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Abstract
We consider the general nonlinear regression problem ¥(x) = g(8; x) + = A

survey of some classical methods and stochastic approximation procedures for
estimating & is first given. We solve the nonlinear regression problem by

considering the optimal stochastic approximation procedure by [3],[4]. This leads us
to introduce a new procedure , called "Stochastic Approximation lIterative Least
Square Procedure™ SA -ILS procedure. The new procedure is applied to a number of
nonlinear regression models. We report on the results of a simulation investigation
which indicate that the new procedure is highly efficient with respect to the number
of observations required to obtain the parameter estimates for given regression

problem.

Y(x) = g(B:;x) + <.

.8

31,141
. SA -ILS

1-introduction

Let f be unknown function to the
experimenter , and that for any level x we can
observe a random variable Y(X) with
expectation f(x). Let @ be a given constant such

that f(x)= « , has a unique root &. The goal is to
estimate &, By choosing the appropriate

measurement scale, we can without loss of
generality assume that a = 0. [22] proposed a
method for solution of this problem and a more

general one, which is called the method of
"Stochastic Approximation Procedure”. Let the
outcome of the measurement at =x,  be
V.= f(x;)+¢ ,i=12, ..n wherez,, 2, ..., £,

are independent random variables with
E(s,) =0 and var(s,) = o2 < wforalln,
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and independent of x , and f{x,] can only be
measured by an observer subject to random error
£, Whose magnitude cannot be neglected in
view of the accuracy demanded of the solution
f(x) =a. [22] assume
(x —8)f(x) =0forallx=8 , and under
more conditions on f , proved that x,
converges in probability, and in mean square to
& .[17] considered the problem of estimating the
value of & sequentially such that f(x) achieves
its minimum (or maximum). Let {a,) and {c,)
be sequences of positive numbers such that
£ = 0

Y1y 00, XSG, Cp <
w, b aieg? < m

and assume ¥, = M where ¥F and ¥}

&

are two observations. Let x; be an arbitrary
initial value, then define the stochastic
approximation procedure by:
Xpe1= Xy — Gncnt¥, ,n=1,2,.. [17] proved,
under certain conditions on f that x,, converges
in probability to &. [18] proved under weaker
conditions than the conditions of [22],that x,
converges to & almost surely. [15] proved, under

weaker conditions than conditions of [8] on
stochastic approximation procedure proposed by
[22],that x,, converges with probability one to &

. [12] noticed some difficulties with the original
stochastic approximation procedure
Xpe1 =X, —a,¥,,m=12 .when |f*] was
large near & and small away from & so that the
correction a,¥, tends to be too big when x,
was near & , and otherwise it is too small [14].
He observed that Y, in
Xpe1 =Xy —Qypiym,m=12,.. may change
sign suddenly, so he proposed to take the
absolute value of ¢;1¥, multiplied by sign ¢, ¥,

, the new stochastic approximation procedure is
as follows: choose x4 as an arbitrary initial value

of x, then define the estimating sequence x,, by:
Xp1=Xpn— ﬂ'nlcr:l}(;zlﬂgn(‘:nyn}in =

1,2, ..

. He proved , under some additional conditions,
that x,, converges to & . Also [12] proposed

another stochastic approximation procedure , by
replacing leatY, Isign{c, ¥, ) by
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c;t sign(c,Y,) , then the new stochastic

approximation is
Xpnr1=Xpn— ﬂ'nc;i RQH(CHYH}JH =

12, ..

. He proved, under some additional conditions
that x,, converges to . Then question remaining,

in general, what is the optimal transformation h

which, when used in
xn+1=xn_ﬂnc:;l SIQTI(CHYH},TJ=
1,2, ..

. will not destroy the convergence to & and make
the speed maximal. If the conditional
distribution of v, = €, ¥ — E,vpnan) Su ¥
(given{xq,x3,...,x,)) ; where 3, is a random
variable ,distributed according to a distribution
function F which is symmetric around 0 , and
admits a density f , the optimal choice of h is
-c(f*/f) ; where c is a constant ; if some
additional mild requirements are satisfied. This
result was obtained, independently, by [1] and
[6]; the first considered both [22] and [17]
situation, the second considered [22]
situation.[3]proposed a general stochastic
approximation  procedure in the form
Ap41= Xp—AncptA h, ,n=12,., where
i, are designed r-vectors based on transforming
the observations ¥, by a Boral measurable
transformation h,A4, are (q X r) measurable
functions of (xq,h1, .., Bpy_1),62, €, POSitive
numbers , and x4 is an arbitrary random vector
in F9 . Under certain assumptions proposed by
[2] , he established the almost sure convergence
and the asymptotic normality results of the
general stochastic approximation procedure
Xps1= Xp— QucprA b, ,n=12, ..

Furthermore, the optimal choices of (@,,c,)
are found by [3]. As for the optimal
transformation, hy , is shown to be equal to

TN (—gradf(v)/f (1)) ae (F) with
I(F) being the Fisher information matrix of f,
provided that the error random vectors have a
conditional  (on(xq,Xg,.. X,) distribution

function F that admits a density function f
whose gradient vector exists a.e. (F) with I(F)
positive definite.
Consider the following general
regression model:

nonlinear
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Yfli,t‘\, ,.r 619' T }J')‘l'h ) E (]_]_)
Whereg R¥ x R’" — R

with = (x1,%3, ..x,) ; 8 = (64, 8y, en . By)
equation  (1.1) can be written as:
Y(x) = glf;x) +¢ (1.2)
Where £ is an unobservable centered random
error , and its distribution may be dependent on
x , but with E(s)=0 and &2(x) =o*
Moreover, ¥{x) is an observable random
variable at each x. Our interest will be in the
class of models which contain a component
linear in some parameters but nonlinear in the
remaining parameters. The objective will be to
estimate & sequentially using a technique in

which the optimal stochastic approximation
method [4],is combined will the approach of
eliminating linear parameters proposed by [18].
The sequential procedure is also compared with
the fixed sample size procedure based fully on
the [18] method. Let us first explain the
procedure of [4], for the general model(1.2).
consider the family of distribution functions
=(F(.,8);8 € R*) which is absolutely
continuous with respect to a a@-finite measure p
on the Boreal o-finite of R™ for some r = 1 .
The family F= satisfies the following
conditions:
(i): For F(.,8) € F*,f(.,6) denotes its density
functionw .r.t u;
(ii): The gradient of f(.,6) w. r t @& |
ra2F(.,6) exists for almost all 6 (Lebesque)
and f(x,9) is measurable in both {x, &), i.e.,
f: RP x R™ — R is measurable map;
(iii): The (p x p)-Fisher information matrix {#) ,
where

[O% (=80 /08,0 &1

fz' _;I(E} = .rrR-" 2l #(dxl Lj=
12, ...p
of f(.,8) is positive definite for all

g €8 < RP | so that its inverse (I(#))~1 exists
, Where @ is a subset of Euclidian P-space
R¥,p =1, and unknown vector of parameters &

is known to lie in @ . Let Y be the vector

random variable that has a density
f(..8) € F*,§ €@ < RPwhich is  known

except for the vector of parameters & . Let
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¥, ¥;,... be observations that will be drawn
sequentlally from Y that is defined on a
probability space (1, F,p) with

PY=l=Py; =0 = (. ,0) EF*

following vector random variables:

Z?? = _U{El:n}:}j_ grﬁdf( n:ﬂln}j!‘

flx,,0 ) ],n=1,2,

Thus £,, can be considered as an observation on

the family of vector random variables,

{Z(8); 8 RY] , defined by:

2(8) = —(1(8" ) TG f (%8 )/

flx,6)]

Moreover define the following Boral measurable

regression function:

