

ON THE SPECTRUM OF SPECIAL CLASSES OF DOUBLY COMMUTING n-TUPLES OF OPERATORS

Buthainah A. Ahmed, Hiba F. Al-Janaby
Department of Mathematics, College of Science, University of Baghdad. Bahgdad-Iraq

Abstract

In this paper we study a spectral characterization of the Taylor-Browder spectrum for a double commuting n - tuple of totally θ-operators, and study relation between the Taylor- Weyl spectrum, Taylar- Browder spectrum, joint-Weyl spectrum, and jointBrowder spectrum for commuting n - tuple of totally θ-operators. Also we study a spectral characterization of the Taylor-Browder spectrum for a doubly commuting n - tuple of posinormal operators.

حططف الأصنف الخاصة ل ـ n . لمن المؤثرلمضاعغة التبلى

بشينة عبد المسن الحمد، هبةفوزي الجنابي
 قسم الرياضيت ، كلية العلوم، جلمعة بغداد ـ بغذاد -العرال

> الخلاصة
> في هذا البهث دس التمثل الطيفي لطف تيلر -براودر و وندس العلاة بينطف تيلار - وبل وطف
المؤثرات موجبة اللسوية الذي يكون تبادلها مضاءف

1. Introduction

Let $B(H)$ denote the algebra of all bounded linear operators on an infinite complex Hilbert space H. Recall [1] that an operator $T \in B(H)$ is said to be dominant if for each $\lambda \in C$ there exists a positive number M_{λ} such that $(T-\lambda)(T-\lambda)^{*} \leq M_{\lambda}(T-\lambda)^{*}(T-\lambda)$

If the constants M_{λ} are bounded by a positive number M, then T is said to be \boldsymbol{M} - hyponormal. Also if $M=1$, then T is hyponormal. It is well known that Hyponormal operators $\Rightarrow M$-hyponormal operators \Rightarrow Dominant operators

An operator $T \in B(H)$ is called $\boldsymbol{\theta}$-operator if $T^{*} T$ commutes with $T+T^{*}$, [2].We say that an operator $T \in B(H)$ is totally $\boldsymbol{\theta}$-operator if $T-\lambda$ is θ-operator for all $\lambda \in C$. Then we can notice that
Totally θ-operators $\Rightarrow \theta$-operators
It is well known, [3] that
θ-operators \Rightarrow Dominant operators
And [4] gave an example of a M-hyponormal which is not θ-operator. An operator $T \in B(H)$ is called posinormal if there exists a positive operator $P \in B(H)$ such that $T T^{*}=T^{*} P T$, [5].

From, [5], it is well known that
Dominant operators \Rightarrow Posinormal operators
Let T have the polar decomposition $T=U|T|$,
where U is unitary and $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$ and let
$\widetilde{T}=|T|^{1 / 2} U|T|^{1 / 2}$. If T is posinormal, then \tilde{T} is hyponormal ([6]).
Throughout this paper we let $\mathrm{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ denote a commuting (that is
$T_{i} T_{j}=T_{j} T_{i} \quad$ for all $\left.i, j=1,2, \ldots, n\right) \quad n$-tuple of operators on H. and denote $\mathrm{T}^{*}=\left(T_{1}^{*}, T_{2}^{*}, \ldots, T_{n}^{*}\right)$, $\tilde{\mathrm{T}}=\left(\tilde{T}_{1}, \tilde{T}_{2}, \ldots, \tilde{T}_{n}\right)$. If $\quad T_{i} T_{j}=T_{j} T_{i} \quad$ and $T_{i}^{*} T_{j}=T_{j} T_{i}^{*} \quad$ for every $i \neq j$, then $\mathrm{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is said to be a doubly commuting n-tuple, [7].
Let us recall some basic definitions and notions
Definition 1.1. A cochain complex is a sequence of abelian groups $\ldots G_{-2}, G_{-1}, G_{0}, G_{1}, G_{2}, \ldots$ connected by boundary operators (homomorphisms) $T_{n}: G_{n} \rightarrow G_{n+1}$, such that the composition of any two consecutive maps is zero: $T_{n+1} \circ T_{n}=0$ for all n :

, the index n in G_{n} is referred to as the degree.See [8].
Let $\quad \Lambda[e]=\Lambda_{n}[e]=A \lg \left(e_{1}, e_{2}, \ldots, e_{n}\right) \quad$ be the exterior algebra on n generators, that is, $\Lambda[e]$ is the complex algebra with identity e generated by indeterminates $e_{1}, e_{2}, \ldots, e_{n}$ such that $e_{i} \wedge e_{j}=-e_{j} \wedge e_{i}$, for all i, j, where \wedge denotes multiplication. $\Lambda[e]=\oplus_{k=-\infty}^{k=\infty} \Lambda^{k}[e]$, with
$\Lambda^{k}[e] \wedge \Lambda^{l}[e] \subset \Lambda^{k+l}[e] . \quad$ The elements $e_{j_{1}} \wedge \ldots . . \wedge e_{j_{k}}, 1 \leq j_{1}<\ldots<j_{k} \leq n$ form a basis for $\Lambda^{k}[e] \quad(k>0)$, while $\Lambda^{0}[e]=C e$ and $\Lambda^{k}[e]=(0) \quad$ when $\quad k>n, k<0$. Also $\Lambda^{n}[e]=C\left(e_{1} \wedge \ldots \wedge e_{n}\right)$.Moreover,
$\operatorname{dim} \Lambda^{k}[e]=\binom{n}{k}$, so that, as a vector space over $C, \Lambda^{k}[e]$ is isomorphic to $C^{\binom{n}{k}},[9]$.

