Shaker

Iraqi Journal of Science. Vol 53.No 2.2012.Pp 398-403

ON CENTRALIZERS OF PRIME GAMMA RINGS

Heba.A.Shaker

University of Baghdad, Collage of Science, Department of Mathematics.Baghdad-Iraq

Abstract

In this paper , we introduce some results in a prime Γ -ring M with centralizer which is related to the quotient Γ -ring Q of M, and prove our main result; Let M be a prime Γ -ring with char M \neq 2, U a non-zero right ideal of M and T₁ and T₂ two non-zero centralizers of M. If T₁T₂(U) = (0), then there exists two elements p, q of Q such that q Γ U = (0) and p Γ U = (0).

1.Introduction

Nobusawa [1] introduced the notion of a Γ ring, an object more general than a ring. Barnes [2] slightly weakened the conditions in the definition of Γ -ring in the sense of Nobusawa. Öztürk et al. [3,4] studied extended centroid of prime Γ -rings. In this paper, we consider the main results as follows.1) Let M be a prime Γ -ring of characteristic 2, U a nonzero ideal of M, and T_1 and T_2 two non-zero centralizers of M. If $T_1T_2(U) = (0)$, there exists $\lambda \in C_{\Gamma}$ such that $T_2 = \lambda \alpha T_1$ for all $\alpha \in \Gamma$ where C_{Γ} is the extended centroid of M. (2) Let M be a prime Γ -ring. U a non-zero right ideal of M and T a non-zero centralizer of M. If $T(U)\Gamma a = (0)$ where a is a fixed element of M, then there exists an element q of Q such that $q\alpha a = 0$ and $q\beta u = 0$ for all $u \in U$ and $\alpha, \beta \in \Gamma$. (3) Let M be a prime Γ -ring with char M \neq 2, U a non-zero right ideal of M and T_1 and T_2 two non-zero centralizers of M. If $T_1T_2(U) =$ (0), then there exists two elements p, q of Qsuch that $q\Gamma U = (0)$ and $p\Gamma U = (0)$.

1. Preliminaries

Let M and Γ be (additive) abelian groups. If for all a, b, c \in M and α , $\beta \in \Gamma$ the conditions:

(1) $a\alpha b \in M$,

(2) $(a+b)\alpha c = a\alpha b + a\alpha c$,

 $a(\alpha + \beta)b = a\alpha b + a\beta b$,

 $a\alpha(b+c) = a\alpha b + a\alpha c$

(3) $(a\alpha b)\beta c = a\alpha (b\beta c).$

are satisfied, then we call M a Γ -ring. Let M be a Γ -ring. The subset

Z={x \in M | xym = myx for all m \in M andy \in Γ} is called the *center* of M. By a *right* (resp. *left*) *ideal* of a Γ -ring M we mean an additive subgroup U of M such that U Γ M \subseteq U (resp. M Γ U \subseteq U). If U is both a right and a left *ideal*, then we say that U is an *ideal* of M. For each a of a Γ -ring M the smallest right ideal *containing* a is called the *principal right ideal generated* by a and is denoted by $\langle a \rangle_r$. Similarly we define $\langle a \rangle_1$ (resp. $\langle a \rangle$),the *principal left* (resp. *two sided*) *ideal generated* by a. An ideal P of a Γ -ring M is said to be *prime* if for any ideals U and V of M, $U\Gamma V \subseteq P$ implies U \subseteq P or V \subseteq P. A Γ -ring M is said to be *prime* if the zero ideal is prime.

Theorem 2.1 ([5, Theorem 4]). If M is a Γ -ring, the following conditions are equivalent: (i) M is a prime Γ -ring.

- (ii) If $a, b \in M$ and $a\Gamma M\Gamma b = (0)$, then a = 0 or b = 0.
- (iii) If $\langle a \rangle$ and $\langle b \rangle$ are principal ideals of M such that $\langle a \rangle \Gamma \langle b \rangle = (0)$, then a = 0 or b = 0.
- (iv) If U and V are right ideals of M such that $U\Gamma V = (0)$, then U = (0) or V = (0).
- (v) If U and V are left ideals of M such that $U\Gamma V = (0)$, then U = (0) or V = (0).