M@ =E(z(®)) =

—1(8) " [l "”dffir 63/ f (x. 6)]f (x.8)u(dx)
which exists for all & €& < R .Now to

achieve our objective , i.e., to estimate &

sequentially , we can then use the following
optimal stochastic approximation procedure [3]
[4], choose 6Y as an arbitrary initial estimate

of @ , then define the estimating sequence 8™
by :
gl =gt —q h (Y,) , n =12 ..(13)
Where

ho(¥) = [—(1_(8)) 2 [T 5 f (¥, 6)/
f(¥0)llg=gm ,m =12,

and a, IS a

.Define the

sequence  satisfying
Y= Gn = 02, E::=1ﬂ?22 < oo

[18] of the estimation may be applied when the
nonlinear regression model(1.2) has the special

fOI’m ]"(le = E_?:lﬂ'm-g}-{ﬂ,:g};x} + = (14)
Where & 4,8 3, ...,8; o enter linearly into the
model (1.4), &5 represents the vector of

nonlinear  parameters in  (1.4),and, the
gj{ﬂ,fgj;x} are functions only of the nonlinear

parameters and the predictor variables, i.e.,

g;RPIXR" >R, j=12,..9 Their
method is used for the fixed sample size case
when observations ¥4,Y;,... T, are available.
Using their procedure, we take £-3) as an initial
value of B and then determine the
companion set of "best” values for &4y by the
ordinary  least

squares  procedure.  Let
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6r1)(8z)) =

(61,1(82)).612(82) ). - 1.0 (B2) )

represent the vector of least squares estimates
of the & ;'s associated with a given set of &,

s ; namely , By = (821, .b2,-g) Let Y

denote the (nx1) column vector of observed
response values associated with the n observed
value of the predictor vector, x,, i=1,2,...,n. Let

g, denote the (nxq) matrix with elements
g; (B ) i=12,..m,j =12,...q it then
follows that the vector & (&) ; provided that
(Gg.,Ga, )71 exists; is given by: 31{8,:23,]
= (Gg,Ga, ) Gg, Y The reduced "model”

associated with (1.4) is then given by:
Y(x) =35, 6:;(6i2))g;(62y:%) +2° (L5)
Since the @, ;(#. ) are strictly functions of8;z;

's , the model in (1.5) is a nonlinear regression
model with only (p-q) parameters rather than the
P parameters in the original model. [18]
proposed to estimate the remaining unknown
nonlinear parameters by using an iterative
method like the linearization method , steepest
descent method or other known methods in the
literature. This procedure of [18] estimate the
nonlinear parameters in a nonsequentially
fashion, that is the whole data must be used to
find values of the estimators. If the data is drawn
sequentially, then these procedure will not be
suitable to use. In addition the procedures
introduced by [18] are not "optimal” in some
sense. However the stochastic approximation
procedures have been shown to be ‘optimal” [4]
in the sense that the estimating sequence (&)

is a consistent and asymptotically efficient
estimator of & , such that, the variance of the
asymptotic  distribution of nl/2(gl=— &)
achieves the Gramer-Rao lower bound for the
variance of unbiased estimator of € . The above
results show that it is worthwhile to consider the
use of stochastic approximation procedures to
estimate sequentially the nonlinear parameters in
(1.5), instead of using any iterative classical
method.

2-1llustration of the Lawton and Syivestre
Procedure

We will illustrate the fixed sample size
procedure of Lawton and Syivestre [18] using
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the following example given by these authors.
Let

9(64,62; x) = 6% (2.1)

ie, Yx) =e¥*+¢s (2.2)
where & and &; are two unknown parameters to
be estimated, £ is an unobservable random error
and Y(x) is a response variable at the level x . &
appears linearly in the model (2.2). We seek the
least squares estimators &, &; which minimize
008y, 8,) =Tty G efer)? (23)
For &. fixed at any value , a partial minimum

for (8, , 8,) is obtained by setting

90(8:8:) _ 8 g oI
a8, - ag‘_Eizl{Yi Ele l} - ﬂ (24)

Denoting this best value of & given & by
8 (8,),(2.4) yields

3 E‘: :f Yig # ;x'::

8 (8,) = TS L (2.5)

Now substitute (2.3) into (2.5). The linear
parameterd, is automatically replaced by its
best companion value & (#,) which is a
function of &; alone. One then obtains the

reduced "model”, given by:
vix) = 8 (8, )ef* + 2+ (2.6)

The parameter &; will be estimated iteratively
by wusing any of the iterative method

(Linearization, Steepest Descent, Marquardt's
Compromise)[11,21,20,9,18] gave two benefits
for this parameter reduction procedure

(i): Convergence seem to be faster, than other
procedures that do not employ the reduction
technique, (but no proof is furnished), and more
stable because of reduction dimensionality of
the parameter space

(ii): One has to supply only an initial guess for
the reduced number of parameters.A number of
important applications of the model being
considered were described by [18],[19], in
connection with experiments in
spectrophotometers.

3-Stochastic Approximation-lterative
Least Squares Procedure (SA - ILS)

We will describe a new sequential procedure
for estimating the parameters in the model given
by (1.4), which combines the Stochastic
Approximation technique with the Iterative
Least Squares technique. For abbreviation this
will be referred to , as the (SA-ILS) procedure.
Clearly , the reduced "model™ in (2.6) is a
nonlinear model with a single parameter &; . In
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order to estimate &; sequentially by using

optimal stochastic approximation procedure. We
shall consider certain probability model for £ |

by using the reduced "model™ in (2.6), and then
find the probability density function for Y ,
f(y:85) , by transformation. Thus , by using

optimal stochastic approximation procedure of
the form (1.3), in order o estimate &

sequentially , choose 851} as an arbitrary initial
estimate of & , then define the estimating
sequence u&?ﬁ”ﬁJ by :

9 +1) _ 8 )4
inl df I) 9 dg
16, "= n=
'1[ ] [ F(i6y) ]g, g" o (3.1
Where a, = 1/n , since the optimal value of a

that minimizes the variance of the asymptotic

distribution of m{ﬁ"”j —#,),[4]isgivenby 1 ,

noting that for notational convenience we set
fo (Y6, .62 ) = f(¥,:6,) . Then (3.1) will
become:

gm—ll _ 5 .|.

[ (6 RS =

f(imby) 025 12, ... (3,2)1
The main idea of SA-ILS procedure is to
estimate the parameters which enter the model
linearly, by using an iterative form of least
squares estimators, sequentially, and then use a
proper optimal stochastic  approximation
procedure to sequentially estimate nonlinear
parameters. Therefore , we will use iterative
least squares procedure in order to estimate
& (;) sequenatially. To construct the general

formal for the sequence (& (&.)) , we have:

oo EF (v
(02) =S
Given an initial guess

6. (5':21}) Lok =— : since

1 Eﬁ —\' b'.—:'-.-:

,. Forn=1

6'2':1}, we then have

6, (8,”) = 6'13' then 6" = T For

n=2: Substitute 6,/ in (3.2) , we will get 8,/

i f E—Y E 1-
and thenﬂl}(ﬂ 1}) %

which may
EL, e

write as
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1 2 8%,
52 zﬁl:njv‘ [EE::LYIE z F1—
= z

=1

(1)
g+

|::|::| 2 gl i
& DERT-R s

in general, at state n , by substituting 91':”_13 in
(3.2) ,we get 6'2':”:' , and then

(m)

5'1 =

(n— 1 (m)

E,j:n 1}+1T[E: 15:1€E| ®a

IlR,s

6 VB, e ] ,n=12,,

(3.3)
Where H'i} . will be an initial estimate

[‘—L
z 41

of 31':”:' , given an initial value 32(1} of &; .
Therefore the SA-ILS procedure is given by the

following  two  consecutive  procedures:
fi',l.‘n-l-lj _
32':”3'+
1 Fr)y g BF (Buiba)/df;
(@ s g o =
12, ..

, and
B':”:' —

1

- -1 1 ]
5;” ]+E" 28, [E::F:lyl"EEIZ 2

=g T

Ejl:n_l} ?—13‘95 IL] = -1121 v

where n:? ) is an arbitrary initial value for the

sequence 6™ and 6" = 6,:1:":,v is the initial

estimate of (6. based on 6" To
explain the SA-ILS computational procedure ,

we will demonstrate how to compute the first
three estimates:

Step 1: Let H;:l} be an arbitrary initial estimate
of & before any data are collected.
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Step 2 : For &, = -5’2':1} and data (¥y,X;) ,
value of & which minimizes (¥, — 8¢ i‘ﬁ**-}f
is obtained as 6" =
;Efgzzfefﬂiﬂr:== ¥, /et

Step 3 : Treating &, as if it was the known true

value of &, the second estimate of & is
obtained from
|'2:|

.1} (1)4q— 1 Ef(¥ufa) /26y

6,7 + (L0 T s g

Step 4 : For & =€_ﬂfz} and data

(YLX:L}J (}"EJXEjv

o (@, g ,
minimize $%_,(¥,, — 6, e¥ *n)? is obtained as:

the value of & which

ﬂ': ) _ (nl)

= By

|:1]| 1 [
91 +E?'i—a_am;;zjx”

[ a gzl
Ej'-l:'E;E:l E‘EZ In]

=1 ¥y EE m

.

