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Abstract 

     We consider the general nonlinear regression problem .  A 
survey of some classical methods and stochastic approximation procedures for 
estimating  is first given. We solve the nonlinear regression problem by 
considering the optimal stochastic approximation procedure by [3],[4]. This leads us 
to introduce a new procedure , called "Stochastic Approximation Iterative Least 
Square Procedure" SA -ILS procedure. The new procedure is applied to a number of 
nonlinear regression  models. We report on the results of a simulation investigation 
which indicate that the new procedure is highly efficient with respect to the number 
of observations required to obtain the parameter estimates for given regression 
problem. 
 

 بواسطة طريقة التقديرالأقل مربعات المكررة -التقريب العشوائي
  

  علي حبيب كشمر
  العراق -بغداد. امعة بغداد، جكلية العلوم ،قسم علوم الحاسبات

  
  الخلاصة

أعطينا أولا عرضا للمفاهيم  .تم دراسة مشكلة الانحدار الغير خطي العام      

وبعدها أوجدنا حل المشكلة السـابقة  . ة وطرق التقريب العشوائي لتقدير الأساسية لبعض الطرق التقليدي

واقترحنا طريقة جديدة أطلقنـا عليهـا     [4],[3]بواسطة طرق التقريب العشوائي المثلى المبتكرة بواسطة 

قمنـا   لقـد .  SA –ILSوأعطيت الطريقة  اسما مختصـرا  " الأقل مربعات المكررة –التقريب العشوائي "

بتطبيق الطريقة المقترحة على عدد من نماذج الانحدار الغير خطي كما سجلنا نتائج دراسة المحاكاة التـي  

تشير إلى أن الطريقة الجديدة ذات كفاءة عالية بالنسبة لعدد المشاهدات اللازمة لتقدير المعلمات في مشـكلة  

  . الانحدار
1-introduction 
     Let f be unknown function to the 
experimenter , and that for any level  x  we can 
observe a random variable Y(X) with 
expectation f(x). Let  be a given constant such 
that f(x)=  , has a unique root . The goal is to 
estimate , By choosing the appropriate 
measurement scale, we can without loss of 
generality assume that a = 0.  [22] proposed a 
method for solution of this problem and a more 

general one, which is called the method of 
"Stochastic Approximation Procedure". Let the 
outcome of the measurement at   be 

,n where  
are independent random variables with 

   and for all n ,  
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and independent of x , and  can only be 
measured by an observer subject to random error  

 whose magnitude cannot be neglected in 
view of the accuracy demanded of the solution 
f(x) =a.  [22]  assume  

 , and under 
more conditions on  f , proved that  
converges in probability, and in mean square to 

 .[17] considered the problem of estimating the 
value of  sequentially such that f(x) achieves 
its minimum (or maximum). Let   and    
be sequences of positive numbers such that 

  , 

and assume ,  where    and    

are two observations. Let  be an arbitrary 
initial value, then define the stochastic 
approximation procedure by: 

 [17] proved, 
under certain conditions on f that   converges 
in probability to . [18] proved under weaker 
conditions than the conditions of [22],that  
converges to  almost surely. [15] proved, under 
weaker conditions than conditions of [8] on 
stochastic approximation procedure proposed by 
[22],that  converges with probability one to  
. [12] noticed some difficulties with the original 
stochastic approximation procedure 

when  was 
large near   and small away from   so that the 
correction   tends to be too big when    
was near  , and otherwise it is too small [14]. 
He observed that  in 

  may change 
sign suddenly, so he proposed to take the 
absolute value of  multiplied by sign  
, the new stochastic approximation procedure is 
as follows: choose  as an arbitrary initial value 
of x , then define the estimating sequence by: 

. He proved , under some additional conditions, 
that  converges to  . Also [12] proposed 
another stochastic approximation procedure , by 
replacing  by 

 , then the new stochastic 
approximation is  

. He proved, under some additional conditions 
that  converges to  . Then question remaining, 
in general, what is the optimal transformation h 
which, when used in  

. will not destroy the convergence to  and make 
the speed maximal. If the conditional 
distribution of   
(given  ; where  is a random 
variable ,distributed according to a distribution 
function F which is symmetric around 0 , and 
admits a density f , the optimal choice of h is 