Definition 1.2. Let H be a Hilbert space and $\mathrm{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ be a commuting n-tuple of bounded linear operators on H. Let $\Lambda[e]$ be the exterior algebra on n generators, we consider $\Lambda^{k}(H)=\Lambda^{k}[e] \otimes H$ anddefine
$\Lambda^{k}(\mathrm{~T}): \Lambda^{k}(H) \rightarrow \Lambda^{k+1}(H) \quad$ for $\quad k=0,1, \ldots, n-1$ (where $\Lambda^{0}(H)=\Lambda^{n}(H)=H$) by
$\Lambda^{k}(\mathrm{~T})\left(x \otimes e_{j_{1}} \wedge \ldots \wedge e_{j_{k}}\right)=\sum_{i=1}^{n} T_{i} x \otimes e_{i} \wedge e_{j_{1}} \wedge \ldots \wedge e_{j_{k}} \mathrm{~W}$ ith these operators we can construct the following sequence
$0 \longrightarrow \Lambda^{0}(H) \xrightarrow{\Lambda^{0}(\mathrm{~T})} \Lambda^{1}(\mathrm{H}) \xrightarrow{\Lambda^{1}(\mathrm{~T})} . \stackrel{\Lambda^{n-1}(\mathrm{~T})}{\longrightarrow} \Lambda^{n}(\mathrm{H}) \longrightarrow$,
[9] show that $\Lambda^{k+1}(\mathrm{~T}) \circ \Lambda^{k}(\mathrm{~T})=0$ for all k, i.e. that $\operatorname{Im} \Lambda^{k}(\mathrm{~T}) \subseteq \operatorname{Ker} \Lambda^{k+1}(\mathrm{~T})$ for all k. So that $\left\{\Lambda^{k}(\mathrm{~T}), \Lambda^{k}(H)\right\}_{k \in z}$ is a cochain complex, called the Koszul complex for $\mathrm{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ and denoted $K(\mathrm{~T}, H)$. Furthermore, all the operators $\Lambda^{k}(\mathrm{~T})$ are bounded linear operators, [9].
Let's review definitions of joint spectra of a commuting n-tuple $T=\left(T_{1}, T_{2}, \ldots, T_{n}\right) \quad$ of operators in $B(H)$.

Definition 1.3. Let $T=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ be a commuting n-tuple of bounded linear operators on H.
(1) $\mathrm{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is said to be Taylor invertible if the Koszul complex for $\mathrm{T} K(\mathrm{~T}, H)$ is exact, that is if $\operatorname{Im} \Lambda^{k}(T)=\operatorname{Ker} \Lambda^{k+1}(T)$ for $k=0,1, \ldots, n-1,[10]$.
(2) $\mathrm{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is said to be Taylor Fredholm if the all cohomologies of the Koszul complex for $\mathrm{T} K(\mathrm{~T}, H)$ are finite dimensional, that is if $\operatorname{Ker} \Lambda^{k+1}(\mathrm{~T}) / \operatorname{Im}^{k} \Lambda(\mathrm{~T}) \quad$ for $k=0,1, \ldots, n-1,[10]$.