.

4]
L

Treating * as if it was the new

Step 5 :
known true value of b1 , the third estimate

of B is obtained from

_ l " }:\\ 1 d,*} 9 d9 it
6’; 3) - 6"‘;2_.' + 2 [I:{LG: )] [ £ -_. 9 ]Q::Q:‘."I
These above sfeps are repeated until
convergence occurs with |8, (n+d)_ '”}| <8,

where & is a small specified positive number. In
the vector case, to estimate &4, sequentially by

applying an iterative least squares procedure to
the model (1.4), then given & ﬂ} as an arbitrary

initial value to initiate the sequence (EI,':;}}, one

can determine the companion set of "best"
values for the g linear parameters by linear
regression. Let

6™ (Bry) =
'55"'”}(9.;}} 'n}{ﬁ'u}}}

represent the vector of iterative least squares
estimates. Let ¥; be the first observation, ¥; be
the vector of the first two observations, and so
on, ¥, denoting the vector of the first n

observed response values which have
associated observed values of the predictor
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vector , A&; , i = 1,2,.

the (n x g) matrix with elements

cah . Let Gg; f%,' denote

(Hlf}}r ).l E’ = 1.12.1' .,Tl ¥ _-il- =
1,2, ....q
. It then follows that the sequence {H;E}
{B'”}}} provided that (G, Gyem) ™
|1‘| |E"|
exists, is given by:E,fﬂ CE ﬂ}} E'” Y
(m—1)
[(G |'1:|G |'1:|3| 11:6 |'1:|Y
m"_‘l |x_‘|
'?!
(E, :ﬂ
6 "l
n=12,. and El'f:' (EIH}} EI ?:]
= t?.'f; o
[(G |'1]_‘|G |'1]_‘|3| 1(5 |'1,‘_'|Y
|5C| m‘j
(n—1)
By
Lr=12,. (3.4)

Where B'-‘ﬂlj:' is an arbitrary initial value for the
sequence (E, 2;.“3 and

1 o
(GEI.;;GEI.ZJ} (G, ._ﬁj is an initial value

for the sequence (813 )

The reduced model associated with (1.4) is then
given by ;

V(x) = zﬁe (82))9; ‘x“*'eﬂ
Since the 8, ;( 8y ) are strlctly functions of the
#;2)" s ; the model (3.5) is a nonlinear regression

model with only (p-q) parameters, and we will
estimate them by using optimal stochastic
approximation procedure of the form (1.3).

4- Examples of the use of the SA-ILS
procedure under  different  error
distributions

We shall consider the following nonlinear
regression functions;
Example 1
Yix) = 8 e®* +¢ =gl8,0;x) + ¢ [18]
Example 2:
Y(x) = &y sinfox + ¢ = g(6,,6,;x) + ¢ [5]
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Example 3
Ve (xp.x7) = EXP{—EJ_JHEXP [ fa (-*_z._

6;})]]» Xet=g(By, B, x,x5) %X 7

[11]

Also , we shall consider the following three
probability models for ¢ ;

(4.1) e~N(0,1)

(4.2) =~Double exponential distribution

(4.3) £~ T-distribution with r degree of freedom
=1, which includes the Cauchy distribution
(r=1).First of all we will explain in an analytical
form the steps of the procedure for each
example separately. Then we describe the
computer simulation investigation performed
using VAX 11/785 Computer System VMS 4.2.
We will apply three probability models for , on
each example separately.

Example 1 under (4.1)
The probability density function of £ is given

by: £() = e
Thus Y is also distributed as N{g(8,6:;x); 1),
that is , ¥Y~N{(f e®¥:1). Treating & as known
initially , we have:

fY,8,,6;) = %EXP(_ %(Y -

B e%*)?) ; —o <Y < oo

Differentiating In  f(Y, &,8,) w.r.t, &; then
we get:

ln f(Y,6,0,) = =2 (Y — @)D~

%ln (2m)

r—D £ £ 00

d I.ﬂfl:i"_.gd_fgz}
d95
Bleg“x}J—m =¥ <o

= X8, %2y —

The Fisher information, {65 , is
I(ﬂn] _ Ey(riLnf'YE El;.,}} _

By ((X6,e%2%)2(V — 6,6%%)2)
= (X6, e5%) 2 Ey(Y — 61¢%%)?) =

{Xﬂleﬂz.:}i
(4.2)
In view of (4.1) , we get
_1 _ (dinfiv8,.6)Y
1N = (F2=) =
(¥F— .EEE“

Ei_ﬁﬂﬁzx
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From section (1.4) the optimal transformation
for the stochastic approximation procedure is
hl}(YH} =
_ -1 d lﬂf':_i’rggi_;gz_:l . _

(rn(eﬂ}} ( 20, ),Tl— 1,2,---
_ —(vp—fi(8g)efzdmy _
T (BB KRy ! Xn#0,n =12 . .The
optimal value of a that minimizes the variance
of asymptotic distribution of n1/2 (32"”}— 8,) is
give by 1 [4] then a, = 1/n

Now choose 32':1} as an arbitrary initial estimate
of & , then define the estimating sequence

(Bén}) by:
E(n +1) _

R G e

T (e et T

ﬂ_,']‘l = 1_.2_. .

And the estimating sequence of (E’f”_lj} is
given by:

"= 9'” o ZYEBW’“ @”ﬂZ S =12,

Where 81‘ :' =Y, /e? 2 X

Example 1 under (4.2)
The probability density function of £ is given by

: fls) — %g'l"h—m L e &

Thus the  density of Y is
Jﬂ:}"; 31.132} = fe_ly_ﬂiﬂﬁle.l_m < V -

&_Leﬂz:r < oo

Treating & as known initially and
differentiating f(v:6,,68,) w .r. t & then we
get:

%EIXEU'*I gxp (—(1’ - ELE”?"]) 0<Y —6,6" <o

df (¥ 6,6,

df; - _%f-‘l.r'fggz*’ e}:p(l‘ - ﬁlgﬂ;x:l mey - ngg?” 0
And hence,
df(¥; 6,,6,)/dé, 6, X% 0¥ — e < w
W - _'5'1)('99’-"‘ ;—00 < }'_,gmﬂ,; 0

= 6 Xe®* sign(¥ — @ e%*)
The Fisher information, I{&.) is :



Kashmar

|1 (¥568 0.8
1(8,) = Ey(f,i,g ) =
Ey(61Xef*sign(¥ — 6% )2
= (81Xe®=)? Ey(sign(¥ — 6y %))’

= (8, Xefa¥)2 (4.2)
In view of 4.2), we get
dP¥F L5

= G . Signly—gef
{180} L(-fn:m,,s-,v: ﬂlxe;g X =0
Form section (1.4) the optimal transformation

for the stochastic approximation procedure is
o _ —sign(¥,—B,(Bed )

holtn) = — . Gameemm

0

Let Sfifl} be an arbitrary initial estimate of &, ,

m=12 e X F

then define the estimating sequence (65 ) by
EI: I —

|'. i}
SEQH(Yq E'“. g 'u} "-::nj

&

B,I.: n) + = ;I —
= ni El‘l"llgl‘L‘l}x‘l L _,‘.1}
12, . x, FU
And , the estimating sequence (H (mFL)y | Jis given
by:
o =gy w [ Fefs K- g ﬂ'y M) n=12,.

e 19‘g
_"l
Where 31‘ D _ }fl,!eﬂn' “Hy

Example 1 under (4.3)
The probability density function of £ is given by

. = o (1)
f{s,l—l_"" +esfri—= .