Let M be a prime Γ -ring such that $M\Gamma M \neq M$. Denote

 $M := \{(U, f) \mid U(\neq 0) \text{ is an ideal of } M \text{ and } M \in \{(U, f) \mid U(\neq 0) \} \}$

 $f: U \rightarrow M$ is a right M-module homomorphism}. Define a relation ~ on M by

 $(U, f) \sim (V, g) \Leftrightarrow \exists W(\neq 0) \subset U \cap V$ such that f = g on W.

Since M is a prime Γ -ring, it is possible to find a non-zero W and so "~" is an equivalence relation. This gives a chance for us to get a partition of M. We then denote the equivalence class by Cl(U, f) = \hat{f} , where

 $\hat{\mathbf{f}} := \{ \mathbf{g} : \mathbf{V} \to \mathbf{M} \mid (\mathbf{U}, \mathbf{f}) \sim (\mathbf{V}, \mathbf{g}) \},\$

and denote by Q the set of all equivalence classes. Then Q is a Γ -ring, which is called the quotient Γ -ring of M (see [4]). The set

 $\hat{C}_{\Gamma} := \{g \in Q \mid g\gamma f = f\gamma g \text{ for all } f \in Q \text{ and } \gamma \in \Gamma\}$

is called the extended centroid of M (See [4]).

Lemma 2.2. Let M be a prime Γ -ring, U a non-zero ideal of M, and T a centralizer of M. If $a\Gamma T(U) = (0) (T(U)\Gamma a = (0))$ for all $a \in M$, then a = 0 or T = 0.

Proof: clear by the primness condition on M.

Theorem 2.3 ([6, Theorem 3.5]). The Γ -ring Q satisfies the following properties:

- (i) For any element q ∈ Q, there exists an ideal U_q ∈ F such that q(U_q) ⊆ M (or qγU_q ⊆ M for all γ ∈ Γ).
- (ii) If $q \in Q$ and q(U) = (0) for some $U \in F$ (or $q\gamma U_q = (0)$ for some $U \in F$ and for all $\gamma \in \Gamma$), then q = 0.
- (iii) If $U \in F$ and $\Psi : U \rightarrow M$ is a right Mmodule homomorphism, then there exists an element $q \in Q$ such that $\Psi(u) = q(u)$ for all $u \in U$ (or $\Psi(u) = q\gamma u$ for all $u \in U$ and $\gamma \in \Gamma$).

(iv) Let W be a submodule (an(M,M)subbimodule[7]) in Q and $\Psi : W \rightarrow Q$ a right M-module homomorphism. If W contains the ideal U of the Γ -ring M such that $\Psi(U) \subseteq M$ and AnnU = Ann_rW, then there is an element $q \in Q$ such that $\Psi(b) = q(b)$ for any $b \in W$ (or $\Psi(b) = q\gamma b$ for any $b \in W$ and $\gamma \in \Gamma$) and q(a) = 0 for any $a \in Ann_rW$ (or $q\gamma a = 0$ for any $a \in Ann_rW$ and $\gamma \in \Gamma$).

Let M be a Γ -ring. A map T : M \rightarrow M is called a centralizer if

T(x+y)=T(x)+T(y) and $T(x\gamma y)=T(x)\gamma y = x\gamma T(y)$ for all x, $y \in M$ and $\gamma \in \Gamma$.

Lemma 2.4 :A) Let M be a 2-torsion free prime Γ -ring, T_1 and T_2 the symmetric centralizers of M. If

 $\begin{array}{ll} T_1(x)\gamma T_2(y)=T_2(x)\gamma T_1(y) & (2.1) \\ \text{for all } x, \ y \in M \ \text{and} \ \gamma \in \Gamma \ \text{and} \ T_1 \neq 0, \ \text{then there} \\ \text{exists } \lambda \in C_{\Gamma} \ \text{such that} \ T_2(x)=\lambda \alpha T_1(x) \ \text{for} \ \alpha \in \Gamma, \\ \text{where } C_{\Gamma} \ \text{is the extended centroid of } M. \end{array}$