In this case the index of $T-\lambda$, denoted by $\operatorname{ind}(\mathrm{T})$, is defined as the Euler characteristic of $K(\mathrm{~T}, H)$, i.e., as the alternating sum of dimensions of all cohomology spaces of $K(\mathrm{~T}, H)$ $\operatorname{ind}(\mathrm{T}-\lambda)=\sum_{k=0}^{n-1}(-1)^{k} \operatorname{dim}\left(\operatorname{ker} \Lambda^{k+1}(\mathrm{~T}) / \operatorname{Im} \Lambda^{k}(\mathrm{~T})\right)$, ([10], [11]).
(3) The Taylor spectrum, $\sigma_{T}(\mathrm{~T})$, of T is defined by
$\sigma_{T}(T)=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in C^{n}: T-\lambda \quad\right.$ is not invertible\}, [10].
(4) The Taylor essential spectrum, $\sigma_{\text {Te }}(\mathrm{T})$ of T is defined as follows
$\sigma_{\text {Te }}(\mathrm{T})=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in C^{n}: \mathrm{T}-\lambda \quad\right.$ is not Fredholm\}, [10].
(5) $\mathrm{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is said to be Taylor Weyl if T is (Taylor) Fredholm and ind $(\mathrm{T})=0,[10]$.
(6) The Taylor-Weyl spectrum, denoted by $\sigma_{w}^{1}(\mathrm{~T})$, of T is defined by
$\sigma_{w}^{1}(\mathrm{~T})=\sigma_{\text {Te }}(\mathrm{T}) \cup\left\{\lambda \in C^{n}: \operatorname{ind}(\mathrm{T}-\lambda) \neq 0\right\}$,
[10].
(7) $\mathrm{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is said to be Taylor Browder if T is Fredholm and there exists a deleted open neighborhood N_{0} of $0 \in C^{n}$ such that $\mathrm{T}-\lambda$ is invertible for all $\lambda \in N_{0}$, ([10], [12]).
(8) The Taylor-Browder spectrum, denoted by $\sigma_{b}^{1}(\mathrm{~T})$, is defined by
$\sigma_{b}^{1}(\mathrm{~T})=\sigma_{T e}(\mathrm{~T}) \cup a c c \sigma_{T}(\mathrm{~T})$
where $\operatorname{acc} \sigma_{T}(\mathrm{~T})$ denotes the set of accumulation points of the Taylor spectrum of T, ([10], [12]).
Definition 1.4. Let $K(H)$ denote the set of all compact operators acting on H and let $\mathrm{K}=\left(K_{1}, \ldots, K_{n}\right) \in K(H)^{n}$ denote an $n-$ tuple of compact operators.
(1) The joint Weyl spectrum, denoted by $\sigma_{w}^{2}(\mathrm{~T})$, is defined by
$\sigma_{w}^{2}(\mathrm{~T})=\bigcap_{\mathrm{K} \in K(H)^{n}}\left\{\sigma_{T}(\mathrm{~T}+\mathrm{K})\right\}$, [13].
(2) The joint Browder spectrum, denoted by $\sigma_{b}^{2}(\mathrm{~T})$, is defined by
$\sigma_{b}^{2}(\mathrm{~T})=\bigcap_{K \in K(H)^{n}}\left\{\sigma_{T}(\mathbf{T} \uplus \mathbf{K})\right\}$
where $\mathbf{T} \uplus \mathbf{K}$ means a commuting sum such that $\mathrm{T}+\mathrm{K}$ with $T_{i} K_{j}=K_{j} T_{i}$ for all $i, j,[14]$.
Lay, D. C. [15] and Schechter, M. [16] proved the following results.
Theorem 1.5. If $T \in B(H)$ is an arbitrary single operator, then
$\sigma_{w}^{1}(T)=\sigma_{w}^{2}(T) \subset \sigma_{b}^{2}(T)=\sigma_{b}^{2}(T)$.
Theorem 1.6. If $T \in B(H)$ is a normal operator $\sigma_{w}^{1}(T)=\sigma_{w}^{2}(T)=\sigma_{b}^{1}(T)=\sigma_{b}^{2}(T)$.
The situation for an n-tuple of operators is different in general. Kim, J. C. [14] proved the following results.

Theorem 1.7. If T is a commuting n-tuple T of arbitrary operators on H, then $\sigma_{w}^{1}(\mathrm{~T}) \subset \sigma_{w}^{2}(\mathrm{~T}) \subset \sigma_{b}^{2}(\mathrm{~T}) \subset \sigma_{b}^{1}(\mathrm{~T})$.

Theorem 1.8. If T is a commuting n-tuple T of normal operators
$\sigma_{w}^{1}(\mathrm{~T})=\sigma_{w}^{2}(\mathrm{~T})=\sigma_{b}^{2}(\mathrm{~T})=\sigma_{b}^{1}(\mathrm{~T})$.
We also review the definitions [17] of joint spectra of a commuting n-tuple $\mathrm{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ of operators in $B(H)$.

Definition 1.7.

(1) $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in C^{n}$ is called a joint eigenvalue of T if there exists a non- zero vector x such that
$\left(T_{i}-\lambda_{i}\right) x=0$ for all $i=1, \ldots n$.
(2) The joint point spectrum, denoted by $\sigma_{p}(\mathrm{~T})$, of T is the set of all joint eigenvalues of T .
Let $\pi_{0}(\mathrm{~T})$ denote the set of all joint eigenvalues of T of finite multiplicity and $\pi_{00}(\mathrm{~T})$ denote the set of isolated eigenvalues of finite multiplicity.
Kim, J. C. [14] given a spectral characterization of $\sigma_{b}^{1}(\mathrm{~T})$.

Theorem 1.8. If T is a commuting n-tuple T of M - hyponormal operators, then $\sigma_{b}^{1}(\mathrm{~T})=\sigma_{T}(\mathrm{~T}) \backslash \pi_{00}(\mathrm{~T})$.
Let $D(z, r)$ is the open disc of center Z and radius in the complex plane, then an open polydisc is a set of the form

$$
\begin{gathered}
D\left(z_{1}, r_{1}\right) \times \ldots \times D\left(z_{n}, r_{n}\right) \\
\left(i . e .,\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in C^{n}:\left|z_{k}-\lambda_{k}\right|<r_{k}\right. \text {, for all }\right. \\
k=1, \ldots, n\},[18] .
\end{gathered}
$$