(Ther

— e

Thus the density of Y is
£(x; ﬂijea)——}}‘—}(wr(?—

—[1 +1"'|
Be®¥))2 /) "z , —m<¥<w
Treating & as known initially , and for

T+a
(==

rit Rﬁ
W

flY:8,.8,) =C(L+ Y —8,e%%)2y

—[1+7]

r) z , —w<Y¥<ow

Weobtain
ap (¥ifyfy)

dfg
c(=)(r- aleﬁ'zx}(;feﬂﬂ}(i +Y—

B e )2 /)"
, and,

simplification letting C = we have :

— _+1"‘|

Iragi Journal of Science. Vol 53.No 2.2012.Pp 367-385

A (¥:6ab0)
Ey (_'1‘55_} a

1(6,) = )

Eo((Z5) (1 + (¥ — 862 fryHy -

8,68, xe %7
(H 28T (14D, 4 (Y-#e?2¥)r

) Y(n_’1+-,’1r'—9.951?-'35.“r')5*'

E-_xs“'-“'Ll+r_:'}2

=

JI: (¥ =B, (C22) (14 (¥ = Bue®)7/r) 5
= o

4 (L+(r =625 /r)T (L) /r
fox 3
2B, X e 2% r 1)) ]"f

Let = ]"[E}?"z'\,'.‘??"

, since the integrand

is symmetric about £ #%2%,
[r—fye0ee
[14[F =B, 8293 oy (344502

integration by parts, we have

then,I(6;) =R IEI e

dy .Using
V=(¥—8,e""), du=(¥ -6, )(1+ (¥ —
E:Lﬁ E;I':I: ll.l?.':l—l:5+f_'l.'lzd},

-
dv —dy u—r+3(‘l+(}"
Eleﬂ-lx}ﬂlh,} —{r+3)/2

thus,

“:'5':3' =
[ —r(¥—8,552%) |°C o
(w43) (1+(¥ -G af2x)2 p)(r+e)/s (ue Bzxy+rires

X [cg.o8a(1+ (¥ — By e8%) 2/
T.}-(HE]IIZ d}-‘

.ri?'==

= ez |E| au-'r-,':l + (¥ — Eigﬂar'::l,-?.w-ln-u dl

Putting =222 =

T

= tan & for which

dy = +/rsec?8d8, we obtain

1(6,) =
R?" w2

(1+ (tan28)~"*32rsec’6d6

R e

— "T.l; r.-l?"+1-:|
mj’ (cos) ada
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It is straight forward to show that an alternative
representation for (8, ) is

1(6,) = f”“‘(cas}'” Dgdg, (4.3)

i r+3}l r+1p70
Which has the advantage of a smaller power in
the integrand. Using (4.3),we get
df (Y8, 82

-1 iy —

(18, )) FViBubz)
Ij_i"— fa r’zx:h::l"-l- H:I'\,'Er[(;}

2{B,xeF %) (P F—fa8 Gw_:ﬁ}r[%_}

s [_]E(cos (r=1gdg]~1,x = 0

From section (1.4) the optimal transformation
for the stochastic approximation procedure is

hga(Y,) =

(3-8, (8 #5) s r (D Eeon) D)
2(84( By )aens®a %) (r-+ (Y Be  Br)2*m) )1 (2]
XpEOn=12,..,r=1

Let E’éﬂ be an arbitrary initial estimate of &; ,

then define the estimating sequence (Eé”}} by :

EI:R-HL} _

ﬂzl_n}_'_
. . . o B .
(1',-1 o™ ;0™ .f2 '*ﬂ/]-:,- |3 ,,-T-:{;'}[,FDE-:W;}'-'-‘-"M&]-‘-

. . rm . . il .
2n@ 8 ne® TN e (ai e (1)
(4.4)

n=0n=12..,=1, and, the estimating

sequence (El':”_lj} is given by :

(n) _

15'1 =

(n-1) 1

2 +ﬁ Y -
=1

(m—11

8, $r e 5] n=12,,
(4.5)

(1) _ g':'—'."x‘ . .
Where 8, = ¥;/e"z “+.Taking different cases

of degrees of freedom r, the integral in (4.4) can
be shown to be m/2, 1, 2/3,384/945 forr=1
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2, 4, 10 respectively. The estimating sequence

(32""}) in each case has the form
I9,|::~z-|-i::l _
eé”} +

. . %, !
A.—(Yn—e.'- ”3-19'-"‘3}5'5"“ﬁx”J

nlgl'ﬁlgl"l‘l}x a :'.- ) (4 (P— gl'l"llgl‘ﬂ} E -.,.-1_}5}

,n=12, .., x,=0,

Where Ai,.=457,13 for r = 1, 2, 4, 10
respectively. In each case the estimating
sequence (62(”_13') is given by (4.5). The above
coefficient values for A, suggest that he general
form is 4.=1r+3 , but we have not proved
this.
Example 2:

Consider the following nonlinear regression

function:
¥ix) = Gy sinfox +e5= g(ﬂl,ﬂg;x} + &

.Following the same procedure as example 1 for
the three different error distributions, we get the
foIIowmg estimating sequences. In each case

r}' represents an arbitrary initial estimate of &;.
We omit the details of the calculations.

Exam Llole 2 under (4.1)

H'n-l-
N )
(n) (Y‘ . (6" )me " 5n )
B.-. - - R n E=
- " ( ;ﬂiﬂém}xncosﬂérﬂxn J
0,n=1.2
3
- +vmv=012,.. and

in) ':H'i} ] (n=1) w}
6" =4 —v—}—, [ZYsmﬂ K-8, Z Al
o smx@ "X

n=12.;x;vm,v =012, ., where

6 = v, /smBiVK,

Example 2 under (4.2)
H'I‘.n-fl} _

H‘rn} szganq : l (8 1\'}3 nE' }
l__E,I_TI__l‘.?;‘TI}_,: ny L-:E;“n.c )
1.2, i x, 2= 0

M=

-+, v =0,1,2,...and

[T =
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in) _ A1) () n-1) (nl

i —}—, [stme X-g" Zsmﬁ Doy
b " (sind, K ) 2 &

n=12. x=ve, v =012,.., where

6 =y, ,-"smfi' Wy,

Example 2 under (4.3)
I5|,|::'2+1:) _
8™ +

( 'T'u E'“}smﬂ x-l}l r+3n[ E-l'r:r.:-s']l':""":'|'5|r:;‘|5|]"'

"“.g ‘)hmsﬂ ) (7 (¥ E,'_‘nlﬂl‘ﬁsinﬂlﬂ QE}T[%}

(4.6)

2n(@

T
¥pz0-+vmr =012 .n=

1.2, ...,r=1
,and ,
(n}
6& =
31"”'1:'+

1

Al
EEL:._l__S'E?‘!g;lI&E

6"V T (sin8. X7,

[Sr, Y;sing, ™ X, -

(4.7)

n=12,..; x;#vr,r=0,12,.., where

6" = v, /sin6" X,

Taking different cases of degree of freedom r ,
the integral in (4.6) can be shown to be =, 1, 2/3,

384/945 for r=1,2,4,10,
estimating sequence EE"”]'

respectively. The
in each case has the

form
gujr!+1j _
B':i"‘l +
Il -8 (8l sin 8l )
m_ﬂ‘ |E '|x,.msﬂ x,.m'+|~' —F,' |E' 13[?"5‘ x,. 1%
,n=1,2,...;x,%0,and - +'mr,v: 01,2.