 ; where c is a constant ; if some 
additional mild requirements are satisfied. This 
result was obtained, independently, by [1] and 
[6]; the first considered both [22] and [17] 
situation, the second considered [22] 
situation.[3]proposed a general stochastic 
approximation procedure in the form 

, where 
 are designed r-vectors based on transforming 

the observations  by a Boral measurable 
transformation  are (q x r) measurable 
functions of  positive 
numbers , and  is an arbitrary random vector 
in  . Under certain assumptions proposed by 
[2] , he established the almost sure convergence 
and the asymptotic normality results of the 
general stochastic approximation procedure  

. 
Furthermore, the optimal  choices of  
are found by [3]. As for the optimal 
transformation,  , is shown to be equal to  

 a.e (F) with 
I(F) being the Fisher information matrix of  f , 
provided that the error random vectors have a 
conditional (on(  distribution 
function F that admits a density function f 
whose gradient vector exists a.e. (F) with I(F) 
positive definite. 
Consider the following general nonlinear 
regression model: 
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Where   
with  ,  
equation (1.1) can be written as: 

                                     (1.2) 
Where    is an unobservable centered random 
error , and its distribution may be dependent on  
x , but with  and  . 
Moreover,  is an observable random 
variable at each x. Our interest will be in the 
class of models which contain a component 
linear in some parameters but nonlinear in the 
remaining parameters. The objective will be to 
estimate  sequentially using a technique in 
which the optimal stochastic approximation 
method [4],is combined will the approach of 
eliminating linear parameters proposed by [18].  
The sequential procedure is also compared with 
the fixed sample size procedure based fully on 
the [18] method. Let us first explain the 
procedure of [4], for the general model(1.2). 
consider the family  of  distribution functions 

 which is absolutely 
continuous with respect to a -finite measure  
on the Boreal -finite of   for some  . 
The family   satisfies the following 
conditions: 
(i): For  denotes its density 
function w .r .t   ; 
(ii): The gradient of  w. r .t   ,   

 ,exists for almost all  (Lebesque) 
and  is  measurable in both , i.e., 

 is measurable map; 
(iii): The (p x p)-Fisher information matrix  , 
where  

  of  is positive definite for all 
 , so that its inverse  exists 

, where  is a subset of Euclidian P-space 
 , and unknown vector of parameters  

is known to lie in   . Let Y be the vector 
random variable that has a density 

, ,which is known 
except for the vector of parameters  . Let 

 be observations that will be drawn 
sequentially from Y that is defined on a 
probability space  with  

 .Define the 

following vector random variables: 

 Thus  can be considered as an observation on 
the family of vector random variables, 
  , defined by: 

Moreover define the following Boral measurable 
regression function: 

  which exists for all ,.Now to 
achieve our objective , i.e., to estimate  
sequentially , we can then use the following 
optimal stochastic approximation procedure [3] 
[4], choose  as an arbitrary initial estimate 
of  , then define the estimating sequence  
by : 

(1.3) 
Where 

  and  is a sequence satisfying 
  

[18] of the estimation may be applied when the 
nonlinear regression model(1.2) has the special 
form       (1.4)   
Where  enter linearly into the 
model (1.4),  represents the vector of 
nonlinear parameters in (1.4),and, the 

 are functions only of the nonlinear 
parameters and the predictor variables, i.e., 
  . Their 
method is used for the fixed sample size case 
when observations  are available. 
Using their procedure, we take  as an initial 
value of  , and then determine the 
companion set of "best" values for  by the 
ordinary least squares procedure. Let 
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 represent the vector of least squares estimates 
of the   associated with a given set of  
's ; namely ,  .Let Y 
denote the (nx1) column vector of observed 
response values associated with the n observed 
value of the predictor vector,  , i=1,2,…,n. Let 

 denote the (nxq) matrix with elements  

 it then 
follows that the vector  ; provided that 

 exists; is given by:  

 .The reduced "model" 

associated with (1.4) is then given by:     
     (1.5)  

