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Abstract
In this paper we study a spectral characterization of the Taylor-Browder spectrum for
a double commuting N — tuple of totally & — operators, and study relation between the
Taylor- Weyl spectrum, Taylar- Browder spectrum, joint-Weyl spectrum, and joint-
Browder spectrum for commuting n — tuple of totally & —operators. Also we study a
spectral characterization of the Taylor-Browder spectrum for a doubly commuting

N — tuple of posinormal operators.

1. Introduction

Let B(H) denote the algebra of all bounded
linear operators on an infinite complex Hilbert
space H . Recall [1] that an operator T € B(H)
is said to be dominant if for each 1 eC there
exists a positive number M, such that

T-A(T -2 <M, (T-24)(T-2)
If the constants M, are bounded by a positive

number M, then T is said to be
M —hyponormal. Also if M =1, then T is
hyponormal. It is well known that

Hyponormal operators = M — hyponormal
operators = Dominant operators

An operator T € B(H) is called & —operator if

TT commutes with T+T", [2].We say that an
operator T e B(H) is totally @ —operator if

T —A is @ —operator for all 1 € C. Then we can
notice that
Totally & —operators = @ — operators
It is well known, [3] that

6 —operators = Dominant operators
And [4] gave an example of a M —hyponormal
which is not & —operator. An operator T € B(H)
is called posinormal if there exists a positive

operator P € B(H) such that TT =T PT, [5].
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From, [5], it is well known that

Dominant operators = Posinormal operators

Let T have the polar decomposition T =U |T |,

1

where U isunitary and | T |= (T T)? and let

T = T2U|T[M2.1f T is posinormal, then T

is hyponormal ([6]).

Throughout this paper we let T = (T,,T,,...,T,)
denote a commuting ( that is

TT,=T,T; for all i,j=12,..,n) n-tuple of

operators on H . and denote T = (T,,T,,.... T.),

T=(T,T,..T,).If TT,=TT  and

TT,=TT  for i#j, then

T=(,T,,.,T,) is said

commuting n -tuple, [7].

Let us recall some basic definitions and notions

every

to be a doubly

Definition 1.1. A cochain complex is a sequence
of abelian groups ..G_,,G_,,G,,G,,G,,..
connected by  boundary operators
(homomorphisms) T,:G, = G,,;, such that the
composition of any two consecutive maps is zero:
T.,,oT =0 forall n:

n+1 n
Tn

I'Ne >....

Ne 1 NS
7Ina I i

, the index n in G, is referred to as the
degree.See [8].

Let Ale]=A,[e]l=Alg(e,e,,....e,) be the
exterior algebra on n generators, that is, A[e] is
the complex algebra with identity e generated by
indeterminates €,€,,-.,€, such that

e ne;=—€; g ,forall i, ], where A denotes
multiplication. A[e] = ®=", A“[e] with
ATe]l A A'[e] € A*'[e]. The

, IS << <n

elements
B form a
basis for A“[e] (k >0), while A’[e]=Ce and
A[e] = (0) k>nk<0. Also

A'[e]=C(e, A...A€,) .Moreover,

when
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_ n
dimA“[e] = (k} so that, as a vector space over

C, A*[e] is isomorphic to C(Ej , [9].

Definition 1.2. Let H be a Hilbert space and
T=(T,T,,...,T,) be a commuting n-tuple of
bounded linear operators on H . Let A[e] be the
exterior algebra on n generators , we consider
A*(H) = A“[e] ® H anddefine
A(T): A (H) > AN (H)  for
(where A°(H)=A"(H)=H) by

k=01..n-1

n
A"(T)(x®ej1 A nE;) =Z'I'ix®ei A8 AN W
=

ith these operators we can construct the following
sequence

0—A(H—0AH 0 A (H—
[9] show that A***(T) o A*(T) =0 for all k, i.e.
that IMA*(T) c KerA*"*(T) for all k. So that
{A“(T),A“(H)},_, is a cochain complex, called
the Koszul complex for T =(T,T,,...,T,) and
denoted K(T,H). Furthermore, all the operators

A*(T) are bounded linear operators, [9].

Let's review definitions of joint spectra of a
commuting n-—tuple T=(T,T,,..,T,) of
operators in B(H).

Definition 1.3. Let T=(T,T,,..,T,) be a
commuting n-tuple of bounded linear operators
on H.

1) T=(,T,,.,T,) is said to be Taylor
invertible if the Koszul complex for T K(T,H)
is exact, that is if IMA*(T) = KerA**(T) for
k=01,..,n-1, [10].