B) Let M be a 2-torsion free prime Γ -ring, T₁, T₂, T₃ and T₄ the symmetric centralizers of M. If

 $T_1(x)\gamma T_2(y) = T_3(x)\gamma T_4(y)$ (2.2)

for all x, $y \in M$ and $\gamma \in \Gamma$ and $T_1 \neq 0 \neq T_4$, then there exists $\lambda \in C_{\Gamma}$ such that $T_2(x) = \lambda \alpha T_4(x)$ and $T_3(x) = \lambda \alpha T_1(x)$ for $\alpha \in \Gamma$ where C_{Γ} is the extended centroid of M

 $\alpha \in \Gamma$ and for some $\lambda(x) \in C_{\Gamma}$. Thus if $T_1(x) \neq 0 \neq T_1(y)$, then it follows from (2.4) that

$$(\lambda(\mathbf{y}) - \lambda(\mathbf{x}))\alpha T_1(\mathbf{x})\gamma \mathbf{z}\beta T_1(\mathbf{y}) = 0.$$

(2.6)

Since M is a prime Γ -ring, by using Lemma 2.2 we conclude that $\lambda(x) = \lambda(y)$. Hence we have proved that there exists $\lambda \in C_{\Gamma}$ such that $T_2(x) = \lambda \alpha T_1(x)$ for all $\alpha \in \Gamma$ and $x \in M$ with $T_1(x) \neq 0$. On the other hand, if $T_1(x) = 0$ then $T_2(x) = 0$ as well. Therefore $T_2(x) = \lambda \alpha T_1 Z$

 $\begin{array}{l} \underline{Proof} \ (\underline{B}): \ Let \ x, \ y, \ z, \ w \in M \ and \ \alpha, \ \beta, \ \gamma \in \Gamma. \\ Replacing \ y \ by \ y + z \ in \ (2.2), \ we \ get \\ T_1(x)\gamma T_2(y+z) = T_3(x)\gamma T_4(y+z). \qquad (2.7) \\ If \ we \ substitute \ z\beta x \ for \ z \ in \ (2.7), \ then \\ T_1(x)\gamma z\beta T_2(y) = T_3(x)\gamma z\beta T_4(y). \qquad (2.8) \\ Substituting \ z\alpha T_4(w) \ for \ z \ in \ (2.8), \ we \ have \\ T_1(x)\gamma z\alpha T_4(w)\beta T_2(y) = T_3(x)\gamma z\alpha T_4(w)\beta T_4(y). \\ (2.9) \end{array}$

By (2.8), we know that

 $\begin{array}{l} T_1(x)\gamma z\alpha T_2(w)=T_3(x)\gamma z\alpha T_4(w) \quad \mbox{ and so}\\ T_1(x)\gamma z\alpha (T_4(w)\beta T_2(y)-T_2(w)\beta T_4(y))=0\\ \mbox{ which implies that } T_4(w)\beta T_2(y)=T_2(w)\beta T_4(y)\\ \mbox{ since } T_1\neq 0 \mbox{ and } M \mbox{ is a prime } \Gamma\mbox{-ring. It follows}\\ \mbox{ from } T_4\neq 0 \mbox{ and } Lemma \ 3.6 \mbox{ that } T_2(y)=\lambda\alpha T_4(y)\\ \mbox{ for some } \lambda\in C_{\Gamma}. \mbox{ Hence, by } (2.8), \mbox{ we conclude that} \end{array}$

 $(\lambda \alpha T_1(x) - T_3(x))\gamma z\beta T_4(y) = 0,$

and so $T_3(x) = \lambda \alpha T_1(x)$. This completes the proof. \Box

Lemma 2.5 :([8, Lemma 1]). Let M be a prime Γ -ring and Z the center of M.