Since the  are strictly functions of  
's , the model in (1.5) is a nonlinear regression 
model with only (p-q) parameters rather than the 
P parameters in the original model. [18] 
proposed to estimate the remaining unknown 
nonlinear parameters by using an iterative 
method like the linearization method , steepest 
descent method or other known methods in the 
literature. This procedure of [18] estimate the 
nonlinear parameters in a nonsequentially 
fashion, that is the whole data must be used to 
find values of the estimators. If the data is drawn 
sequentially, then these procedure will not be 
suitable to use. In addition the procedures 
introduced by [18] are not "optimal" in some 
sense. However the stochastic approximation 
procedures have been shown to be 'optimal" [4] 
in the sense that the estimating sequence    
is a consistent and asymptotically efficient 
estimator of  , such that, the variance of the 
asymptotic distribution of  
achieves the Gramer-Rao lower bound for the 
variance of unbiased estimator of  . The above 
results show that it is worthwhile to consider the 
use of stochastic approximation procedures to 
estimate sequentially the nonlinear parameters in 
(1.5), instead of using any iterative classical 
method.  

2-Illustration of the Lawton and Syivestre 
Procedure 
     We will illustrate the fixed sample size 
procedure of Lawton and Syivestre [18] using 

the following example given by these authors. 
Let 
                            (2.1)    
i.e.,                          (2.2)   
where  and  are two unknown parameters to 
be estimated,   is an unobservable random error 
and Y(x) is a response variable at the level x .  
appears linearly in the model (2.2). We seek the 
least squares estimators ,  which minimize 

            (2.3)  
For  fixed at any value , a partial minimum 
for  is obtained by setting  

   (2.4) 

Denoting this best value of  given  by 
 ,(2.4) yields  

                              (2.5) 

Now substitute (2.3) into (2.5). The linear 
parameter   is automatically replaced by its 
best companion value   which is a 
function of  alone. One then obtains the 
reduced "model", given by: 

                          (2.6) 
The parameter  will be estimated iteratively 
by using any of the iterative method 
(Linearization, Steepest Descent, Marquardt's 
Compromise)[11,21,20,9,18] gave two benefits 
for this parameter reduction procedure  
(i): Convergence  seem to be faster, than other 
procedures that do not employ the reduction 
technique, (but no proof is furnished), and more 
stable  because of reduction dimensionality of 
the parameter space  
(ii): One has to supply only an initial guess for 
the reduced number of parameters.A number of 
important applications of the model being 
considered were described by [18],[19], in 
connection with experiments in 
spectrophotometers. 

3-Stochastic Approximation-Iterative 
Least Squares Procedure (SA – ILS) 
     We will describe a new sequential procedure 
for estimating the parameters in the model given 
by (1.4), which combines the Stochastic 
Approximation technique with the  Iterative 
Least Squares technique. For abbreviation this 
will be referred to , as the (SA-ILS) procedure. 
Clearly , the reduced "model" in (2.6) is a 
nonlinear model with a single parameter  . In 
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order to estimate  sequentially by using 
optimal stochastic approximation procedure. We 
shall consider certain probability model for    , 
by using the reduced "model" in (2.6), and then 
find the probability density function for Y , 

 , by transformation. Thus , by using 
optimal stochastic approximation procedure of 
the form (1.3), in order o estimate   
sequentially , choose   as an arbitrary initial 
estimate of  , then define the estimating 
sequence   by : 

 
Where  , since the optimal value of a  
that minimizes the variance of the asymptotic 
distribution of  ,[4] is given by 1  , 
noting that for notational convenience we set 

 . Then (3.1) will 

become: 

 

   
The main idea of SA-ILS procedure is to 
estimate the parameters which enter the model 
linearly, by using an iterative form of least 
squares estimators, sequentially, and then use a 
proper optimal stochastic approximation 
procedure to sequentially estimate nonlinear 
parameters. Therefore , we will use iterative 
least squares procedure in order to estimate 

 sequenatially. To construct the general 
formal for the sequence  , we have:  

  ,. For n=1  

Given an initial guess  , we then have 

 , since 

 , then   ,. For 

n=2: Substitute   in (3.2) , we will get  , 

and then  , which may 

write as 

i.e.,  

 
in general, at state n , by substituting    in 

(3.2) ,we get   , and then 

(3.3) 
Where    , will be an initial estimate 

of  , given an initial value   of  . 
Therefore the SA-ILS procedure is given by the 
following two consecutive procedures: 