Where A,.=45713 for r = 1, 2, 4, 10
respectively. In each case the estimating
sequence (6'2':”_1:'} is given by (4.7)

Example 3

We consider the following example. A certain

chemical reaction can be described by the
nonlinear model:

= e (e [0 (-2}

= 520

Ei-i
, where & and %, are parameters to be
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estimated, ¥* is the fraction of original material
remaining, x4 is the reaction time in minutes,
and x, is the temperature in degrees Kelvin.
Taking natural logarithm and putting ¥ = log¥*

and = lage* , we have

V(xy,x5) = =8y x exp [—6‘2 (Ii —

=
i
)] + £
620

, following the same procedure as in Example 1
for the three different error distributions, we get
the following estimating sequences. In each case

&'2"1} represents an arbitrary initial estimate of
#5. We omit the details,

Example 3 under (4.1)

IglI:;~z+1]| —
g™ +
{1,‘1_'_&'--1,}{5-1_}1_‘1 exp [—H,; tml xi E-ED-}':":I
n(8l" (8 f——a}e p(-sm{m-a}/l
,h=12 ..
TptrXpz ¥ 0 ’ and
o =
gy
1 (n,1
oo . A 1 Ei 1}’,.%:1&2{‘3( I? |:__
=g hF[1EXP L_E L:_ﬁ_ﬁl[lb iz
(n=1) on (n)
E: 1(.1-:193:1]( ? [xm
)33‘1
n_12 nl,x~-.-—']|12
Where 31"1]' = ~h

(254 EXF'( - g;;-‘ﬂ' (ﬁ_ﬁ}j}

Example 3 under (4.2)

E|:n+l:l_

El’ﬂ}

szgnfrq+5|| i E’ﬂl ml }.1’1_Exp e El'ﬁr‘-,_u_a.}}}
O P N S B (R )

,n=12 ..
X+ ﬂ,xng =0,and
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() _
3% =
6"+
1

in)
=y VX ex 6.
e Dt <

- f’z" 1(x:1exp( " (-
[z

)JJ‘]
n-12 XL X2+ 0,i=1,2,....0
Where :91‘1} = e

(ia HIJ( E;mﬁi"ﬁ}j}

Example 3 under (4.3)

Bl:n-”-} _

BZ.:”:' +
. — (m) L L
|\;u-+3}-.,-;v-]"|~—z}[:1"n+ﬂi"~[:ﬂ }x-l axp (- EI "~ o E}:‘:‘

‘ 31965 o) e -6 ()
)

X

T

[I‘E.'ms]'if lgge] *

{ }
r:-ﬂ+rr-l+9"ﬂ{9'ﬂ}:rn-_exp( 'ﬂh—a}jljﬁ
(4.8)
n=12 ... x:¥0,x,.#0,r=1,and

Elrﬂ‘l —
ﬁ'i” =

1 .1

¥; &

E‘l‘l_llruEK'F'l ﬂ“l._.‘l ey, [El - ILLEKPI: I:
G R exp( o -
=
) (4.9
n=1 2, .. X% = 0,i=1,2,....,n , Where
ﬂi_’l‘. _ —1

= Sy am——
(s exp(—ﬂ;;”i‘[__;h—ﬁ—;n}ﬁ

Taking different cases of degree of freedom r ,

the integral in (4.6) can be shown to be :—T 1, 2/3,

384/945 for r=1,2,4, 10 respectively. The
estimating sequence fi' in each case has the

form
E',[r!+:Lj _

g™ +
1 11

R gl o),
(w8 8P Je g exp (- G

1 L e et

e o 1
r'| 8; *'IrE "'-1’1-:1[;— vyl

= E:rpl g
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X
- }
Y
(r&(¥ +E|'ﬂ{9|ﬂ1}xna_exp( I'ﬂ{“u‘ E}J}z
n_12 nl.xng-r—ﬂllz
Where A, =457,13 _,f'GT‘ r=12,4,10

respectively.
n—
sequence &

In each case the estimating
Vis given by (4.9)

5- Numerical Solution Using The Lawton
& Syivestre Procedure

Lawton & Syivestre [18] considered the
special case when the model has a linear and
nonlinear component see equation(1.4). They
introduce a modification based on the idea of
reducing the number of parameters that must be
estimated by the iterative methods. For a sample
¥1,¥2,00w ¥y , the linear parameters are

estimated at each stage by ordinary least squares
and the estimates are substituted into (1.4). We
now discuss three examples in some details.
Computer program that would be required to
obtain the numerical solutions are done. Details
of a small simulation investigation of properties
of the estimators obtained by Lawton &
sylvestre procedure and SA-ILS procedure for
the first model are given later in section (6)
Example 1:

We consider the model given in Example 1 ,
Section(4) that is ¥(x) = 8, &%+ = .
Treating &; as known, we then find & which
minimizes the sum of squares:

Q(6y,6;) = XL, (¥V; — 6e¥)2 | by Section
(2), we have found the least square estimate of

E .
& given by : 8,(8,) = l=—Y‘ sle-l . and the

reduced "model” given by (1.6) as follows:
¥ix) = 8 (8,)e%* +* .where this "model”,
is treated as a nonlinear model with a single
parameter #;, We have used a linearization
method as an iterative

method for estimating the nonlinear parameter
#, . We will apply this method as follows:

Let
- I.- IJ’:' -
%16, (8, ) =

(i g':f:'x
¥ o6y (8.7 )efs *=
L _|FoB e

dxnﬂifﬁ'n':ﬂ}egiﬁxﬂ_
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— &, (0.)e%
.
¥y — 6; (8, )e

Y_E'Jj: ,j:1,2,....

Fi’! _ '5'1_ (5.:[ i\:]yg:U'JF
(Zf':}'}z':j}j—l —

n (a2 §1] -
[5r=y (x;6 (6, )) exp (26, )]~
provided that (Z'7z()~t exist, and let
(20 (r— ) =

n (D~ 8 _

321[(1'-:'31('92 Jetz #)(Y;

52 Eiﬁlxl‘

6y (6, Je™s )]
, then , define an estimating sequence (ﬁ'z"ﬂ} by:
gt = gt 4 (20 ULz (Y -
g
=12,
i.e.,
ﬁuz':a"’:' =
5+
[E2. (x6:(67 )1 exp(28/7x)17 [T, [(x6, (7)) x
(¥ — 6,060) % =)]]
J=12,....
B5.The above estimates |, , will be
iteratively computed, in each iteration the "best”
companion value of £ (&'2""}) , Will be computed
by the least square method.

Where 8", is an initial estimate of
U+

Example 2
We consider the model given in Example 2,
Section (4) , that is
Y(x) = 6, sinfyx + &, we
. _ EL.visnf X
31{_32} - EE":._':S'E?‘:EB xl}z 3
"model"” will be ¥(x)= 6 (6;)sindx + &*

.then, define an estimating sequence (E‘ﬂi‘ﬂ Jby:

obtain

and , the reduced

.95}41:' = .954‘3' +( 1 i) z‘i}']'}—l(gﬂl;"} (y _

)

,j = 1,2,... provided that (2720~ | exist ,
ie.,

g+ =

g+

[E2, (x84 ) cos( 67 x.))™]7 [E2, [(x6:(69) cos(80 %))

(v — 8, (6)sin (8%, DI j= 1.2,...Where

5’ , iIs an initial estimate of &5.
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Example 3
We consider the model given in Example 3,
Section (4), that is

1
Y(xy,x2) = =By xq€xp [—'5"2 (I_ -

-]
1
)] + £
620

, we obtain

- T, Kixiaexp (-8 '., D:,‘I
i E'f , and the
E:‘_ E37 EJ{[J(—IEI1 ':..
= X

J}:ﬂ
reduced "model” will be
1
Y(xl_.x:} = _31(32}1:1 exXp [_82 (I_ -

2
1
)] + =*
620

, then, define an estimating sequence (H"‘j} Joy:

6,(8,) —

o E-ZI:I

3'J+1} =0 + (7DD (¥ -
g))
j = 1,2,... provided that (Z'7(7)"1 | exist
ie.,
ﬁ=;=—=r=e=a?+1 Eljl:ﬂh:e;:}xu':"l:_ﬁ}‘“""‘ :':xli‘_ﬁéuw} }
Tz (806w (2 — e | -6 (-5 )

i (8 (69 ) s -0 (2 -
)

Li=1,2,..

