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Abstract 
     In this paper , we introduce some results in a prime Γ-ring M with centralizer 
which is related to the quotient Γ-ring  Q of  M, and  prove our main result; Let M 
be a prime Γ-ring with char M ≠ 2, U a non-zero right ideal of M and T1 and T2 two 
non-zero centralizers of M. If T1T2(U) = (0), then there exists two elements p, q of Q 
such that qΓU = (0) and pΓU = (0). 

 
 تمركزات حلقات كاما الاولية

 
 هبة اسماعيل شاكر

  العراق- بغداد. ، كلية العلوم، قسم علوم الرياضياتجامعة بغداد

  
خلاصةال  

والتي ترتبط بدالـة  ، مع داله التمركز   Mفي هذا البحث قدمنا بعض النتائج عن حلقات كاما الاولية      

 ≠حلقة كاما الاولية ممثلها Mلتكن : نتيجتنا الرئيسية والتي تنصوبرهنا  M على حلقة كاما    Qالقسمة  
٢ ، U مثالي يميني غير صفري فيM ولتكن،T1و T2   تمركات غير صفرية علـىM  اذا كـان ،T1 T2 

(U)=0  فأن يوجد عنصرينp ,q  منQ  بحيث انqΓU = (0)  وpΓU = (0) 
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1.Introduction  
     Nobusawa [1] introduced the notion of a Γ-
ring, an object more general than a ring. 
Barnes [2] slightly weakened the conditions in 
the definition of Γ-ring in the sense of 
Nobusawa. Öztürk et al. [3,4] studied extended 
centroid of prime Γ-rings. In this paper, we 
consider the main results as follows.1) Let M 
be a prime Γ-ring of characteristic 2, U a non-
zero ideal of M, and T1 and T2 two non-zero 
centralizers of M. If  T1T2(U) = (0), there exists 
λ ∈ CΓ such that T2 = λαT1 for all α ∈ Γ 
where CΓ is the extended centroid of M. (2) Let 
M be a prime Γ-ring, U a non-zero right ideal 
of M and T a non-zero centralizer of M. If 
T(U)Γa = (0) where a is a fixed element of M, 
then there exists an element q of Q such that 
qαa = 0 and qβu = 0 for all u ∈ U and α,β ∈ Γ. 
(3) Let M be a prime Γ-ring with char M ≠ 2, 
U a non-zero right ideal of M and T1 and T2 
two non-zero centralizers of M. If T1T2(U) = 
(0), then there exists two elements p, q of Q 
such that qΓU = (0) and pΓU = (0). 

1. Preliminaries  
     Let M and Γ be (additive) abelian groups. If 
for all a, b, c ∈ M and α, β ∈ Γ the conditions: 
(1) aαb ∈ M,  
(2) (a + b)αc = aαb + aαc,  
a(α + β)b = aαb + aβb,  
aα(b + c) = aαb + aαc 
(3) (aαb)βc = aα(bβc). 
are satisfied, then we call M a Γ-ring. Let M be 
a Γ-ring. The subset  
Z={x ∈ M | xγm = mγx for all m∈M andγ∈ Γ}  
is called the center of M. By a right (resp. left) 
ideal of a Γ-ring M we mean an additive 
subgroup U of M such that UΓM ⊆ U (resp. 
MΓU ⊆ U). If U is both a right and a left ideal, 
then we say that U is an ideal of M. For each a 
of a Γ-ring M the smallest right ideal 
containing a is called the principal right ideal 
generated by a and is denoted by 〈a〉r. 
Similarly we define 〈a〉l (resp. 〈a〉),the principal 
left (resp. two sided) ideal generated by a. An 
ideal P of a Γ-ring M is said to be prime if for 
any ideals U and V of M, UΓV ⊆ P implies U 
⊆ P or V ⊆ P. A Γ-ring M is said to be prime if 
the zero ideal is prime.  

Theorem 2.1 ([5, Theorem 4]). If M is a Γ-
ring, the following conditions are equivalent:  
(i) M is a prime Γ-ring. 

(ii) If a, b ∈ M and aΓMΓb = (0), then a = 0 or 
b = 0. 

(iii) If 〈a〉 and 〈b〉 are principal ideals of M such 
that 〈a〉Γ〈b〉 = (0), then  
a = 0 or b = 0. 

(iv) If U and V are right ideals of M such that 
UΓV = (0), then U = (0) or V = (0). 

(v) If U and V are left ideals of M such that 
UΓV = (0), then U = (0) or V = (0). 