Definition 1.9. A commuting n-tuple $\mathrm{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ has the single valued extension property, say SVEP, if for any open polydisk $D \subset C^{n}$, the Koszul complex $K(\mathrm{~T}-\lambda, O(D, H))$ has vanishing homology in positive degrees (i.e., is exact in positive degrees). Here $O(D, H)$ denotes the Frechet space of H - valued analytic functions on D, [19].
In [20], Y. Y. Lee proved that
Theorem 1.10. If T is a commuting n-tuple T of M - hyponormal operators with SVEP

$$
\sigma_{w}^{1}(\mathrm{~T})=\sigma_{w}^{2}(\mathrm{~T})=\sigma_{b}^{2}(\mathrm{~T})=\sigma_{b}^{1}(\mathrm{~T})
$$

In this paper, we show that for a doubly commuting n-tuple T of totally θ-operators in $B(H)$

$$
\sigma_{b}^{1}(\mathrm{~T})=\sigma_{T}(\mathrm{~T}) \backslash \pi_{00}(\mathrm{~T})
$$

and for a doubly commuting n-tuple of T totally θ - operators in $B(H)$ with SVEP

$$
\sigma_{w}^{1}(\mathrm{~T})=\sigma_{w}^{2}(\mathrm{~T})=\sigma_{b}^{1}(\mathrm{~T})=\sigma_{b}^{2}(\mathrm{~T})
$$

Also these results are proved for a doubly commuting n-tuple T of posinormal operators in \boldsymbol{U}, where \boldsymbol{U} denote the class of operators $T \in B(H)$ that the partial isometry U in the polar decomposition $T=U|T|$ is unitary. Also we prove that

$$
\sigma_{b}^{1}(\mathrm{~T}) \backslash[0]=\left\{\sigma_{T}(\mathrm{~T}) \backslash \pi_{00}(\mathrm{~T})\right\} \backslash[0]
$$

where $[0]=\left\{\left(\lambda_{1}, \ldots \ldots, \lambda_{n}\right) \in C^{n}: \lambda_{i}=0\right.$ for at least one $i \in I=\{1, \ldots \ldots, n\}\}$.
for doubly commuting n-tuple T of posinormal operators in $B(H)$.

2.Main Results

Recall [21] that the left (right) joint spectrum, denoted by $\sigma_{\ell}(\mathrm{T})\left(\sigma_{r}(\mathrm{~T})\right)$, of T is defined by the set of all points $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in C^{n}$ such that $\left\{T_{i}-\lambda_{i}\right\}_{1 \leq i \leq n}$ generates a proper left (right) ideal in the algebra $B(H)$. Let $C(H)=B(H) / K(H)$ be the Calkin algebra with the canonical map $\pi: B(H) \rightarrow C(H)$. Then the left (right) joint essential spectrum, denoted by $\sigma_{l e}(\mathrm{~T})\left(\sigma_{r e}(\mathrm{~T})\right)$, of T is defined by

$$
\sigma_{\ell e}(\mathrm{~T})=\sigma_{\ell}(\pi(\mathrm{T})) \quad\left(\sigma_{r e}(\mathrm{~T})=\sigma_{r}(\pi(\mathrm{~T}))\right)
$$

where $\pi(\mathrm{T})=\left(\pi\left(T_{1}\right), \ldots, \pi\left(T_{n}\right)\right)$.
Following [20] we shall write $p_{00}(\mathrm{~T}):=\operatorname{iso} \sigma_{T}(\mathrm{~T}) \backslash \sigma_{T e}(\mathrm{~T})$ for the (joint) Riesz points of $\sigma_{T}(\mathrm{~T})$. That is the set $p_{00}(\mathrm{~T})$ consists of all isolated points that the associated spectral space is finite dimensional.
If M is a common invariant subspace of H for each $T_{i} \in B(H)$, then we let $\left.\mathrm{T}\right|_{M}=\left(\left.T_{1}\right|_{M},\left.T_{2}\right|_{M}, \ldots,\left.T_{n}\right|_{M}\right)$ denote an n-tuple of compressions to M.
The following theorem was established by Kim, J. C. [14] for the case in which T is a doubly commuting n-tuple M-hyponormal. Here we replace the M-hyponormality assumption by totally θ - operators.

Theorem 2.1. Let T be a doubly commuting n-tuple totally θ-operators. Then

$$
\sigma_{b}^{1}(\mathrm{~T})=\sigma_{T}(\mathrm{~T}) \backslash \pi_{00}(\mathrm{~T})
$$