6- A Simulation Study

we report the finding of a small scale
simulation study to compare the properties of
the SA-ILS procedure and fixed sample size
Lawton & Sylivestre procedure. The model used
in example 1 was considered with
{x) = Byexp (Bx) + = , where =~N(D,o2).
Values of (8,,8,), are taken as (0.15, 0.65),
(0.1, 0.7), (0.25, 0.6) , and values of 2 = 1,2,4
, were used to give markedly different pattern
for the means and variances. For the fixed
sample size procedure , a sample size n=10 was
used. The residuals = were generated using the
random normal deviate generator available in
the GLIM statistical computation system. It was
decided that since this was only a preliminary
study, the run size would be restricted to 10.
Extreme caution must therefore be used in using
the results to compare the properties of the two
procedures. However, the results of this study
indicate that for large sample size, the SA-ILS
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procedure would, generally speaking perform
much better than the Lawton and Sylvestre
procedure. The properties which we will be
interested in for the two procedures are:

) Mean=€1=§(311+312 + et By,
g, = i":ﬂn + 6y +-+y);

(@Variance = 52(8,) = ;Ef:l(ﬁ'li -&)? |
5%(8,) = J_:.Ef:j_(ezi —6,)7%;

3) SE(6) =3 (5 — ) :
MSE(6,) =~ %L (6 —8,)%,

And the number of observations 1, for SA-ILS

procedure. The tables (1,2,3,4) give the
estimates for & ,and #&; and compare their

moment properties for the Lawton and Sylvestre
, and SA-ILS procedures and give the sample
numbers of observations required for the SA-
ILS procedure. The values of the regressor
variable were taken as 1(1)10.

7- Discussion And Conclusions
The following tentative conclusions can be

made from the study

1. The sequential SA-ILS procedure required
fewer observations than the fixed sample
size procedure (n=10) in all cases , the
number of observations required ranging
from n, =2ton, =9 , and the average

number of observations n, varying between
4.7 to 7.1 . The advantage in reducing the
number of observations was greater than the
initial approximation :?2“} , was close to the
true value. The results indicate that the SA-
ILS procedure will lead to a real reduction
in the number of observations required.

2. Different initial values for the SA-ILS
procedure of course provided different for a

given data set , and the estimates for a given
model  sometimes showed  markedly
different bias, variance and MSE properties.
In general, as he initial value deviates from
the true value, the variances and MSE
values increase.

For fixed (&, #,),and starting value 32':1} for
the SA-ILS procedure, increases in a2 led to
estimates with increasing variance and MSE
values, in nearly all cases.

Comparing the Lawton and Syivestre
method with the SA-ILS procedure, it is
seen that the biases of the estimates are
larger for the first procedure. There was no
clear pattern to distinguish the two
procedures with regard to variances and
MSE's.

From our simulation investigation we have
noticed that the choice of initial starting
value for the SA-ILS procedure is
important, since a choice of value close to
true value improves the behavior of the
resulting estimators. It might therefore be
useful to adopt a two-stage procedure
combining both techniques in which a
"small" fixed sample size n* is selected and

preliminary estimates &;°,é; of &, &; made
using the Lawton and sylivestre procedure.
Then the sequential SA-ILS procedure could
be used to generate further observations
sequentially using &5 as the initial value.
This modification is not examined further in
this study.
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% § = ) > s = 0,15 o
Table Hodel t f Begu.x: te, o where _m_._ N, ), with 0, = 0.1 10, = 0.65
Lawton/Sylvestra Stochastie Approxlmation - Iterative Least Squares Procedure
Procadure Ay LI i sy a1 IS I gt
cm = 0.55 :m 0.65 cu 0.7 cm 0.75 wm = 0.8 mm 0.9
Bunf 3 8 8 8 n a 9 n 0 i n 8 0 n 8 8 n § 9 n
No. L 2 L 2 0 L 2 [e] { 2 | o 1 2 e] 1 2 o L 2 <]
1 | 0.1379| 0.6587 ||0.1534 | 0.5057 | 4 0.1111 | 0.5089 [ 4 | 9.395%1p7% 0.6316 | 4 q.m:x_oum 0.6750 { 4 m.moqurm 0.7224 | 7 m.mqwxpo..u 0.8101 | &
2 0.1645( 0.6390 ([0.1915 | 0.7484 | 1 | 0.150% 0.0113| 3 | n.1450 08456 | 3 m.\_mox_ouw 0.0672{ 5 | 2.170x1072 0.9006 | 8 | 1.173x1072 0.9784 | 8
3] 0.1813|0.6298 [|0.3429] 0.4702 ] 6 | 0.2013 0.5718 | 6 | 0.1526 0.619716 | 0.1151 0.6682 | 6 m.mumx3|m 0.7172 | 6 A.mcmic:u. 0.8167 | 6
4 1 0.1490 | 0.6500 {|0.10850 [ 0.5595 | 5 | 0.1240 0.6454 |5 | 0.1006 0.6096{ 5 m.:mx:unm 0.7347 | 5 m.a:x_o..m 0.7797 (7 U.mEx_Srm 0.8731 | 7
5| 0.1803 | 0,6303 [{0.3665 | 0.4466 | 5 0.2394 1 0.5414 [ 5 0.1915 0.5900| 5 | 0.1523 0.6393 | 5 | 0.1204 0.6891 | 5 m.OmmxHolm 0.7887 u
6 0.1835] 0.6290 n_._m.mm 0.G003 | 5 0.1197]10.6715| 5 0.1004 0.7091 | 5 m.um\_x_o..m 0.7480 ) 5 m.m&mio:w 0.7879 | 6 p.ammx_clm 0.8703 6
7| 0.1801  0.6313 {10.4050 | 0,4927 | 4 | 0.2053 | 0.5066 1] 0,1079 0.6280| 7 | 0.1368 0.6754| 7 | 0.1123 0.7243 1 6 m.umox_o..m 0.8225 | &
® | ©:1387] 0.659010.0266 | 1.0990 | 4 | 0.0250 | 1.1150 [ 4 | 2.370%107% | 1.1300 | 4 | 2.206%1072 | 1.1470 | 4 | 2.04px1072 1.1680 | 4 | 1.700%107% | 1.2160 | 4
9 | 0.1489 | 0.6500 |[0.1412 | 0.6747 | & | 0.1020 0.7493 ( 5 m.mumx_oum 0.7884 | 5 q.cu.._x_o..u 0.B8285 |.5 m..:.:x_.olu 0.8655 | 8 Tum_xmo:m 0.9498 | 8
10 ] 0.1341 { 0.6610 {|0.1859 | 0.5814 | 5 | 0.1494 0.6405 (7 | 0.1190 0.6745| 7 | 9.300%1072 0.7112 5 | 7.147%1072 0.7502 | § \_.cm_ﬁonm 0.,8335 | 7
(L)} 0.1599 | 0.6439 |[0.2164 | 0.6107 M.0 0.1519 [ 0.6922 [1.8 0.1201 0.7307 5.1 m.mmmiosm 0.7695 5.1 m.m:io:m 0.8105 6.2 m.mm...i.oxm 0.8959 (6.5
-4 - -2 -2 -3 -7 4] -3 =3 -2 -3 -2 -4 -2
(11)}3.6x10 J1.6x10° 1)1.3%1G 3. 3x10”"91.0 5.0¢10 “2.6x10 “l.2[2.337x10 2.3%10 TJL.5] 1.315%107" [2.1%10790,7| 1.178%10 1.8x10 1.6 3.389%10° |1.5x10°°|1.3
- - - IR -3 -3 -3 -2 -3 -2 -1 -3 =2 -2
Wii)|a.7x10 JL.8x10" ||t.7%10 J.4%10 5.0x10 *[2.8x10 _u._wumx»o 7.0%10 5.055%10 J.6x10 7.887%10 4.4%10 1.270x10 7.5%10
-1 -2l ~ -2 -3 -2 -2 -7 -2 -2
{Lv)|9.9%10 “}-6,1x10 JpB.6x10 -3.1%10 1.9%1D “1.2x10 2.99 x10 0. 1x10 ~G.115%]|0 0.1195 -0.189x10 0.1605 -0.1112 0.2459
(i) Mean , (ii) varlance , {1i1) Mean Square Error , (Lv} Blas. .
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Table . 2