1. If a, b, $c \in M$ and $\beta, \gamma \in \Gamma$, then

$$\begin{split} [a\gamma b,\ c]_{\beta} \,=\, a\gamma [b,\ c]_{\beta} \,+\, [a,\ c]_{\beta}\gamma b \,+\, a\gamma (c\beta b) \,-\, \\ a\beta (c\gamma b) \end{split}$$

where $[a, b]_{\gamma}$ is $a\gamma b - b\gamma a$ for all $a, b \in M$ and $\gamma \in \Gamma$.

2. If $a \in Z$, then $[a\gamma b, c]_{\beta} = a\gamma[b, c]_{\beta}$ where $[a,b]_{\gamma}$ is $a\gamma b - b\gamma a$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Lemma 2.6 ([9, Lemma 2]). Let M be a prime Γ -ring, U a non-zero right (resp. left) ideal of M and $a \in M$. If $U\Gamma a = (0)$ (resp. $a\Gamma U = (0)$), then a = 0.

2. Main results

In what follows, let M denote a prime Γ ring such that M Γ M \neq M, Z is the center of M, C_{Γ} is the extended centroid of M and $[a, b]_{\gamma} = a\gamma b - b\gamma a$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Lemma 3.1. Let M be a prime Γ -ring of characteristic 2. Let T₁ and T₂ two non-zero centralizers of M and right M-module homeomorphisms. If

 $\begin{array}{ll} T_1T_2(x)=0 \mbox{ for all } x\in M, \\ \mbox{then there exists } \lambda\in C_{\Gamma} \mbox{ such that } T_2(x)= \\ \lambda\alpha T_1(x) \mbox{ for all } \alpha\in\Gamma \mbox{ and } x\in M. \end{array}$

Proof. Let x, $y \in M$ and $\alpha \in \Gamma$. Replacing x by xyy in (3.1), it follows from charM=2 that for all $x, y \in M$ and $\gamma \in \Gamma$ $T_1(\mathbf{x})\gamma T_2(\mathbf{y}) = 0.$ (3.2)Replacing y by $T_1(y)$ in (3.2), we get $T_1(x)\gamma T_2(T_1(y)) = 0$. (3.3)for all x, $y \in M$ and $\gamma \in \Gamma$. Now, if we replace y by $z\gamma y$ in (3.3), then we obtain $T_1(x)\gamma T_2(y) \gamma T_1(z) = 0.$ (3.4)for all $x \in M$ and $\gamma \in \Gamma$. Now replace y by $z\beta y$ in (3.4), then we obtain $T_1(x)\gamma z\beta T_2(y)\gamma T_1(z) = 0$ Then

 $\begin{array}{ll} T_2(y)\gamma T_1(z){=}0 & (3.5) \\ \text{for all } y,z \in M \text{ and } \gamma \in \Gamma.\text{since } M \text{ is a prime } \Gamma-\\ \text{ring, then from}(3.2)\text{and}(3.5)\text{we obtain} \\ T_1(x)\gamma T_2(y) = T_2(y)\gamma T_1(x) & (3.6) \\ \text{If } T_1(x) \neq 0, \text{ then there exists } \lambda(x) \in C_{\Gamma} \text{ such} \\ \text{that } T_2(x) = \lambda(x)\alpha T_1(x) \text{ for all } x \in M \text{ and } \alpha \in \\ \Gamma \text{ by Lemma } 2.4. \text{ Thus, if } T_1(x) \neq 0 \neq T_1(y), \\ \text{then } (3.3) \text{ implies that} \\ (\lambda(y) - \lambda(x))\alpha T_1(x)\beta z\gamma T_2(x) = 0. \quad (3.7) \\ \text{Since } M \text{ is a prime } \Gamma\text{-ring, we conclude by} \\ \text{using Lemma } 2.2 \text{ that } \lambda(y) = \lambda(x) \text{ for all } x, y \in \\ M. \text{ Hence we proved that there exists } \lambda \in C_{\Gamma} \end{array}$

such that $T_2(x) = \lambda \alpha T_1(x)$ for all $x \in M$ and $\alpha \in \Gamma$ with $T_1(x) \neq 0$. On the other hand, if $T_1(x) = 0$, then $T_2(x) = 0$ as well. Therefore, $T_2(x) = \lambda \alpha T_1(x)$ for all $x \in M$ and $\alpha \in \Gamma$. This completes the proof.