2 T=(T,T,,.,T,) is said to be Taylor
Fredholm if the all cohomologies of the Koszul
complex for T K(T,H) are finite dimensional,

that is if  KerA“Y(T)/Im*A(T) for
k=01,...,n-1, [10].
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In this case the index of T—A, denoted by
ind(T), is defined as the Euler characteristic of

K(T,H), ie., as the alternating sum of

dimensions of all cohomology spaces of K(T,H)
n-1

ind(T-A1) = Z(—l)k dim(ker A“*(T)/ ImA¥(T))

k=0
» ([10], [11]).
(3) The Taylor spectrum, o (T), of T is defined
by
o; (T)={A=(4,...,4,)eC":T-1
invertible}, [10].

is not

(4) The Taylor essential spectrum, o, (T) of T
is defined as follows

0. (T)={A=(4,...,4,)eC":T-2
Fredholm}, [10].

is not

(5) T=(T,T,,...,T,) is said to be Taylor Weyl if
T is (Taylor) Fredholm and ind(T) =0, [10].

(6) The Taylor-Weyl spectrum, denoted by
o, (T), of T is defined by

ou(T) = o (T)U{A €C" :ind (T - 1) # O},
[10].

() T=(,T,,..,T,) is said to be Taylor
Browder if T is Fredholm and there exists a
deleted open neighborhood N, of 0 C" such
that T—A is invertible for all AeN,, ([10],

[12]).
(8) The Taylor-Browder spectrum, denoted by

o, (T) , is defined by

O-é (T) = o7, (T) Uacco, (T)

where  acco;(T) denotes the set of
accumulation points of the Taylor spectrum of
T, ([10], [12]).

Definition 1.4. Let K(H) denote the set of all
compact operators acting on H and let
K =(K,,...,K,) e K(H)" denote an n— tuple of
compact operators.

(1) The joint Weyl spectrum, denoted by o (T),
is defined by
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on(M = (Ho: (T+K)}, [13].

KeK(H)"
(2) The joint Browder spectrum, denoted by
o2(T), is defined by
oo (T)= (o7 (T wK)}

KeK(H)"
where TWK means a commuting sum such that
T+Kwith TK; =KT, forall i, [14].
Lay, D. C. [15] and Schechter, M. [16] proved the
following results.
Theorem 1.5. If T € B(H) is an arbitrary single
operator, then

oW (M) =o2(T) c oL (T) = o2(T).

Theorem 1.6. If T € B(H) is a normal operator
ou(T)=0,(T) =0y (T) = o3 (T).

The situation for an n—tuple of operators is

different in general. Kim, J. C. [14] proved the
following results.

Theorem 1.7. If T isa commuting n —tuple
T of arbitrary operators on H , then
oL (T) c ¢2(T) c 6/ (T) < oo (T).

Theorem 1.8. If T isa commuting n —tuple
T of normal operators

0,(T) = 03,(T) = o (T) = 0, (T)..
We also review the definitions [17] of joint
spectra of a commuting n—tuple

T=(T,T,,...,T,) of operatorsin B(H).

Definition 1.7.
1 A=,..,4,)eC" is called a joint

eigenvalue of T if there exists a hon- zero vector
X such that

(T,-A4)x=0 forall i=1..n.

(2) The joint point spectrum, denoted by o, (T),
of T is the set of all joint eigenvalues of T.

Let 7,(T) denote the set of all joint eigenvalues
of T of finite multiplicity and 7z,,(T) denote the

set of isolated eigenvalues of finite multiplicity.
Kim, J. C. [14] given a spectral characterization of

o (T).
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Theorem 1.8. If T isa commuting n —tuple
T of M —hyponormal operators, then

3 (T) = o7 (T) \ 7765(T) .
Let D(z,r) is the open disc of center z and

radius in the complex plane, then an open polydisc
is a set of the form

D(z,,n)x...xD(z,,r,)
(e, {1=(4,..4,)eC" |z, - 4 |<r, forall
k=1,...,n}, [18].