Proof. We first prove that iso $\sigma_{T}(\mathrm{~T}) \subset \sigma_{p}(\mathrm{~T})$, since \mathbf{T} is a doubly commuting of n-tuple totally θ-operators, then $\mathrm{T}-\lambda$ is a doubly commuting of n-tuple θ-operators for all $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in C^{n}$. So, without loss of generality, we may assume that $0 \in \operatorname{iso} \sigma_{T}(\mathrm{~T})$. Then there exists a non-zero projection $P \in B(H)$ [15, Corollary 4.10] such that P commutes with T_{i} for all $i, \sigma_{T}\left(\left.\mathbf{T}\right|_{P H}\right)=\{0\}$ and $0 \notin \sigma_{T}\left(\left.\mathbf{T}\right|_{(I-P) H}\right) \quad$ with respect to the decomposition $H=P H \oplus(I-P) H$, thus each
T_{i} is quasi-nilpotent θ - operator on $P H, T_{i}$ is a zero operator on $P H$ by [22]. Thus $P H \subset \operatorname{ker} T_{i}$ for all $i=1, \ldots, n$, and so
$\{0\} \neq P H \subset \bigcap_{i=1}^{n} \operatorname{ker} T_{i}$
Hence $\quad 0 \in \sigma_{p}(T)$. Therefore
$\sigma_{p}(\mathrm{~T})^{c} \subset \operatorname{acc} \sigma_{T}(\mathrm{~T})$. On the other hand, since T is a doubly commuting of n-tuple totally θ-operators, by Lemma 2.1 in [23] and
Theorem 2.8 in [21] we have
$\sigma_{T}(\mathrm{~T})=\sigma_{r}(\mathrm{~T})$ and $\sigma_{T e}(\mathrm{~T})=\sigma_{r e}(\mathrm{~T})$
and by Theorem 2.10 in [21]
$\sigma_{T}(\mathrm{~T})=\sigma_{T e}(\mathrm{~T}) \bigcup \overline{\pi_{0}\left(\mathrm{~T}^{*}\right)}$
Now since $\pi_{0}(\mathrm{~T})=\sigma_{T e}(\mathrm{~T})^{c} \bigcap \sigma_{p}(\mathrm{~T})$, and $\pi_{o o}(\mathrm{~T})=\pi_{o}(\mathrm{~T}) \bigcap$ iso $\sigma_{T}(\mathrm{~T})$, then
$\sigma_{T}(\mathrm{~T}) \backslash \pi_{00}(\mathrm{~T})=\sigma_{T}(\mathrm{~T}) \bigcap\left(\pi_{0}(\mathrm{~T}) \bigcap \text { iso } \sigma_{T}(\mathrm{~T})\right)^{c}$
$=\sigma_{T}(\mathrm{~T}) \bigcap\left(\sigma_{T e}(\mathrm{~T}) \cup \sigma_{p}(\mathrm{~T})^{c} \cup \operatorname{acc} \sigma_{T}(\mathrm{~T})\right)$
$=\sigma_{T}(\mathrm{~T}) \bigcap\left(\left(\sigma_{T e}(\mathrm{~T}) \bigcup \operatorname{acc} \sigma_{T}(\mathrm{~T})\right)\right.$
$=\sigma_{T e}(\mathrm{~T}) \cup \operatorname{acc} \sigma_{T}(\mathrm{~T})$
$=\sigma_{b}^{1}(\mathrm{~T})$.
Theorem 2.2. Let T be a doubly commuting n-tuple of totally θ-operators with the SVEP. Then
$\sigma_{w}^{1}(\mathrm{~T})=\sigma_{w}^{2}(\mathrm{~T})=\sigma_{b}^{2}(\mathrm{~T})=\sigma_{b}^{1}(\mathrm{~T})$
Proof. It suffices show that
$\sigma_{w}^{1}(\mathrm{~T})=\sigma_{b}^{1}(\mathrm{~T})$
We claim that
$p_{00}(\mathrm{~T})=\operatorname{iso} \sigma_{T}(\mathrm{~T}) \backslash \sigma_{w}^{1}(\mathrm{~T})=\sigma_{T}(\mathrm{~T}) \backslash \sigma_{b}^{1}(\mathrm{~T})$
Suppose $\lambda \in \operatorname{iso} \sigma_{T}(\mathrm{~T}) \backslash \sigma_{w}^{1}(\mathrm{~T})$, then $\mathrm{T}-\lambda$ is Fredholm if and only if the spectral space corresponding to λ is finite dimensional by [24]. So $\lambda \in \pi_{00}(T)$. Since T is a doubly commuting of n-tuple of totally θ-operators, then $\sigma_{b}^{1}(\mathrm{~T})=\sigma_{T}(\mathrm{~T}) \backslash \pi_{00}(\mathrm{~T})$ by Theorem 2.1. and hence $\lambda \notin \sigma_{b}^{1}(\mathrm{~T})$. So $\lambda \in \operatorname{iso} \sigma_{T}(\mathrm{~T}) \backslash \sigma_{b}^{1}(\mathrm{~T})$.
Conversly, suppose $\lambda \in \sigma_{T}(\mathrm{~T}) \backslash \sigma_{b}^{1}(\mathrm{~T})$, then $\lambda \in \sigma_{T}(\mathrm{~T}) \quad$ and $\quad \lambda \notin \sigma_{b}^{1}(\mathrm{~T})$, since
$\sigma_{w}^{1}(\mathrm{~T}) \subset \sigma_{b}^{1}(\mathrm{~T})$ by Theorem 1.7. we have $\lambda \notin \sigma_{w}^{1}(\mathrm{~T})$. On the other hand since $\lambda \notin \sigma_{b}^{1}(\mathrm{~T})=\sigma_{T}(\mathrm{~T}) \backslash \pi_{00}(\mathrm{~T})$, then $\lambda \in \pi_{00}(\mathrm{~T})$ and hence $\lambda \in$ iso $\sigma_{T}(\mathrm{~T})$. Thus $\lambda \in \operatorname{iso} \sigma_{T}(\mathrm{~T}) \backslash \sigma_{w}^{1}(\mathrm{~T})$. Therefore iso $\sigma_{T}(\mathrm{~T}) \backslash \sigma_{w}(\mathrm{~T})=\sigma_{T}(\mathrm{~T}) \backslash \sigma_{b}^{1}(\mathrm{~T})$
Now suppose $\lambda \in p_{\text {oo }}(\mathrm{T})$, then $\lambda \in \operatorname{iso} \sigma_{T}(\mathrm{~T})$ but $\lambda \notin \sigma_{T e}(\mathrm{~T})$. Since $\lambda \in$ iso $\sigma_{T}(\mathrm{~T})$, then $\lambda \in \sigma_{T}(\mathrm{~T})$ but $\lambda \notin \operatorname{acc} \sigma_{T}(\mathrm{~T})$ and hence $\lambda \notin \sigma_{b}^{1}(\mathrm{~T})$. So $\lambda \in \sigma_{T}(\mathrm{~T}) \backslash \sigma_{b}^{1}(\mathrm{~T})$.
Conversely, let $\lambda \in \sigma_{T}(\mathrm{~T}) \backslash \sigma_{b}^{1}(\mathrm{~T})$, then $\lambda \notin \sigma_{b}^{1}(\mathrm{~T})$ implies that $\lambda \notin \operatorname{acc} \sigma_{T}(\mathrm{~T})$ and $\lambda \notin \sigma_{T e}(\mathrm{~T})$. Therefore $\lambda \in \operatorname{iso} \sigma_{T}(\mathrm{~T})$, so $\lambda \in \operatorname{iso} \sigma_{T}(\mathrm{~T}) \backslash \sigma_{T e}^{1}(\mathrm{~T})=p_{00}(\mathrm{~T})$. Thus $p_{00}(\mathrm{~T})=\operatorname{iso} \sigma_{T}(\mathrm{~T}) \backslash \sigma_{w}^{1}(\mathrm{~T})=\sigma_{T}(\mathrm{~T}) \backslash \sigma_{b}^{1}(\mathrm{~T})$
On the other hand, since T has the SVEP from [25] we have