Proposition 3.2. Let M be a prime Γ -ring of characteristic 2 and T a non-zero centralizer of M. If $T(x) \in Z$ for all $x \in M$, (3.8) then there exists $\lambda(m) \in C_{\Gamma}$ such that $T(m) = \lambda(m)\alpha T(z)$ for all m, $z \in M$ and $\alpha \in \Gamma$ or M is commutative.

Proof. From (3.8), we have $[T(x), y]_{\beta} = 0$ for all $x, y \in M$ and $\beta \in \Gamma$. (3.9) Replacing x by $x\gamma z$ in (3.9), it follows from Lemma 2.5 that $T(x)\gamma[z, y]_{\beta} = 0$ (3.10)for all x, y, $z \in M$ and $\gamma, \beta \in \Gamma$. Replacing x by T(x) in (3.10), we obtain $T^{2}(\mathbf{x})\gamma[\mathbf{z},\mathbf{y}]_{\beta}=0$ (3.11)for all x, y, $z \in M$ and $\gamma, \beta \in \Gamma$. Now, substituting zam for z in (3.11) it follows from char M = 2 that $T^{2}(x)\alpha m\gamma[z, y]_{\beta} = 0.$ (3.12)for all x, y, z, $m \in M$ and γ , β , $\alpha \in \Gamma$. Since M is a prime Γ -ring, we obtain $T^{2}(x) = 0 \quad \forall x \in M \text{ or } [z, y]_{\beta} = 0$ (3.13) $\forall z, y \in M \text{ and } \forall \beta \in \Gamma.$ From (3.13), if $T^{2}(x) = 0$ for all $x \in M$, then replacing x by xym in this last relation, it follows from $T(x) \in Z$ that $T(x)\gamma T(m)=T(m)\gamma T(x)$. (3.14)for all $x,m \in M$ and $\gamma \in \Gamma$. Replacing x by x α n in (3.14), it follows from (3.8) that for all x, m, $n \in M$ and $\gamma, \alpha \in \Gamma$ $T(x)\alpha n\gamma T(m) = T(m)\alpha n\gamma T(x).$ (3.15)If $T(x) \neq 0$, then there exists $\lambda(m) \in C_{\Gamma}$ such that $T(m) = \lambda(m)\alpha T(x)$ for all $z, m \in M$ and α Γ by Lemma 2.4. On the other hand, it ∈ follows from (3.13) that if $[z, y]_{\beta} = 0$ for all z,

 $y \in M$ and $\beta \in \Gamma$, then M is commutative. This completes the proof. \Box

Theorem 3.3. Let M be a prime Γ -ring of characteristic 2, T_1 and T_2 two non-zero centralizers of M and U a non-zero ideal of M. If

 $\begin{array}{ll} T_1T_2(u)=0 \mbox{ for all } u\in U & (3.16) \\ \mbox{then there exists } \lambda\in C_{\Gamma} \mbox{ such that } \\ T_2(x)=\lambda\alpha T_1(x) \mbox{ for all } \alpha\in\Gamma \mbox{ and } x\in M. \end{array}$

Proof. Let $u, v \in U$ and $\gamma \in \Gamma$. Replacing u by $T_2(u)\gamma v$ in (3.16), we get

 $\begin{array}{ll} T_1T_2 \left(T_2(u)\gamma v\right)=0 \ , & (3.17) \\ \text{for all } u,\,v\in U \text{ and } \gamma\in \Gamma. \text{Then } \ T^2{}_2(u)\gamma T_1(v)=0 \end{array}$

Since $T_1 \neq 0$, it follows from Lemma 2.2 that $T^2_2(u) = 0$ for all $u \in U$, so from char M = 2that $T^2_2 = 0$. Now, substituting $u\gamma T_2(x)$ for u in (3.16), we get $T_1(T_2(u\gamma T_2(x)))=0$, (3.18)

for all $u \in U, x \in M$ and $\gamma \in \Gamma$.