Definition 1.9. A commuting n-—tuple
T=(T,T,,..,T,) has the single valued extension
property, say SVEP, if for any open polydisk
DcC", the Koszul complex
K(T - 4,0(D,H)) has vanishing homology in
positive degrees ( i.e., is exact in positive degrees
). Here O(D,H) denotes the Frechet space of
H —valued analytic functions on D, [19].
In[20], Y. Y. Lee proved that

Theorem 1.10. If T isa commuting n —tuple
T of M — hyponormal operators with SVEP

0,(T) = 03,(T) = o (T) = 0, (T)..
In this paper, we show that for a doubly
commuting n—tuple T of totally & — operators
in B(H)

0 (T) = o7 (T) \ 7769(T)
and for a doubly commuting n-—tuple of T
totally @ —operators in B(H) with SVEP

o (T) = 04(T) = 03 (T) = 55 (T)
Also these results are proved for a doubly
commuting n—tuple T of posinormal operators

in U, where U denote the class of operators
T eB(H) that the partial isometry U in the

polar decomposition T =U |T | is unitary. Also
we prove that

o (T)\[0] ={o7 (T) \ 776 (T)}\[0]
where [0]={(4,........4,) €C": 4, =0
leastone i e | ={L,.....,n}}.

for doubly commuting n—tuple T of posinormal
operators in B(H).

for at
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2.Main Results
Recall [21] that the left (right) joint spectrum,

denoted by o,(T) (o,(T)), of T is defined by
the set of all points 4 = (4,,...,4,) € C" such that
{T. — A}, generates a proper left (right) ideal
in the algebra B(H). Let C(H)=B(H)/K(H)
be the Calkin algebra with the canonical map
7:B(H)—>C(H). Then the left (right) joint
essential spectrum, denoted by o, (T) (o,(T)),
of T is defined by

0,(T) =0,(7(T)) (0.(T)=0,(7(T))),
where 7z(T) = (z(T)),...,z(T,)).

Following [20] we shall write
Poo (T) :=1s007 (T) \ 07, (T) for the (joint) Riesz
points of o5 (T). That is the set p,,(T) consists

of all isolated points that the associated spectral
space is finite dimensional.
If M is a common invariant subspace of H for

each T, e B(H), then we let
Tlu=lu:T, s T, [y) denote an n—tuple

of compressionsto M .

The following theorem was established by Kim, J.
C. [14] for the case in which T is a doubly
commuting n—tuple M —hyponormal. Here we
replace the M —hyponormality assumption by
totally & —operators.

Theorem 2.1. Let T be a doubly commuting
n —tuple totally & —operators. Then
o3 (T) = &7 (T) \ 7705 (T)

Proof. We first prove that isoo; (T) < o,(T),

since T is a doubly commuting of n —tuple totally
@ —operators, then T — 4 is a doubly commuting
of n—tuple 6 —operators for all

A=(4,.,4,)eC". So, without loss of

generality, we may assume that Oeisoo; (T).
Then there exists a non-zero projection
P €B(H) [15, Corollary 4.10] such that P

commutes with T, for all i, o7 (T|s,)={0} and
0¢or (Tl _py) with respect to the
decomposition H =PH @ (I —P)H , thus each
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T

zero operator on PH by [22]. Thus PH — kerT,
forall i=1,...,n,and so

is quasi-nilpotent @ —operatoron PH , T. isa

{0} = PH [ kerT,
i=1

Hence Oeo,(T). Therefore
o,(T)° cacco; (T). On the other hand, since

T is a doubly commuting of n—tuple totally
0 —operators, by Lemma 2.1 in [23] and
Theorem 2.8 in [21] we have

o:(T)=0.(T) and o0+ (T) =0,(T)

and by Theorem 2.10 in [21]

67 (T) = 0, (T) U 7, (T")

7y(T) = 01 (T)°No,(T), and
7o (T) = 7, (T) N isoo; (T) , then

67 (T)\ 755 (T) = &, (T) N (7,(T) Niso 5, (T))°
=07 (T) N (07 (T)U o, (T)* Uaccor (T))

=07 (T) N (o7, (T) Uacco (T))

= o4, (T) Uacco; (T)

=0, (T). O

Now since

Theorem 2.2. Let T be a doubly commuting
n —tuple of totally & —operators with the SVEP.
Then

0(T) = 0 (T) = 0, (T) = 0, (T)

Proof. It suffices show that

,,(T) = 0y (T)

We claim that

Puo(T) =007 (T) \ &4 (T) = 07 (T) \ 5 (T)
Suppose A €isoo; (T)\ o, (T), then T—A is
Fredholm if and only if the spectral space

corresponding to A is finite dimensional by [24].
So A emy(T). Since T is a doubly commuting

of n—tuple of totally @ —operators, then
0. (T) = o, (T)\ 7o (T) by Theorem 2.1. and
hence A ¢ o;(T). So A €isoo, (T)\ oy (T).
Aeo;(T)\op(T), then
Ae o (T), since