Let M be a prime Γ-ring such that MΓM ≠ M. 
Denote  
M := {(U, f) | U(≠ 0) is an ideal of M and  
f :U→M is a right M-module homomorphism}. 
Define a relation ∼ on M by  
(U, f) ∼ (V, g) ⇔ ∃W(≠ 0) ⊂ U ∩ V such that f 
= g on W. 
Since M is a prime Γ-ring, it is possible to find 
a non-zero W and so “∼” is an equivalence 
relation. This gives a chance for us to get a 
partition of M. We then denote the equivalence 

class by Cl(U, f) = f̂ , where  

f̂  := {g : V → M | (U, f) ∼ (V, g)},  
and denote by Q the set of all equivalence 
classes. Then Q is a Γ-ring, which is called the 
quotient Γ-ring of M (see [4]). The set  
CΓ := {g ∈ Q | gγf = fγg for all f ∈ Q and γ ∈ 
Γ}  
is called the extended centroid of M (See [4]). 

Lemma 2.2. Let M be a prime Γ-ring, U a 
non-zero ideal of M, and T a centralizer of M. 
If aΓT(U) = (0) (T(U)Γa = (0)) for all a ∈ M, 
then a = 0 or T = 0. 

Proof: clear by the primness condition on M. 

Theorem 2.3 ([6, Theorem 3.5]). The Γ-ring Q 
satisfies the following properties:  
(i) For any element q ∈ Q, there exists an 

ideal Uq ∈ F such that q(Uq) ⊆ M (or qγUq 
⊆ M for all γ ∈ Γ). 

(ii) If q ∈ Q and q(U) = (0) for some U ∈ F (or 
qγUq = (0) for some U∈F and for all γ∈Γ), 
then q = 0. 

(iii) If U ∈ F and Ψ : U → M is a right M-
module homomorphism, then there exists 
an element q ∈ Q such that Ψ(u) = q(u) for 
all u ∈ U (or Ψ(u) = qγu for all u ∈ U and 
γ ∈ Γ). 

(iv) Let W be a submodule (an(M,M)-
subbimodule[7]) in Q and Ψ : W → Q a right 
M-module homomorphism. If W contains the 
ideal U of the Γ-ring M such that Ψ(U) ⊆ M 
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and AnnU = AnnrW, then there is an element q 
∈ Q such that Ψ(b) = q(b) for any b ∈ W (or 
Ψ(b) = qγb for any b ∈ W and γ ∈ Γ) and q(a) 
= 0 for any a ∈ AnnrW (or qγa = 0 for any a ∈ 
AnnrW and γ ∈ Γ). 
Let M be a Γ-ring. A map T : M → M is called 
a centralizer if  
T(x+y)=T(x)+T(y) and T(xγy)=T(x)γy =xγT(y) 
for all x, y ∈ M and γ ∈ Γ. 

Lemma 2.4 :A) Let M be a 2-torsion free 
prime Γ-ring, T1 and T2 the symmetric 
centralizers of  M. If  
T1(x)γT2(y) = T2(x)γT1(y)                (2.1) 
for all x, y ∈M and γ ∈Γ and T1 ≠ 0, then there 
exists λ∈CΓ such that T2(x)= λαT1(x) for α∈Γ, 
where CΓ is the extended centroid of M. 
B) Let M be a 2-torsion free prime Γ-ring, T1, 
T2, T3 and T4 the symmetric centralizers of  M. 
If  
T1(x)γT2(y)=T3(x)γT4(y)                             (2.2) 
for all x, y∈M and γ∈Γ and T1≠0≠T4,then 
there exists λ∈CΓ such that T2(x)= λαT4(x) 
and T3(x) = λαT1(x) for α ∈ Γ where CΓ is the 
extended centroid of M 

Proof (A):- Let x, y, z ∈ M and β, γ ∈ Γ. 
Substituting y + z for y in (2.1), we have  
T1(x)γDT2(y, z) =T2(x)γT1(y, z).                (2.3) 
Replacing z by zβy in (2.3), we have  
T1(x)γzβT2(y) = T2(x)γzβT1(y).                 (2.4)  
Now if we replace y by x in (2.4), then  
 T1(x)γzβT2(x) = T2(x)γzβT1(x).                (2.5) 
If T1(x) ≠ 0 then T2(x) = λ(x)αT1(x) for all 
α∈Γ and for some λ(x)∈CΓ. Thus if T1(x) ≠ 0 
≠ T1(y), then it follows from (2.4) that  
(λ(y) − λ(x))αT1(x)γzβT1(y) = 0.    
(2.6) 
Since M is a prime Γ-ring, by using Lemma 
2.2 we conclude that λ(x) = λ(y). Hence we 
have proved that there exists λ ∈ CΓ such that 
T2(x) = λαT1(x) for all α ∈ Γ and x ∈ M with 
T1(x) ≠ 0. On the other hand, if T1(x) = 0 then 
T2(x) = 0 as well. Therefore T2(x) = λαT1Z 