-

X ) N " 5 3y A s y 2 o & 5 =
Hodel Y o_ EGEMxZ t e o where :_.U IN(0,2) , with o o.m.u.om 0.65
Lawton/Sylveatra Stochastle Approxlmation - Tterabive Luast Squarus Procedury
Procedurs ~(1) S Al NIV S ) L
0, =0.55 0, 0.65 0, 0.7 e, 0.75 0, 0.0 8, " = 0.9
~un = 5 2 a % o 7 - bs 2 a 2 H a
wo.| U %, 9 B 1%l G % %] 8 ol 9 By 1% % Uy Im] & B | %
L 10,1328 | 0.6625(0.4480 | 0.4331 | 6 | 0.1216 | 0.4346 |4 0.3453 0.5360 | 8| o0.1558 0.56341 0 | 0.2117 " |0.6010]8 | .0.1389 0.6629 | 7
2 a . -2 -2 -2 -2 -2 _
0.1715 | 0.6352 ||5.8x10 7 0.7686 | 7 4.1x107%] 0.8223 |g 1.2x10 0.8530 | 8| 2.5%10 0.8857| 8 | 1.9x10 0.9204 [ 8 | 1.0x10 0.9944 | B
3 10.1968 | 0.6211 ||0.3601 | 0.4597 | & 0.3261 | 0.5581 |8 | 0.1570 0.6026 | 6| 0.1178 0.6515| 6 | 8.8%x10™> | 0.7009 6 | 4.9x10™ |0.g011 6
1 [0.1488 | 0.6499 [|0.2024 | 0.5351 | ¢ 0.1271 |0.6183 |6 | {.oxip™2 0.6613 { 6| 7.0x107% | 0.7081 6 | 6.0x1072 0.7496 [ 6 | 3.9%x10™> |g1g409 7
5 10.1948 | 0.62200.5071 | 0.4159 | 6 | 0.2751 0.5077 |5 | 0.2197 0.5570 | 5| 0.1708 0.6075( 6 | 0.1347 0.6574 | 6 | "7.5%10™% |o.7580 | &
6 10.1996 | 0.6202{[t.740™9 1.0370 6 [1.5%107% 1.0630 | 6 1.3x107% | 1.0810 6| 1.2%1072 1.1000] 6 | 1.0%1072 1.1220 | 6 7.7%1072 1.1370 | &
70,1940 | 0.6233 |[0.4847 | 0.4000 | 4 | 0.3199 0.5747 |4 | 0.2132 0.6137 | 7| 0.1549 0.6615] 7 | 0.1117 0.7100| 7 | 7.2x107% |o0.p099 | g
8 10.1352 | 0.6631 |[0.1010 | 0.7108 | 5 7.6x107 0.7731 |5 6.3x10"2 |0.a068 6| s.x107 | 0.p421] 6 4.1x1072 | 0.0788 6 | 2.6x1072 0.9564 | 6
7 |0-1483 | 0.6501 |J0.157%4 | 0.6611 |6 | 01141 {0.9352 [5 | 8.5%107 [0.7742 | 5 | 7.0x1072 0.8144 5 | 6.4x107% | o.ass7 |5 | 1.5x1072 |o0.0362 | 6
-2 -2 . -2
10 {0.1274 | 0.6661 ||0.1607 | 0.5928 | 6 | 0.1486 |0.6363 |7 0.1226 0.6657 | 7( 9.9x10 0.6982| 7 | 7.8x10 0.7335]7 | 4.6x10°°-|0.8108 | 7
a -2 -2
(4){ 01650 | 0.6414 |10.2507 | 0.6094 [5.8| 0.1583 | 0.6774 |5.8 0.1360 0.7152 |6.4 9.5x1072 | 07520 6.5 8.2x10 0.7930 |6.5] 5.5x10 0.8744 |67
& - . & 3 - o o5 “ - -3 = =1 -
(11) 7.9¢10 43.3%16* |h.0x0 Bax0 6 1.2x10 22,840 MN.D_ 9,2%107° 2.5%167 1.0 2.5x107" 2.3x13%0.9] 3.2x10 2.1x10 mo.m CL3x10TT jLaxio ’ 0.5
o i -7 E “ - 2 o I = = 54 -2 -2
(W) roxsu 1.4x16* 4. 0x10 43.5%107 1.2x10"2.90™ 9.4x107" 2.9%16] 6.0x1073 3.4x10 7.9x107  4.2x1d 1.0%10°° B.9x10
= - =2 -] -2 L2 -2 -2 -2 -2
(Lv)| 1.5%10 “-06x107°110.1007 F4.1x10 0.3x10 72,740 * ~1.4x%10 6.5x10 -5,5x10 0.1029 -6.0x10 0.1430 -9.,5x10 0.2244
(1) Mean , ({i1) varlance ¢ (L111) Mean Square Error , ({v] Dlas.
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Table . .3 Hodel : Y, = m_ mxmﬂmmx»v * &y 4 where th_ ~ IN{O,4) , with 5— u o.pm\mn = 0,65
Lawton/Sylvastra mnaoruunhn Approxlmation - Iteratlve Least Squares Procedurs
Procadurs (1) : AL A0 A1) gl M
3,") = 055 65" = 0.65 i, = 0.7 0, = 0.75 0, = 0.0 0, = 0.8
udcr—s - - - ~ ~ oA -~ -~ - - - ~ rs -
No. mp mm m_ =N :o QH cm :o ap om :u o_ mm :o mp mu :o o_ mw :o
- d -2 ) i .
L | 0.1254| 0.6684 |10.3005 [ 0.1200 |4 | 0.3371 |1.0x10™2| 4| 0.4048  |5.2016% 4 | 0.5577  kaox16Y 4 | 2.1935 “15.0x10“| & | 0.4860 0.9527 | 2
: 2 2 -2 -2 |, -2 <3
2| ote2 | 0.6207 |7.74167 0.0063 |5 J6.2x10™*(0.0524 | 5| 5.4x1072 |0.0000 | 5 | 4,610 0.9102 | 5 | 3.9x10 0.9427 | 5 | 9.4x10 1.0090 | 8
3| 0.2206 | 0.6089 [[0.3816 | 0.4357 |6 | 0.2176 |0.5301 | 6| 0.1632  |0.5781 | & | 0.1220 0.6266 | 6 | 9.1x10™% | 0.6754 |6 | 6.4x107%  |0.7750 | B
4] 0.1490( 0.6493 [[0.3420 | 0.4031 {6 [ 0.29% [0.4321 | 6| 0.2979  |0.4293 | 6| 0.3462 0.4008 | 6 | 1.4720 - |0.3332 (8 | 0.1164  +|0.9040 | 3
5| 0.2168 | 0.6105 |[0.6421 | 0.3647 |6 | 0.3991 [0.4559 | 6| 0.3101  |0.5027 | & | 0.2391 0.5500 | 6 | 0.1832 0.5978 | 5 | 0.1081 0.6941 |6
2 -2 -2 -2 2 -2
6 | 0.2242] 0.6081 ||2.6x10% 0.9737 |6 [2.2¢107% 10010 | 6| 1.9%1072 [1.0250 |6 | 1.7x10 1.0480 | 6 | 1.4x10 10740 | 6 | 1.0x10 (.1329 |6
7| 0.2172 | 0.6121 |[0.5976 | 0.4675 |4 | 0.3379 |0.5505 | 7| 0.2471  |o.5079 | 7| 0.1792 0.6461 | 7 | 0.1290 0.6049 | 7 [ 8.4x107%  |0.7955 | 6
2 -2 ) 2 . -2 -2
8| 0.1288 | 0.6690 |[9.7x167| 0.7086 |5 |7.2x107%|0.774a | 5| 6.1x1072 |o.8008 | 5| 5.1%10 0.8466 | 6 | 4.1x10 0.8845 | 6 | 2.5x10 0.9640 | 6
. -2 -2 -2 -2
9 | 0.1468 | 0.6507 |[0.1487 | 0.6786 6 | 0.1003 |0.7473 | 6| 9.5%10"2 |o.7054 | 5| 7.9%10 0.8240] 5 | 6.5x10 0:8639 | 5 | 4.3x10 0.9470 | 5
5 5 5 G . a5 -
101 0.1183 | 0.6735 ||2.3x16” 1.8960 [7 [3.2x107| 1.8510 | 7| 4.7x10> |1.7030 | 7| 7.9%10 1.7190 | 7 | 1.4x10 1.6410 | 7 | 3.6x10 1,5050 | 7
() 0.1729 | 0.6379 ||0.2636 | 0.6863 .5 | 0.1841 |0.7298 [5.8] 0.1651  |0.7453 |5.7] 0.1636 0.7532|5.8| 0.4228 0.7758 b.2| 9.5x10™% | 0.9680 [5.7
-3 -4 =2 -2 -2 -2 -2, -2
(4 1.7x1076. 71071 4.7x16 0.2166 P.9 [2.0x107[ 0. 1982 p.8]. 1.8x10% |0.1088 |o.0| 2.8¢10 0.1880 [0.8] 0.5257 0.1656 0.8] 1.9x107% * h.ex1072|3.4
4] 2.3x107 8. axt0 7|6, 0x109 02079 | |2.1x1072| 0. 2048 1.8x107%  |0.1980 2.0x107% | 0.1985 0.6001 0.1814 2.29x107% | 0.1476
i i . = E o - . .
W2, 3x107 4 12x1020. 1136 bo6x102]  13.4x10"2s.051G72 1.5%x107% Dsx1072 faxto™? {0,103 0.2728 0.1258 | |[-5.6x107% | 0.3180