   , and  

 
where  is an arbitrary initial value for the 

sequence  and    is the initial 

estimate of     ( ) based on      .To 
explain the SA-ILS computational procedure , 
we will demonstrate how to compute the first 
three estimates: 
Step 1: Let   be an arbitrary initial estimate 
of  before any data are collected. 
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Step 2 : For  and data  , the 

value of  which minimizes   

is obtained as  

 

Step 3 : Treating  as if it was the known true 
value of , the second estimate of  is 
obtained from 

 
Step 4 : For  and data 

, the value of  which 

minimize  is obtained as:      

Step 5 : Treating  as if it was the new 
known true value of  , the third estimate 
of   is obtained from  

 
These above steps are repeated until 
convergence occurs with  ,  
where  is a small specified positive number. In 
the vector case, to estimate  sequentially by 
applying an iterative least squares procedure to 
the model (1.4), then given  as an arbitrary 

initial value to initiate the sequence , one 

can determine the companion set of "best" 
values for the q linear parameters by linear 
regression. Let 

represent the vector of iterative least squares 
estimates. Let  be the first observation,  be 
the vector of  the first  two observations, and so 
on ,  denoting the vector of the first n 
observed  response values which have 
associated observed values of the predictor 

vector ,  . Let   denote 

the (n x q) matrix with elements  

 . It then follows that the sequence  

 , provided that  

exists, is given by:   

  

  and   , i.e., 

  

                                       (3.4) 

Where  is an arbitrary initial value for the 

sequence , and 

  is an initial value 

for the sequence    
The reduced model associated with (1.4) is then 
given by ;  

 
Since the  are strictly functions of the 

 ' s ; the model (3.5) is a nonlinear regression 
model with only (p-q) parameters, and we will 
estimate them by using optimal stochastic 
approximation procedure of the form (1.3). 

4- Examples of the use of the SA-ILS 
procedure under different error 
distributions 
     We shall consider the following nonlinear 
regression functions; 
Example 1 : 

  [18] 
Example 2: 

  [5] 
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Example 3 : 

[11] 
Also , we shall consider the following three 
probability models for   ;  
(4.1)  
(4.2) Double exponential distribution 
(4.3)  T-distribution with r degree of freedom 

 , which includes the Cauchy distribution 
(r=1).First of all we will explain in an analytical 
form the steps of the procedure for each 
example separately. Then we describe the 
computer simulation investigation performed 
using VAX 11/785 Computer System VMS 4.2. 
We will apply three probability models for  , on 
each example separately. 

Example 1 under (4.1) 
     The probability density function of  is given 
by:   
Thus Y is also distributed as , 
that is , . Treating  as known 
initially , we have: 

 .Differentiating  w.r.t,  then 
we get: 

  

  
The Fisher information,  , is  

                                                      (4.1) 
In view of (4.1) , we get 

  

From section (1.4) the optimal transformation 
for the stochastic approximation procedure is 

  
 .The 

optimal value of a that minimizes the variance 
of asymptotic distribution of  is 
give by 1 [4] ,then   

Now choose  as an arbitrary initial estimate 
of  , then define the estimating sequence 

 by: 

  
And the estimating sequence of  is 
given by: 

 
Where  
Example 1 under (4.2) 
The probability density function of  is given by 
:  

Thus the density of Y is   

 
Treating  as known initially and 
differentiating  w .r. t  then we 
get: 

 
And hence, 

 
 

The Fisher information,  is : 
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               (4.2)                      

In view of (4.2), we get 

  
Form section (1.4) the optimal transformation 
for the stochastic approximation procedure is  

Let  be an arbitrary initial estimate of  , 

then define the estimating sequence  by : 

And , the estimating sequence  is given 
by: 

 
Where  

Example 1 under (4.3) 
The probability density function of  is given by  

  

Thus the density of Y is  

Treating  as known initially , and for 

simplification letting    we have : 

Weobtain 

, and, 

  

  

  

 

Let  , since the integrand 

is symmetric about , 

then,  .Using 

integration by parts, we have 

 

 thus, 

  

 

  