Then $T_2(u)\gamma(T_1(T_2(x))) = 0$

Since $T_2 \neq 0$, we get $T_1(T_2(x)) = 0$ for all $x \in M$ by Lemma 2.2.Hence there exists $\lambda \in C_{\Gamma}$ such that $T_2 = \lambda \alpha T_1$ for all $\alpha \in \Gamma$ by Lemma 3.1.

Theorem 3.4. Let M be a prime Γ -ring, U a non-zero right ideal of M and T a non-zero centralizer of M. If

 $T(u)\gamma a = 0$ for all $u \in U$ and $\gamma \in \Gamma$ (3.19) Where a is a fixed element of M, then there exists an element q of Q such that $q\alpha a=0$ and $q\beta u = 0$ for all $u \in U$ and $\gamma \in \Gamma$

Proof. Let $u \in U, x \in M$ and $\beta \in \Gamma$. Since U is a right ideal of M, we have $u\beta x \in U$. Replacing u by $u\beta x$ in (3.19), we get

have $T(u)\beta f(v)=0 \qquad (3.20)$

for all $u \in U$. f(v) is independent of u but it isdependent on v. Since M is a prime Γ ring, f(v) is well-defined and uni que for all $v \in V$. Note that $T(u)\beta f(v)\alpha y = 0$, (3.21)

For any $y \in M$, and $\alpha \in \Gamma$. Now since $v\alpha y \in V$ for any $y \in M$, $v \in V$. Replacing v by $v\alpha y$ in (3.20) we get

 $T(u)\beta f(v\alpha y) = 0$ for all $y \in M$, (3.22) and so by using (3.21) and (3.22), we have Shaker

 $T(u)\beta(f(v\alpha y) - f(v)\alpha y) = 0$ which implies from Lemma 2.6 that $f(v\alpha y) = f(v)\alpha y$, (3.23)for all $y \in M, v \in V$ and $\alpha \in \Gamma$. It follows from (3.23) that $f: V \rightarrow M$ is a right M-module homomorphism. In this case, $q=Cl(V, f)\in Q$. Moreover, $f(v) = q\beta v$ for all $v \in V$ and $\alpha \in \Gamma$ by Theorem 2.3. Let $x \in M$, $v \in V$, $u \in U$ and $\gamma, \beta \in \Gamma$. Replacing v by xyv in (3.20), we get $T(u)\beta f(x\gamma v) = 0$, and $T(u)\beta q\beta x\gamma v=0$ (3.24)Also, replacing u by uyx in (3.20), we get $T(u\gamma x)\beta f(v) = 0$, we get $T(u)\gamma x\beta f(v)=0$, and $T(u)\gamma x\beta q\beta v =$ (3.25)Now, replacing β by γ and replacing γ by β in (3.25), we get $T(u) \beta x \gamma q \gamma v = 0.$ (3.26)Thus, from (3.24) and (3.26) we obtain $T(u)\beta(x\gamma q - q\beta x)\gamma v = 0$. (3.27)for all $x \in M, v \in V, u \in U$ and $\gamma, \beta \in \Gamma$.then by primness of Γ -ring we get T(u) $\beta(x\gamma q-q\beta x)=0$ for all $x \in M$, $u \in U$ and γ , $\beta \in \Gamma$, thus $T(u)\beta x\gamma q$ $-T(u)\beta q\beta x = 0$, for all $x \in M$ and $\gamma, \beta \in \Gamma$, since T is centralizer then $u\beta T(x)\gamma q - u\beta q\beta T(x)$ =0, replace x by $u\beta x$ in last equation we get $u\beta T(u\beta x)\gamma q - u\beta q\beta T(u\beta x) = 0$, then we have $u\beta u\beta T(x)\gamma q - u\beta q\beta u\beta T(x) = 0$, and so since M is prime Γ -ring we get $u\beta T(x)\gamma q - q\beta u\beta T(x)$ =0, then we have $u\beta T(x)\gamma q\alpha a - q\beta u\beta T(x) \alpha a$ =0,then we get $u\beta T(x)\gamma q\alpha a = q\beta u\beta T(x)\alpha a$ by Lemma 2.6. Now, we shall prove that q can be chosen in Q