Proof (B): Let x, y, z, w ∈M and α, β, γ ∈ Γ. 
Replacing y by y + z in (2.2), we get  
 T1(x)γT2(y+ z) = T3(x)γT4(y+ z).   (2.7) 
If we substitute zβx for z in (2.7), then 
 T1(x)γzβT2(y) = T3(x)γzβT4(y).               (2.8) 
Substituting zαT4(w) for z in (2.8), we have  
 T1(x)γzαT4(w)βT2(y)=T3(x)γzαT4(w)βT4(y). 

(2.9)  
By (2.8), we know that  

T1(x)γzαT2(w) = T3(x)γzαT4(w)     and so  
T1(x)γzα(T4(w)βT2(y) − T2(w)βT4(y)) = 0  
which implies that T4(w)βT2(y) = T2(w)βT4(y) 
since T1 ≠ 0 and M is a prime Γ-ring. It follows 
from T4≠0 and Lemma 3.6 that T2(y)= λαT4(y) 
for some λ ∈ CΓ. Hence, by (2.8), we conclude 
that  
(λαT1(x) − T3(x))γzβT4(y) = 0,  
and so T3(x) = λαT1(x). This completes the 
proof.                                           □ 

Lemma 2.5 :([8, Lemma 1]). Let M be a prime 
Γ-ring and Z the center of M.  
1. If a, b, c ∈ M and β, γ  ∈ Γ, then  
[aγb, c]β = aγ[b, c]β + [a, c]βγb + aγ(cβb) − 

aβ(cγb) 
where [a, b]γ is aγb − bγa for all a, b ∈ M and γ 
∈ Γ. 
2. If a ∈ Z, then [aγb, c]β = aγ[b, c]β where 

[a,b]γ is aγb − bγa for all a, b ∈ M and γ ∈ 
Γ. 

Lemma 2.6 ([9, Lemma 2]). Let M be a prime 
Γ-ring, U a non-zero right (resp. left) ideal of 
M and a ∈ M. If UΓa = (0) (resp. aΓU = (0)), 
then a = 0. 

2. Main results  
     In what follows, let M denote a prime Γ-
ring such that MΓM ≠ M, Z is the center of M, 
CΓ is the extended centroid of M and [a, b]γ = 
aγb − bγa for all a, b ∈ M and γ ∈ Γ. 

Lemma 3.1. Let M be a prime Γ-ring of 
characteristic 2. Let T1 and T2 two non-zero 
centralizers of M and right M-module 
homeomorphisms. If 
T1T2(x) = 0 for all x ∈ M,                    (3.1)
then there exists λ ∈ CΓ such that T2(x) = 
λαT1(x) for all α ∈ Γ and x ∈ M. 

Proof. Let x, y ∈ M and α ∈ Γ. Replacing x 
by xγy in (3.1), it follows from charM=2 that 
for all x, y ∈ M and γ ∈ Γ  
T1(x)γT2(y) = 0.                                    (3.2) 
Replacing y by T1(y)  in (3.2), we get  
T1(x)γT2(T1(y)) = 0 .                             (3.3)
for all x, y ∈ M and γ ∈ Γ. Now, if we replace 
y by zγy in (3.3), then we obtain  
T1(x)γT2(y) γ T1(z) = 0.                          (3.4)
for all x ∈ M and γ ∈ Γ.Now replace y by zβy 
in (3.4),then we obtain   
T1(x)γzβT2(y)γT1(z) = 0  
Then       
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T2(y)γT1(z)=0                                        (3.5)  
for all y,z ∈ M and γ ∈ Γ.since M is a prime Γ-
ring, then from(3.2)and(3.5)we obtain   
T1(x)γT2(y) = T2(y)γT1(x)                       (3.6) 
If T1(x) ≠ 0, then there exists λ(x) ∈ CΓ such 
that T2(x) = λ(x)αT1(x) for all x ∈ M and α ∈ 
Γ by Lemma 2.4. Thus, if T1(x) ≠ 0 ≠ T1(y), 
then (3.3) implies that  
 (λ(y) − λ(x))αT1(x)βzγT2(x) = 0.            (3.7) 
Since M is a prime Γ-ring, we conclude by 
using Lemma 2.2 that λ(y) = λ(x) for all x, y ∈ 
M. Hence we proved that there exists λ ∈ CΓ 
such that T2(x) = λαT1(x) for all x ∈ M and α 
∈ Γ with T1(x) ≠ 0. On the other hand, if T1(x) 
= 0, then T2(x) = 0 as well. Therefore, T2(x) = 
λαT1(x) for all x ∈ M and α ∈ Γ. This 
completes the proof.                                        □  

