Öztürk, M. A. and Jun, Y. B.: On the centroid of the prime gamma rings II, Tr. J. of Math.
5. Kyuno, S. 1978: On prime gamma rings, Pacific J. Math. 75(1), 185190.
6. Öztürk, M. A.: On the quotient gamma ring of the semi-prime gamma rings, Tr. J. of Math.
7. R.Ameri,R.Sadeghi.2010:Gamma modules, Ratio mathematica 20.
8. Soytürk, M. 1994: The commutativity in prime gamma rings with derivation, Tr. J. of Math. 18(4), 149-155.
9. Sapanci M. and Öztürk, M. A. 1998: A note on gamma rings, Atatürk University $40^{\text {th }}$ foundation year Math. Symposium,Special Press(20-22 May), Erzurm, 48-51.