such that $q\alpha a = 0$ and $q\beta u = 0$ for all $u \in U$ and $\gamma \in \Gamma$. If $q\alpha a = 0$, then $q\beta u\beta T(x) \alpha a = 0$, then $q\beta u = 0$ and so since M is prime Γ -ring, we get $q\Gamma U = (0)$. On the other hand, if $q\alpha a \neq 0$, then $q\beta u \neq 0$. In fact, if $q\beta u = 0$, then $q\alpha a = 0$ since $u\beta T(x)\gamma q\alpha a = q\beta u\beta T(x)\alpha a$. Thus, we may suppose that $q\alpha a \neq 0$ and $q\beta u \neq 0$ for all $u \in U$ and $\alpha, \beta \in \Gamma$. In this case, we get

 $u\beta T(x)\gamma q\alpha a = q\beta u\beta T(x)\alpha a$

for all $x \in M$, $u \in U$ and γ , β , $\alpha \in \Gamma$. It follows from Lemma 2.4 that there exists $\lambda \in C_{\Gamma}$ such that $q\alpha a = \lambda \delta a$ and $q\beta u = \lambda \delta u$ for all $u \in U$ and γ , δ , α , $\beta \in \Gamma$. Hence, if $q'=q-\lambda$, then $q'\Gamma a = 0$ and $q'\Gamma U = (0)$. This completes the proof.

Theorem 3.5. Let M be a prime Γ -ring with char M \neq 2, U a non-zero right ideal of M and T a non-zero centralizer of M. Then the subring of M generated by T(U) contains no non-zero right ideals of M if and only if T(U) Γ U = (0).

Proof. Let A be the subring generated by T(U). Let $S = A \cap U$, $u \in U$, $s \in S$ and $\gamma \in \Gamma$. Then $T(s\gamma u) = T(s) \gamma u \in A$, and so we have $T(s) \gamma u$ \in S. Thus T(S) Γ U is a right ideal of M. In this case, $T(S)\Gamma U = (0)$ by hypothesis. $T(u\gamma a)$ $=u\gamma T(a) \in S$. Therefore, $T(u\gamma T(a))\beta u = 0$, then T(u)T(a)u=0. Since M is a prime Γ -ring then T(u)T(a) = 0(3.28)Replacing u by u by where $v \in U, \beta \in \Gamma$ in (3.28), we get, for all u, $v \in U$, β , $\gamma \in \Gamma$ and $a \in A$ (3.29) $T(u)\beta v\gamma T(a) = 0.$ Since M is a prime Γ -ring, we get $T(U)\Gamma U =$ (0) or $T(A)\Gamma U = (0)$. If $T(A)\Gamma U = (0)$, then $T^{2}(U)\Gamma U = (0)$, so $T^{2}(U)=0$. Let $u, v \in U$ and β $\in \Gamma$. Then $0 = T^{2}(u\beta v) = T(T(u\beta v)) = T(u)\beta T(v), \text{ for all } u,$ $v \in U$ and $\beta \in \Gamma$ by char $M \neq 2$. Replacing u

by upw where $w \in U$, $\gamma \in \Gamma$ in last relation, we have $T(u)\gamma w\beta T(v) = 0$ which yields $T(u)\gamma v = 0$ for all u, $v \in U$ and $\gamma \in \Gamma$. Conversely assume that $T(U)\Gamma U = (0)$. Then

 $A\Gamma U = (0)$. Since M is a prime Γ -ring, A contains no non-zero right ideals.

Theorem 3.6. Let M be a prime Γ -ring with char M \neq 2, U a non-zero right ideal of M and T₁ and T₂ two non-zero centralizers of M. If T₁T₂(U) = (0), then there exists two elements p, q of Q such that q Γ U = (0) and p Γ U = (0).