Proposition 3.2. Let M be a prime Γ-ring of 
characteristic 2 and T a non-zero centralizer of  
M. If  T(x) ∈ Z for all x ∈ M,                   (3.8) 
then there exists λ(m) ∈ CΓ such that T(m) = 
λ(m)αT(z) for all m, z ∈ M and α ∈ Γ or M is 
commutative. 

Proof. From (3.8), we have  
[T(x), y]β = 0 for all x, y ∈ M and β ∈ Γ.  (3.9)  
Replacing x by xγz in (3.9), it follows from 
Lemma 2.5 that  
T(x)γ[z, y]β = 0                                     (3.10)  
for all x, y, z ∈ M and γ, β ∈ Γ. Replacing x by 
T(x) in (3.10), we obtain  
T2(x)γ[z, y]β =0                                      (3.11) 
for all x, y, z ∈ M and γ,β∈ Γ. 
Now, substituting zαm for z in (3.11) it 
follows from char M = 2 that  
T2(x)αmγ[z, y]β = 0.                               (3.12) 
for all x, y, z, m ∈ M and γ, β, α ∈ Γ. Since M 
is a prime Γ-ring, we obtain  
T2(x) = 0  ∀x ∈ M or [z, y]β = 0             (3.13) 
∀z,y ∈ M and ∀β ∈ Γ. 
From (3.13), if T2(x) = 0 for all x ∈ M, then 
replacing x by xγm in this last relation, it 
follows from T(x) ∈ Z that  
T(x)γT(m)=T(m)γT(x).                         (3.14) 
for all x,m∈M andγ∈ Γ. 
Replacing x by xαn in (3.14), it follows from 
(3.8) that for all x, m, n ∈ M andγ,α∈ Γ  
T(x)αnγT(m) = T(m)αnγT(x).                (3.15) 
If  T(x) ≠ 0, then there exists λ(m) ∈ CΓ such 
that T(m) = λ(m)αT(x) for all z, m ∈ M and α 
∈   Γ by Lemma 2.4. On the other hand, it 
follows from (3.13) that if [z, y]β = 0 for all z, 

y ∈ M and β ∈ Γ, then M is commutative. This 
completes the proof.                                        □  

Theorem 3.3. Let M be a prime Γ-ring of 
characteristic 2, T1 and T2 two non-zero 
centralizers of M and U a non-zero ideal of M. 
If  
T1T2(u) = 0 for all u ∈ U                  (3.16)  
then there exists λ∈CΓ such that 
T2(x)=λαT1(x) for all α ∈ Γ and x ∈ M. 

Proof. Let u, v ∈ U and γ ∈ Γ. Replacing u by 
T2(u)γv in (3.16), we get  
T1T2 (T2(u)γv) = 0 ,                               (3.17)
for all u, v ∈ U and γ ∈ Γ.Then  T²2(u)γT1(v) = 
0   
Since T1 ≠ 0, it follows from Lemma 2.2 that 
T²2 (u) = 0 for all u ∈ U, so from char  M = 2 
that T²2 = 0. Now, substituting uγT2(x) for u in 
(3.16), we get  
T1(T2(uγT2(x)))=0,                               (3.18)  
for all u∈U,x∈M and γ ∈ Γ.  
Then T2(u)γ( T1(T2(x))) = 0 
Since T2 ≠ 0, we get T1(T2(x)) = 0 for all x∈ M 
by Lemma 2.2.Hence there exists λ∈CΓ such 
that T2 = λαT1 for all α ∈ Γ by Lemma 3.1.   