Putting  for which 

, we obtain 
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It is straight forward to show that an alternative 
representation for  is  

 ,    (4.3) 

Which has the advantage of a smaller power in 
the integrand. Using (4.3),we get 

  

From section (1.4) the optimal transformation 
for the stochastic approximation procedure is  

  

Let  be an arbitrary initial estimate of  , 

then define the estimating sequence  by : 

                                                                 (4.4) 

 , and , the estimating 

sequence  is given by : 

                                                               (4.5) 

Where .Taking different cases 
of degrees of freedom r , the integral in (4.4) can 
be shown to be  , 1 , 2/3, 384/945  for r = 1, 

2, 4, 10 respectively. The estimating sequence 
 in each case has the form 

  , n = 1, 2, … ;  ,  
Where  for r = 1, 2, 4, 10 
respectively. In each case the estimating 
sequence  is given by (4.5). The above 
coefficient values for  suggest that he general 
form is  , but we have not proved 
this. 

Example 2: 
     Consider the following nonlinear regression 
function: 

 
.Following the same procedure as example 1 for 
the three different error distributions, we get the 
following estimating sequences. In each case  

represents an arbitrary initial estimate of . 
We omit the details of the calculations. 

Example 2 under (4.1) 

 
 and  

 
 where 

 

Example 2 under (4.2) 

 , 
 and  
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  where 

 

Example 2 under (4.3) 

                                                              (4.6) 

 , and ,  

                                                             (4.7) 
  where 

 

Taking different cases of degree of freedom r , 
the integral in (4.6) can be shown to be 1, 2/3, 

384/945 for r=1,2,4,10, respectively. The 
estimating sequence  in each case has the 
form 

, n = 1, 2, … ;  , and  . 

Where  for r = 1, 2, 4, 10 
respectively. In each case the estimating 
sequence  is given by (4.7) 
Example 3 
We consider the following example. A certain 
chemical reaction can be described by the 
nonlinear model: 

, where  and  are parameters to be 

estimated,  is the fraction of original material 
remaining,  is the reaction time in minutes, 
and  is the temperature in degrees Kelvin. 
Taking natural logarithm and putting  
and  , we have  

, following the same procedure as in Example 1 
for the three different error distributions, we get 
the following estimating sequences. In each case 

 represents an arbitrary initial estimate of 
. We omit the details, 

Example 3 under (4.1) 

, n = 1, 2, …; 
 , and  

 , n = 1, 2, … ;  ,i=1,2,….,n 

Where  

 

 

 

Example 3 under (4.2) 

  , n = 1, 2, …; 
  , and  
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, n = 1, 2, … ;  ,i=1,2,….,n 

Where  

Example 3 under (4.3) 

                                                            (4.8) 
 , n = 1, 2, … ;  , and  

 ,                                                          (4.9) 
 n = 1, 2, … ;  ,i=1,2,….,n  , Where 

 

Taking different cases of degree of freedom r , 
the integral in (4.6) can be shown to be 1, 2/3, 

384/945 for r=1,2,4,10, respectively. The 
estimating sequence  in each case has the 
form 

  

n = 1, 2, … ;  ,i=1,2,….,n   
Where      
respectively. In each case the estimating 
sequence  is given by (4.9) 

5- Numerical Solution Using The Lawton 
& Syivestre Procedure 
     Lawton & Syivestre [18] considered the 
special case when the model has a linear and 
nonlinear component see equation(1.4). They 
introduce a modification based on the idea of 
reducing the number of parameters that must be 
estimated by the iterative methods. For a sample 

 , the linear parameters are 
estimated at each stage by ordinary least squares 
and the estimates are substituted into (1.4). We 
now discuss three examples in some details. 
Computer program that would be required to 
obtain the numerical solutions are done. Details 
of a small simulation investigation of properties 
of the estimators obtained by Lawton & 
sylvestre procedure and SA-ILS procedure for 
the first model are given later in section (6) 
Example 1: 
We consider the model given in Example 1 , 
Section(4) that is    . 
Treating  as known, we then find  which 
minimizes the sum of squares: 

 , by Section 
(2), we have found the least square estimate of 

 given by :  , and the 

reduced "model" given by (1.6) as follows:  
  .where this "model", 

is treated as a nonlinear model with a single 
parameter , We have used a linearization 
method as an iterative 
method for estimating the nonlinear parameter 

 . We  will apply this  method as follows: 
Let  

          ,  
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    , j = 1,2,…. 

provided that  exist, and let 

 , then , define an estimating sequence  by: 

j=1,2, 
i.e.,

,j= 1,2,…. Where  , is an initial estimate of 

.The above estimates , , will be 
iteratively computed, in each iteration the "best" 
companion value of  , will be computed 
by the least square method. 