Conversly, suppose
Aeo;(T) and

Iragi Journal of Science.Vol 53.No 2.2012.pp 386-392

o.(T)c o(T) by Theorem 1.7. we have
A¢o.(T). On the other hand since
A e 0y (T) =0, (T)\ 74, (T), then A e 7y,(T)
and hence Aeisoo; (T). Thus
A eisoo, (T)\ o (T). Therefore

isoo; (T)\ o, (T) = o, (T) \ 6. (T)

Now suppose A€ p,(T), then A eisoo;(T)
but A¢o,(T). Since Aeisoo;(T), then
Aeo;(T) but Agacco;(T)

A¢oy(T).So Aeo; (T)\op(T).
Aeo; (T)\op(T), then
A¢oy(T) implies that Aeacco;(T) and
A¢ o (T). Aeisoo; (T), so
A €isoo; (T)\ o1, (T) = py(T) . Thus

Poo (T) =isoo (T) \ G&/(T) =07 (T)\ G;(T)

On the other hand, since T has the SVEP from
[25] we have

Poo (T) = o7 (T) \ &, (T)

and hence

Conversely, let

Therefore

implies that

o7 (T)\ 6,(T) = ¢ (T) \ 5, (T)

So

now from Theorem 1.7.
0(T) € 04(T) € 0 (T) 6, (T)

We have

ou(T) =0y (T) =0y (T) =0y (T). L
Let U denote the class of operators T € B(H)
that the partial isometry U in the polar
decomposition T =U |T | is unitary.
Theorem 2.3. Let T be a doubly commuting
N —tuple of posinormal operators in U. Then
3 (T) = o7 (T) \ 7 (T)

Proof. Since T isa doubly commuting n—tuple
of posinormal operators. Then T = (T,,....... 1)

is a doubly commuting n —tuple of hyponormal
operators, by Theorem 2.8 in [21] we have

o7(T) =0 (T) and o7, (T) = 0, (T)
and by Theorem 2.10 in [21]
o (T) =0, (T)U 7,(T")
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From Theorem 1 in [26] we have
o;(T) =0y (:["), where T = ('F, ....... ,'I?n)
By 'I_:heorem %and Thegrem 6 in [27] we have
7o(T) = o7 (T)" N5, (T)
=07, (T)* Mo (T) = 7,(T)
oy(T) = o7, (T) Uaccor (T)
= o, (T)Uaccoy (T) = 0, (T)
7, (T) = 7, (T) Nisoo (T)
=7z,(T)Nisoo; (T) = 7, (T)
Since T = (f, ....... ,'I:n) is a doubly commuting

n —tuple of hyponormal operators, by Theorem
3 in [14] we have

3(T) = 07 (T) \ 775 (T)
Thus
3(T) = 6,(T) = 07 (T) \ 779(T) = 07 (T) \ 70(T)
OJ
For operators in B(H) we have an improvement
of Theorem 2.3 as follows

Theorem 2.4. Let T be a doubly commuting
n—tuple of posinormal operators in B(H).
Then

o, (T)\[0] = {07 (T) \ 775, (T)}\[0]
where [0]={(4,........4,) €C": 4 =0
leastone i e | ={1,.....,n}}.

for at

Proof. Using the same argue of previous then we
can proof

o1 (T) =0 (T), 07, (T) = 5,,(T)

and o, (T) =0, (T), where T =(T,,......,T,)

By Theorem 3 and Corollary 5 in [27] we have

7o(T)\[0] = {07 (T)* No, (TI\[0]

={0+(T)° N, (TI\[0] = 7,(T) \[0]

o3 (T)\[0] = {0+ (T) Uacco, (T)}\[0]
={o(T) Uacco, (T)}\[0] = o3 (T) \[0]

700 (D \[0] = {7, (T) Niisoc (T)}\[0]
={7,(T) Nisoo (T)}\[0] = 7,,(T)\ [0]
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Since T = ('Fl ....... ,fn) is a doubly commuting

n —tuple of hyponormal operators, by Theorem
3in [14] we have

03(T) = 07 (T) \ 7 (T)

Thus _ _ N

0, (T)\[0] = 6 (T) \ [0] ={o7 (T) \ 7 (T)}\[0]
={o7 (T) \ 7o (T)}\[0] 0
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