Theorem 3.4. Let M be a prime Γ-ring, U a 
non-zero right ideal of M and T a non-zero 
centralizer of  M. If  
T(u)γa = 0 for all u ∈ U and γ ∈ Γ         (3.19) 
Where a is a fixed element of M, then there 
exists an element q of Q such that qαa=0 and 
qβu = 0 for all u ∈ U and γ ∈ Γ 

Proof. Let u ∈ U, x ∈ M and β ∈ Γ. Since U is 
a right ideal of M, we have uβx ∈ U. 
Replacing u by uβx in (3.19), we get  
T(uβx)γa  = 0  for all u ∈ U, x∈M and 
γ,β∈Γ,then T(u)βxγa=0,Hence T(u)βxγaαm=0 
for any m∈M and α∈Γ,and so 
T(u)β(∑ xγaαm)=0 .Therefore, for any  u∈V 
= MΓaΓM which is a non-zero ideal of M, we 
have  
T(u)β f(v)= 0                                       (3.20)  
for all u∈U. f(v) is independent of u but it 
isdependent on v. Since M is a prime Γ-
ring,f(v) is well-defined and uni que for all 
v∈V. Note that T(u)βf(v)αy = 0,           (3.21) 

For any y∈M, and α∈Γ. Now since vαy∈V 
for any y∈M, v∈V. Replacing v by vαy in 
(3.20) we get  
T(u)βf(vαy) = 0 for all y∈M,                  (3.22)
and so by using (3.21) and (3.22), we have 
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T(u)β(f(vαy)- f(v)αy) =0.which implies from 
Lemma 2.6 that  
f(vαy) = f(v)αy ,                                 (3.23) 
for all y∈M,v∈V and α∈Γ.It follows from 
(3.23) that f : V → M is a right M-module 
homomorphism. In this case, q=Cl(V, f)∈Q. 
Moreover, f(v) = qβv for all v ∈ V and α ∈ Γ 
by Theorem 2.3. Let x ∈ M, v ∈ V, u ∈ U and 
γ, β ∈ Γ. Replacing v by xγv in (3.20), we get 
T(u)β f(xγv) = 0,and  
T(u)β qβxγv= 0                                  (3.24)  
Also, replacing u by uγx in (3.20), we get 
T(uγx)βf(v) = 0, we get T(u)γxβf(v)=0  , and 
T(u)γxβqβv =                                     (3.25)  
Now, replacing β by γ and replacing γ by β in 
(3.25), we get  
T(u) βxγqγv =0.                                  (3.26) 
Thus, from (3.24) and (3.26) we obtain  
T(u)β(xγq - qβx)γv = 0 .                      (3.27) 
for all x∈M,v∈V,u∈U and γ,β ∈ Γ.then by 
primness of Γ-ring we get T(u)β(xγq-qβx)=0 
for all x ∈ M, u∈U and γ, β∈Γ,thus T(u)βxγq 
−T(u)βqβx =0,for all x ∈ M and γ, β∈Γ, since 
T is centralizer then uβT(x)γq − uβqβT(x) 
=0,replace  x by  uβx in last equation we get 
uβT(uβx)γq − uβqβT(uβx) =0, then we have 
uβuβT(x)γq − uβqβuβT(x) =0,and so since M 
is prime Γ-ring we get uβT(x)γq − qβuβT(x) 
=0, then we have  uβT(x)γqαa − qβuβT(x) αa 
=0,then we get 
uβT(x)γqαa = qβuβT(x)αa by Lemma 2.6. 
Now, we shall prove that q can be chosen in Q 
such that qαa = 0 and qβu = 0 for all u ∈ U 
and γ ∈ Γ. If qαa = 0, then qβuβT(x) αa = 0, 
then qβu =0  and so since M is prime Γ-ring, 
we get qΓU = (0). On the other hand, if qαa ≠ 
0, then qβu≠ 0. In fact, if qβu = 0, then qαa = 0 
since uβT(x)γqαa = qβuβT(x)αa. Thus, we 
may suppose that qαa ≠ 0 and qβu ≠ 0 for all u 
∈ U and α,β ∈ Γ. In this case, we get  
uβT(x)γqαa = qβuβT(x)αa 
for all x ∈ M, u ∈ U and γ, β, α ∈ Γ. It follows 
from Lemma 2.4 that there exists λ∈CΓ such 
that qαa = λδa and qβu = λδu for all u ∈ U and 
γ, δ, α,β ∈ Γ. Hence, if q′=q−λ, then q′Γa = 0 
and q′ΓU = (0). This completes the proof.                    □  

Theorem 3.5. Let M be a prime Γ-ring with 
char M ≠ 2, U a non-zero right ideal of M and 
T a non-zero centralizer of M. Then the 
subring of M generated by T(U) contains no 
non-zero right ideals of M if and only if 
T(U)ΓU = (0). 