Example 2 
     We consider the model given in Example 2 , 
Section (4) , that is 
 , we obtain  

 , and , the reduced 

"model" will be  

,then, define an estimating sequence  by : 

 , j = 1,2,… provided that  , exist , 
i.e.,

 
,j= 1,2,…Where 

 , is an initial estimate of . 

Example 3 
     We consider the model given in Example 3 , 
Section (4), that is  

, we obtain  

   , and the 

reduced "model" will be  

, then, define an estimating sequence by: 

j = 1,2,… provided that  , exist , 
i.e., 

 

  , j = 1,2,… 

6- A Simulation Study 
     we report the finding of a small scale 
simulation study to compare the properties of 
the SA-ILS procedure and fixed sample size 
Lawton & Sylivestre procedure. The model used 
in example 1 was considered with 

 , where . 
Values of , are taken as (0.15, 0.65), 
(0.1, 0.7), (0.25, 0.6) , and values of  
, were used to give markedly different pattern 
for the means and variances. For the fixed 
sample size procedure , a sample size n=10 was 
used. The residuals  were generated using the 
random normal deviate generator available in 
the GLIM statistical computation system. It was 
decided that since this was only a preliminary 
study, the run size would be restricted to 10. 
Extreme caution must therefore be used in using 
the results to compare the properties of the two 
procedures. However, the results of this study 
indicate that for large sample size, the SA-ILS 
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procedure would, generally speaking perform 
much better than the Lawton and Sylvestre 
procedure. The properties which we will be 
interested in for the two procedures are: 
(1)  

 ; 

(2)  , 

 ; 

(3)  , 

 , 

And the number of observations  for SA-ILS 
procedure. The tables (1,2,3,4) give the 
estimates for  ,and  and compare their 
moment properties for the Lawton and Sylvestre 
, and SA-ILS procedures and give the sample 
numbers of observations required for the SA-
ILS procedure. The values of the regressor 
variable were taken as  1(1)10. 

7- Discussion And Conclusions 
     The following tentative conclusions can be 
made from the study 
1. The sequential SA-ILS procedure required 

fewer observations than the fixed sample 
size procedure (n=10) in all cases , the 
number of observations required ranging 
from  , and the average 
number of observations  varying between 
4.7 to 7.1 . The advantage in reducing the 
number of observations was greater than the 
initial approximation  , was close to the 
true value. The results indicate that the SA-
ILS procedure will lead to a real reduction 
in the number of observations required.  

2. Different initial values for the SA-ILS 
procedure of course provided different for a 

given data set , and the estimates for a given 
model sometimes showed markedly 
different bias, variance and MSE properties. 
In general, as he initial value deviates from 
the true value, the variances and MSE 
values increase. 

3. For fixed ,and starting value  for 

the SA-ILS procedure, increases in  led to 
estimates with increasing variance and MSE 
values, in nearly all cases. 

4. Comparing the Lawton and Syivestre 
method with the SA-ILS procedure, it is 
seen that the biases of the estimates are 
larger for the first procedure. There was no 
clear pattern to distinguish the two 
procedures with regard to variances and 
MSE's. 

5. From our simulation investigation we have 
noticed that the choice of initial starting 
value for the SA-ILS procedure is 
important, since a choice of value close to 
true value improves the behavior of the 
resulting estimators. It might therefore be 
useful to adopt a two-stage procedure 
combining both techniques in which a 
"small" fixed sample size  is selected and 
preliminary estimates  of  made 
using the Lawton and sylivestre procedure. 
Then the sequential SA-ILS procedure could 
be used to generate further observations 
sequentially using  as the initial value. 
This modification is not examined further in 
this study. 
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