Proof. If $T_1T_2(U) = (0)$, then $T_1(A) = (0)$ where A is a subring generated by $T_2(U)$. Since $T_1 \neq 0$, A contains no non-zero right ideals of M. Thus, from Theorem 3.5, we have $T_2(u)\gamma v = 0$ for all u, $v \in U$ and $\gamma \in \Gamma$. Also, there exists $q \in Q$ such that $q\Gamma U = (0)$ by Theorem 3.4. Therefore $T_2(u\gamma v) = u\gamma T_2(v)$ for all u, $v \in U$ and $\gamma \in \Gamma$. In this case, $0 = T_1T_2(u\gamma v) =$ $T_1(u\gamma T_2(v)) = T_1(u)\gamma T_2(v)$, and since M is a prime Γ -ring, we get $T_2(u)\gamma v = 0$ for all u, $v \in$ U and $\gamma \in \Gamma$. Again, by Theorem 3.4, there exists $p \in Q$ such that $p\Gamma U = (0)$. This completes the proof.

Remark 3.7. Consider the following example. Let R be a ring. A centralizer $T : R \rightarrow R$ is called an inner centralizer if there exists $a \in R$ such that T(x) = ax for all $x \in R$. Let S be the 2×2 matrix ring over Galois field {0, 1, w, w^2 }, with inner centralizer T_1 and T_2 defined by

$$\mathbf{T}_{1}(\mathbf{x}) = \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \quad , \qquad \mathbf{T}_{2}(\mathbf{x}) = \begin{pmatrix} 0 & wx \\ 0 & 0 \end{pmatrix}$$

for all $x \in S$. Then the characteristic of S is 2 and we have $T_1 \neq 0$, $T_2 \neq 0$, $T_1T_2 = 0$ and $T_2^2=0$. Also, if we take

$$M := M_{1\times 2}(S) = \{(a, b) \mid a, b \in S\} \text{ and}$$
$$\Gamma := \left\{ \begin{pmatrix} n \\ 0 \end{pmatrix} \mid n \text{ is an integer} \right\}, \text{ then } M \text{ is a}$$

prime Γ -ring of characteristic 2. Define an additive map $H_1:M \rightarrow M$ by $H_1(x, y) = (T_1(x),$

T₁(y)).Sinc(x,y)
$$\binom{n}{0}$$
(a,b) = (nxa, nxb),

therefore T_1 is a centralizer on M. Similarly $H_2: M \rightarrow M$ given by $H_2(x, y) = (T_2(x), T_2(y))$ is a centralizer. In this case, we have $H_1 \neq 0$, $H_2 \neq 0$, $H_1H_2 = 0$ and $H^2_2=0$ (see [9]). Thus we know that there exist two centralizers H_1 , H_2 of M such that $H_1H_2(M) = (0)$ but $H_1(M)\Gamma M \neq (0)$ and $H_2(M)\Gamma M \neq (0)$. Therefore the condition of char $M \neq 2$ in Theorem 3.5 and 3.6 is necessary.

References

- 1. Nobusawa, N. **1964**: On a generalization of the ring theory, *Osaka Jl. Math.* **1**, 81-89.
- Barnes, W. E. **1966**: On the Γrings of Nobusawa, *Pacific J. Math.* **18**, 411-422.
- 3. Öztürk, M. A. and Jun, Y. B. **2000**: On the centroid of the prime gamma rings, *Comm. Korean Math. Soc.* **15**(3), 469-479.
- 4. Öztürk, M. A. and Jun, Y. B.: On the centroid of the prime gamma rings II, *Tr. J. of Math*.
- Kyuno, S. **1978**: On prime gamma rings, Pacific J. Math. **75**(1), 185-190.
- 6. Öztürk, M. A.: On the quotient gamma ring of the semi-prime gamma rings, *Tr. J. of Math*.
- 7. R.Ameri, R.Sadeghi. **2010**: Gamma modules, *Ratio mathematica* 20.
- Soytürk, M. 1994: The commutativity in prime gamma rings with derivation, *Tr. J. of Math.* 18(4), 149-155.
- Sapanci M. and Öztürk, M. A. 1998: A note on gamma rings, Atatürk University 40th foundation year Math. Symposium,Special Press(20-22 May), Erzurm, 48-51.