Proof. Let A be the subring generated by T(U). 
Let S = A ∩ U, u ∈ U, s∈S and γ∈Γ. Then 
T(sγu) = T(s) γu  ∈ A, and so we have T(s) γu 
∈ S. Thus T(S)ΓU is a right ideal of M. In this 
case, T(S)ΓU = (0) by hypothesis. T(uγa) 
=uγT(a) ∈ S. Therefore, T(uγT(a))βu = 0, then 
T(u)T(a)u=0. Since M is a prime Γ-ring then  
T(u)T(a) =0                                           (3.28)   
  Replacing u by uβv where v ∈ U, β ∈ Γ in 
(3.28),we get, for all u, v ∈U, β, γ∈Γ and a∈ A  
T(u)βvγT(a) = 0.                                    (3.29)  
Since M is a prime Γ-ring, we get T(U)ΓU = 
(0) or T(A)ΓU = (0). If T(A)ΓU = (0), then 
T2(U)ΓU = (0), so T2(U)=0. Let u, v ∈ U and β 
∈ Γ. Then  
0 = T2(uβv)) =T(T(uβv))=T(u)βT(v),for all u, 
v ∈ U and β ∈ Γ by char M ≠ 2. Replacing u 
by uγw where w ∈ U, γ ∈ Γ in last relation, we 
have T(u)γwβT(v) = 0 which yields T(u)γv = 0 
for all u, v ∈ U and γ ∈ Γ. 
Conversely assume that T(U)ΓU = (0). Then 
AΓU = (0). Since M is a prime Γ-ring, A 
contains no non-zero right ideals.                   

Theorem 3.6. Let M be a prime Γ-ring with 
char M ≠ 2, U a non-zero right ideal of M and 
T1 and T2 two non-zero centralizers of M. If 
T1T2(U) = (0), then there exists two elements 
p, q of Q such that qΓU = (0) and pΓU = (0). 

Proof. If T1T2(U) = (0), then T1(A) = (0) where 
A is a subring generated by T2(U). Since T1≠ 0, 
A contains no non-zero right ideals of M. 
Thus, from Theorem 3.5, we have T2(u)γv = 0 
for all u, v ∈ U and γ ∈ Γ. Also, there exists q 
∈ Q such that qΓU = (0) by Theorem 3.4. 
Therefore T2(uγv) = uγT2(v) for all u, v ∈ U 
and γ ∈ Γ. In this case, 0 = T1T2(uγv) = 
T1(uγT2(v)) = T1(u)γT2(v), and since M is a 
prime Γ-ring, we get T2(u)γv = 0 for all u, v ∈ 
U and γ ∈ Γ. Again, by Theorem 3.4, there 
exists p ∈ Q such that pΓU = (0). This 
completes the proof.                   

Remark 3.7. Consider the following example. 
Let R be a ring. A centralizer  T : R → R is 
called an inner centralizer if there exists a ∈ R 
such that T(x)  = ax  for all x ∈ R. Let S be the 
2 × 2 matrix ring over Galois field {0, 1, w, 
w2}, with inner centralizer  T1 and T2 defined 
by  

T1(x) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
00

0 x
    ,         T2(x) = ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
00

0 wx
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for all x ∈ S. Then the characteristic of S is 2 
and we have T1 ≠ 0, T2 ≠ 0, T1T2 = 0 and 
T²2=0. Also, if we take    
M := M1×2(S) = {(a, b) | a, b ∈ S} and 

n
: | n is an int eger

0
⎧ ⎫⎛ ⎞

Γ = ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

, then M is a 

prime Γ-ring of characteristic 2. Define an 
additive map H1:M → M by H1(x, y) = (T1(x), 

T1(y)).Sinc
n

(x, y) (a,b) (nxa,nxb)
0
⎛ ⎞

=⎜ ⎟
⎝ ⎠

, 

therefore T1 is a centralizer on M. Similarly  
H2 : M → M given by H2(x, y) = (T2(x), T2(y)) 
is a centralizer. In this case, we have H1 ≠ 0, 
H2 ≠ 0, H1H2 = 0 and H²2=0 (see [9]). Thus we 
know that there exist two centralizers H1, H2 of 
M such that H1H2(M) = (0) but H1(M)ΓM ≠ (0) 
and H2(M)ΓM ≠ (0). Therefore the condition 
of char M ≠ 2 in Theorem 3.5 and 3.6 is 
necessary. 
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