(L) Mean ,

(L1) varlance ,

(111) Mean Square Error , {(Lv) Dias.
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Table .. .4 Model X = c_ Eﬁzuxm te where ?2 ~ IN(0,1) |, with f =0.1.8, 0.7
Lawkon/Sylvestea mnon_.mmﬁ.o Approximation - Iterative Least Squares Procedure
Procedure a1 AL s NSV all) gt
0, 0,") = 0.6 Ch 0, =0.8 8, = 0.9 0, =1.0
—.ﬂC.: -~ "~ - " ‘o ~ - A - - -
tio. f mm f a_ mm o_ f. em f mb mm
1 mx:;os# 0.7167 |26 x10° 8.4 %107 -1.5650 1.ox1078 sa.5x1077 | 0.1551 ~0.1708 ¢ |-p.4138 -4.3x10™% |o.a108
2 {7.8x107 0.7249 ||0.2899 0.1940 | 0.5595 0.1149 6.1x107° | 0.7457 3.2x107% | 0.8423 1.4x10™2 |0.9404
3 -2 -2 -2 | -2 . -2
9.3x10 ] 0.7089 ||0.1319 0.3072 | 0.7413 6.5%10 4.1%10 0.0643 2.5%10 0.9476 1.5%10 1.0340
4 19.1x16%| 0.7103 ||0.2670 0.2465 | '0.4153 0.2135 0.1817 0.5140 D.1416 0.5734 0.1002' . |0.6345
. -3 2 -2 -2 e . -3
0.1006 | 0.7000 |}i. %10 3.5x107°| 0.8543 2.2¢10 1.4x10 0.9525 B.7x10 1.0150 5.0x10 1.0850
6 [8.9x132] 0.7131 ||0.2630 5 | 0.1873 | 0.6141 0.1047 6.0¢10"% | 0.7721 3.3x107% | 0;8504 1.8x1072 | 0.5485
7 |0.1072 | 0.6930 [ 207 2.7x1077 13118 t.ax1072 txo™? | 1,002 1.5x107 | 1.0230 11072 | 1.0749
-2 s -2 -2
o |7.8x16°| 0.7259 |l0.1437 5.0x107] 1.9750 3.1%10 7.0%10 0.7244 0.1129 0.6500 0.1199 | 0.5402
2 . -2 -2 -2 &

g |0.1058 | 0.6957 [ 0.125 8.5x10| 0.7375 4.8%10 2.4%10 0.8857 1.3x10 0.9671 6.5%10° | 1.0520
10 |0.1027 | 0.6976 || 0.2265 0.1504 | 0.5006 9.7x10"™> 6.2x107 | 0.7631 1.6x107% | 0.8575 2.0¢1072 . | 0.9539
E e -2 3 3
(17183 x10™| 0.7086 || 0. 1168 0.120! | 0.6025 7.1%10 5.3%10 0.7379 3,2%10 0.7330 2.7%107° | 0.9190

oy e by - - - - - - -
-t x1d 4 axd .o xg® 1.2¢16°| 0.6714) 1.9 3.7x107> 2.5¢107  [5,5x10 6.34107 | 0.1654 2.1x107 . p.5x10™
! 8.3410 , .
Wit)l g ex16 2. 1x10 .o g ? 1.2¢107| 0.6800 4.5%107 a.7%107 | 0.1297 1ax10™% | 0.1666 7.4x107 f.ax1072
(Lolr2x10 3. 6x107 1, 70 672 2.00107%-9.84G% | -2.9%1072 L, 751072 - 3.1 | -e.ax107 0 [Laxid -7.3%1072 | 0.2190
- . _
(1) Mean , (L1) Varianca , (iLii) Hean Square Error , (iv) Dlas.




Kashmar

References

1.

10.

11.

Iragi Journal of Science. Vol 53.No 2.2012.Pp 367-385

A, Sami N (1999),Transformation
of observation in stochastic
approximation ,Ann.Statist.1,6,p
1158-1174

A, Sami N (2002).0n optimal
multidimensional stochastic
approximation; A unified approach
1 ,The proceeding of math, and
computer  science  conference,
UNESCO and Alexandria Univ.
,Nov. 2002. p 393-413

A, Sami N (2007) .On optimal
multidimensional stochastic
approximation procedures, Florida
State university statistical Report
no. M-603,0October,(2007)
,Submitted to Communications in
Statistics

A, Sami N (2009) .On estimation

Via optimal stochastic
approximation procedures,
Statistical Theory and Data
Analysis, K. Matusita (Editor)
Elserier Science Publishers

B.V.(North Holland)

Albert, A.e. and Gardner,L. A (
2000) . Stochastic approximation
and nonlinear regression,Reaearch
Monograph No0.42,M.1.T. Press.
Anber, D.(2002). On optimal
estimation method using stochastic
approximation
procedures,Ann.statist.1,6,p 1175-
1184

Bartle,R.G. (2001) . The Elements
of real Anaysis, Johin Wiley
&Sons,Inc.,New York

Blum,J.R. (1994a ) . Approximation
methods which converge with
probability one,Ann.Math
.statist.25,p 362-386
Bium, J.B.
Multidimnsional stochastic
approximation methods, Ann
.math,Statist.25,737-744

Chung, K.L.(1997 ). A course in
Probability Theory, Academic
Press,Inc.,New York

Draper, N.R. and Smith, h.(2004
). Applied Regression Analysis,

(1994b).

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

johin Wiley & Sons,Inc.,New
York

Fabian m V.(1990). Stochastic
approximation methods,
Czech.Math.J.10,p 123-159
Fabian,V.(2000). On asymptotic
normality in stochastic
approximation : Ann,
Math.Statist.39,p 1327-1332
Fabian, V.(1991), Stochastic
approximation,  Proc.  Symp.
Optimizing Math.in  Statistics
(J.S.Rustagi,ed.) p 439470 ,
Academic Press.

Gladyshev,E.G.  (1996). On
stochastic approximation,Theory
of probability and its
Applications X(1996) ,No.2, p
275-278

Graybill,F.A.(1996) Introduction
to Matrices with approximations
in Statistics,Wadsworth
publishing Co.,Inc.,California
Kiefer,J.and Wolfowitz,J.(2001)
. Stochastic estimation of the
maximum of the maximum of a
regression function, Ann,math,
Statist. 23, 462-466.
Lawton,W.H.and Sylvestre,E.A.
(1998 ). Elimination of linear
parameters in nonlinear
regression, Teahnometrics,13,p
461-467,Discussion , p 477-481
Lawton,W.H.,Sylv  evstre,E.A,
and Maggio,M.S.(1992 ) . Self
modeling nonlinear
regression,technomatrics,14, p
513-532

McCullagh,p. and
Neider,J,K.(2008 ). Generalazed
Linear  Models,Chapman-Hall-
London

Neveison,M.V.and
Has'minskil,R.Z.(2006).Stochasti
Cc approximation and recursive
estimation,  Transilation  of
mathematical Monograph 47 (
American mathmetical socisty)



Kashmar Iragi Journal of Science. Vol 53.No 2.2012.Pp 367-385

22. Robbins, b. and Monro,s.(2001
).A stochastic approximation
method, Ann. math. Statist.12,p
400-407

23. Robbins,H.and
siegmund,D.(2005),a
convergence theorem for
nonnegative almost
supermatingales and  some
approximations,Proc.Symp.
Optimizing Methods in Statistics
(J.S.rustagi,ed.).p 233-257,
Academic Press,New York