$$
p_{00}(\mathrm{~T})=\sigma_{T}(\mathrm{~T}) \backslash \sigma_{w}^{1}(\mathrm{~T})
$$

implies that

$$
\sigma_{T}(\mathrm{~T}) \backslash \sigma_{w}^{1}(\mathrm{~T})=\sigma_{T}(\mathrm{~T}) \backslash \sigma_{b}^{1}(\mathrm{~T})
$$

So
now from Theorem
1.7.
$\sigma_{w}^{1}(\mathrm{~T}) \subset \sigma_{w}^{2}(\mathrm{~T}) \subset \sigma_{b}^{2}(\mathrm{~T}) \subset \sigma_{b}^{1}(\mathrm{~T})$
We have

$$
\sigma_{w}^{1}(\mathrm{~T})=\sigma_{w}^{2}(\mathrm{~T})=\sigma_{b}^{2}(\mathrm{~T})=\sigma_{b}^{1}(\mathrm{~T}) .
$$

Let \boldsymbol{U} denote the class of operators $T \in B(H)$ that the partial isometry U in the polar decomposition $T=U|T|$ is unitary.

Theorem 2.3. Let T be a doubly commuting n - tuple of posinormal operators in \boldsymbol{U}. Then $\sigma_{b}^{1}(\mathrm{~T})=\sigma_{T}(\mathrm{~T}) \backslash \pi_{00}(\mathrm{~T})$

Proof. Since T is a doubly commuting n-tuple of posinormal operators. Then $\widetilde{T}=\left(\widetilde{T}_{1}, \ldots \ldots, \widetilde{T}_{n}\right)$ is a doubly commuting n-tuple of hyponormal operators, by Theorem 2.8 in [21] we have
$\sigma_{T}(\tilde{\mathrm{~T}})=\sigma_{r}(\tilde{\mathrm{~T}})$ and $\sigma_{\text {тe }}(\tilde{\mathrm{T}})=\sigma_{r e}(\tilde{\mathrm{~T}})$
and by Theorem 2.10 in [21]
$\sigma_{r}(\tilde{\mathrm{~T}})=\sigma_{r e}(\tilde{\mathrm{~T}}) \bigcup \overline{\pi_{0}\left(\tilde{\mathrm{~T}}^{*}\right)}$

From Theorem 1 in [26] we have
$\sigma_{T}(\mathrm{~T})=\sigma_{T}(\widetilde{\mathrm{~T}}), \quad$ where $\tilde{\mathrm{T}}=\left(\tilde{T}_{1}, \ldots \ldots, \tilde{T}_{n}\right)$
By Theorem 3 and Theorem 6 in [27] we have

$$
\begin{aligned}
\pi_{0}(\tilde{\mathrm{~T}}) & =\sigma_{T e}(\tilde{\mathrm{~T}})^{c} \cap \sigma_{p}(\tilde{\mathrm{~T}}) \\
& =\sigma_{T e}(\mathrm{~T})^{c} \bigcap \sigma_{p}(\mathrm{~T})=\pi_{0}(\mathrm{~T}) \\
\sigma_{b}^{1}(\tilde{\mathrm{~T}}) & =\sigma_{T e}(\tilde{\mathrm{~T}}) \bigcup \operatorname{acc} \sigma_{T}(\tilde{\mathrm{~T}}) \\
& =\sigma_{T e}(\mathrm{~T}) \bigcup \operatorname{acc} \sigma_{T}(\mathrm{~T})=\sigma_{b}^{1}(\mathrm{~T}) \\
\pi_{o o}(\tilde{\mathrm{~T}}) & =\pi_{o}(\tilde{\mathrm{~T}}) \bigcap i \operatorname{so} \sigma_{T}(\widetilde{\mathrm{~T}}) \\
& =\pi_{o}(\mathrm{~T}) \bigcap i s o \sigma_{T}(\mathrm{~T})=\pi_{o o}(\mathrm{~T})
\end{aligned}
$$

Since $\widetilde{\mathrm{T}}=\left(\widetilde{T}_{1}, \ldots \ldots, \widetilde{T}_{n}\right)$ is a doubly commuting n - tuple of hyponormal operators, by Theorem 3 in [14] we have

$$
\sigma_{b}^{1}(\tilde{\mathrm{~T}})=\sigma_{T}(\tilde{\mathrm{~T}}) \backslash \pi_{00}(\tilde{\mathrm{~T}})
$$

Thus
$\sigma_{b}^{1}(\mathrm{~T})=\sigma_{b}^{1}(\widetilde{\mathrm{~T}})=\sigma_{T}(\widetilde{\mathrm{~T}}) \backslash \pi_{00}(\widetilde{\mathrm{~T}})=\sigma_{T}(\mathrm{~T}) \backslash \pi_{00}(\mathrm{~T})$

For operators in $B(H)$ we have an improvement of Theorem 2.3 as follows

Theorem 2.4. Let T be a doubly commuting n-tuple of posinormal operators in $B(H)$. Then
$\sigma_{b}^{1}(\mathrm{~T}) \backslash[0]=\left\{\sigma_{T}(\mathrm{~T}) \backslash \pi_{00}(\mathrm{~T})\right\} \backslash[0]$
where $[0]=\left\{\left(\lambda_{1}, \ldots \ldots, \lambda_{n}\right) \in C^{n}: \lambda_{i}=0\right.$ for at least one $i \in I=\{1, \ldots . ., n\}$.

Proof. Using the same argue of previous then we can proof
$\sigma_{T}(\tilde{\mathrm{~T}})=\sigma_{r}(\tilde{\mathrm{~T}}), \sigma_{\text {Te }}(\tilde{\mathrm{T}})=\sigma_{r e}(\tilde{\mathrm{~T}})$
and $\sigma_{T}(\mathrm{~T})=\sigma_{T}(\tilde{\mathrm{~T}})$, where $\tilde{\mathrm{T}}=\left(\tilde{T}_{1}, \ldots \ldots . ., \tilde{T}_{n}\right)$
By Theorem 3 and Corollary 5 in [27] we have

$$
\begin{aligned}
& \pi_{0}(\tilde{\mathrm{~T}}) \backslash[0]=\left\{\sigma_{\text {Te }}(\tilde{\mathrm{T}})^{c} \cap \sigma_{p}(\tilde{\mathrm{~T}})\right\} \backslash[0] \\
& \\
& \quad=\left\{\sigma_{\text {Te }}(\mathrm{T})^{c} \cap \sigma_{p}(\mathrm{~T})\right\} \backslash[0]=\pi_{0}(\mathrm{~T}) \backslash[0] \\
& \sigma_{b}^{1}(\tilde{\mathrm{~T}}) \backslash[0]=\left\{\sigma_{\text {Te }}(\widetilde{\mathrm{T}}) \cup \operatorname{acc} \sigma_{T}(\widetilde{\mathrm{~T}})\right\} \backslash[0] \\
& \quad=\left\{\sigma_{\text {Te }}(\mathrm{T}) \cup \operatorname{acc} \sigma_{T}(\mathrm{~T})\right\} \backslash[0]=\sigma_{b}^{1}(\mathrm{~T}) \backslash[0] \\
& \pi_{o o}(\tilde{\mathrm{~T}}) \backslash[0]=\left\{\pi_{o}(\widetilde{\mathrm{~T}}) \cap \text { iso } \sigma_{T}(\tilde{\mathrm{~T}})\right\} \backslash[0] \\
& \quad=\left\{\pi_{o}(\mathrm{~T}) \bigcap \text { iso } \sigma_{T}(\mathrm{~T})\right\} \backslash[0]=\pi_{o o}(\mathrm{~T}) \backslash[0]
\end{aligned}
$$

Since $\widetilde{\mathrm{T}}=\left(\widetilde{T}_{1}, \ldots \ldots, \widetilde{T}_{n}\right)$ is a doubly commuting n - tuple of hyponormal operators, by Theorem 3 in [14] we have

$$
\sigma_{b}^{1}(\tilde{\mathrm{~T}})=\sigma_{T}(\tilde{\mathrm{~T}}) \backslash \pi_{00}(\tilde{\mathrm{~T}})
$$

Thus

$$
\begin{aligned}
\sigma_{b}^{1}(\mathrm{~T}) \backslash[0] & =\sigma_{b}^{1}(\tilde{\mathrm{~T}}) \backslash[0]=\left\{\sigma_{T}(\tilde{\mathrm{~T}}) \backslash \pi_{00}(\tilde{\mathrm{~T}})\right\} \backslash[0] \\
& =\left\{\sigma_{T}(\mathrm{~T}) \backslash \pi_{00}(\mathrm{~T})\right\} \backslash[0]
\end{aligned}
$$

References

1. Stampfli, J. G. and Wadhwa, B. L. 1997. On dominant operators. Monatsh. Math., 84 : 143-153.
2. Campbell S. L. 1975. Linear operators for which $T^{*} T$ and $T+T^{*}$ commute. Pacific J. Math., 61 : 53-57.
3. Kato, Y. 1994. Some example of θ-operators. Kyushu Journal of Mathematics, 48 (1) : 101-109.
4. Al-Saltan, R. E. 2000. Some generalizations of normal operators. M. Sc. Thesis. Department of Mathematics, College of Science, University of Baghdad. Baghdad, Iraq. pp 46-48 .
5. Rhaly, H. C., Jr. 1994. Posinormal operators. J. Math. Soc. Japan, 46 (4) : 587-605.
6. Koszul, J. L. 1950. Homologie et cohomologie des algebras de Lie. Bull. Soc. Math. France, 78 : 65-127.
7. Jeon, I. H. 1998. On joint essential spectra of doubly commuting n-tuples of p-hyponormal operators. Glasgow Math. J., 40: 353-358.
8. http://en.wikipedia.org/wiki/Chain_compl ex.
9. Taylor, J. L. 1970. A joint spectrum for several commuting operators. J. Funct. Anal. 6:172-191.
10. Jeon, I. H. and Lee, W.Y. 1994. On the Taylor-Weyl spectrums. Acta Sci. Math. (Szeged), 59 : 187-1930.
11. Curto, R.E. 1981. Fredholm and invertible n-tuples of operators. The deformation problem. Trans. Amer. Math. Soc., 266: 129-159.
12. Curto, R.E. and Dash, A.T. 1988. Browder spectral systems. Proc. Amer. Math. Soc., 103: 407-412.
13. Cho, M. 1992. On the joint Weyl spectrum III. Acta Sci. Math. (Szeged), 53: 365-367.
14. Kim, J. C. 2000. On joint Weyl and Browder spectra. Bull. Korean Math. Soc., 37 : 53-62.
15. Lay, D. C. 1968. On the essential spectrum of an arbitrary operators. J. Math. Anal. Appl., 13 : 205-215.
16. Schechter, M. 1966. Characterizations of the essential spectrum of F. E. Browder. Bull. Amer. Math. Soc., 74 : 264-268.
17. Dash, A. T. 1973. Joint spectra. Studia Math., 45 : 225-237.
18. http://en.wikipedia.org/wiki/polydisc
19. Frunza, S. 1975. The Taylor spectrum and decompositions. J. Funct. Analysis, 19 : 390-421.
20. Lee, Y. Y. 2001. On the joint Weyl and Browder spectra of hyponormal operators. Comm. Korean Math. Soc., 16 (2) : 235241.
21. Dash, A. T. 1976. Joint essential spectra. Pacific J. Math., 64 : 119-128.
22. Campbell, S. L. and Gellar, R. 1975. Spectral properties of linear operators for which $T^{*} T$ and $T+T^{*}$ commute. Proc. Amer. Math. Soc., 60 : 197-202.
23. Jeon, I. H. and Lee, W. Y. 1995. Isolated points of the Taylor spectrum. Hokkaido Math. Jour. 24 : 337-345.
24. Fialkow, L. A. 1986. The index of an Elementary operator. Indiana Oniv. Math. J., 35 : 73-102.
25. Putinar, M. 1999. On Weyl spectrum in several variables. Math. Japonica., 50 : 355-357.
26. Cho, M, Jeon, I.H, Jung, I.B, Lee, J.I. and Tanahashi, K. 2001. Joint spectra of n-tuples of generalized Aluthge transformations. Rev. Roumaine Math. Pures Appl, 46(6): 725-730.
27. Cho, M, Jeon, I.H, Jung, I.B, Lee, J.I. 2000. Joint spectra of doubly commuting n - tuples of operators and their Aluthge transformations. Nihonkai Math. J., 11(1): 87-96.
28. Lyanaga, S. and Kawade, Y. 1980. (Eds.). Encyclopedic Dictionary of Mathematics, Cambridge, MA:MIT Press, p. 100.
