
Melhum and Mahmood Iraqi journal of science, Vol.53, No.1, 2012, pp.179-185179

179

DESIGN ASSEMBLER BASED ON LEX AND YACC

Amera Ismail Melhum, *Suzan Abdulla Mahmood
Department of Computer Science, College of Science, University of Duhok. Duhok-Iraq.

* Department of Computer Science, College of Science, University of Sulaimani. Sulaimaniah-Iraq.

Abstract
LEX and YACC are very useful tools for constructing the assemblers; they generate
functions that perform standard operations of a lexical analysis and parsing without
any effecting on the organization processes for semantic analysis, machine code
generation and listing source of compilation. In this work, the cross assembler was
designed using some compiler development tools like LEX and YACC having the
ability to implement the lexical analyzer and parser, for generating the syntax and
parsing modules in a short period of time. These activates are expressed in form of
actions, the bigger number of lexical and grammar rules are used by these actions in
a simpler way.
Keywords: Assembly language, Assembler, Context Free Grammar, LEX, YACC

LEXو YACC تصمیم المجمع الصلب باستخدام

*سوزان عبداالله محمود ، أمیرة اسماعیل ملحم

.العراق-دهوك.دهوكجامعة، كلیة العلوم، قسم علوم الحاسبات

.العراق-السلیمانیة.السلیمانیة جامعة،كلیة العلوم، قسم علوم الحاسبات*

الخلاصة

اذ تولــد وظــائف لتنفیــذ العملیــات القیاســیة .دة كبیــرة لبنــاء المجمعــات ذات فائــYACC وLEXتعــد اســلوبي

فـي هـذا البحـث تمـت تـصمیم .وذلك عن طریق تحلیل المفردات بدون تأثیر على تنظیم عملیـات التحلیـل الـدلالي

 ذلـك لقـابلیتهم لأنجـاز تحلیـل YACC وLEXمثـلالمجمـع الـصلب باسـتخدام بعـض ادوات التطـویر المتـرجم

 و ++C قلیلــة مقارنتهــا مــع اللغــات البرمجیــة مثــلو انــشاء تركیــب فــي فتــرة زمنیــةب الكلمــةیــات و تعرالمفــرد

Visual Basic والجدیر بالاشارة ان هـذه الفعالیـات توصـف بـشكل صـیغ واجـراءات و الخ من اللغات البرمجیة

.ت المعاجمبطریقة مبسطة ولها القدرة على معالجة أكبر عدد من القواعد النحویة ومفردا

1. Introduction
In our world, there is a great variety of

microprocessors, and the construction of
assemblers for these microprocessors requires
much man-power and time [1]. Assemblers are
often considered as consisting of two phases.
The analysis phase, where most of the error
checking is done, and the synthesis phase, where
the object code is created. During the analysis
phase, the assembler source code will be
scanned for any lexical or syntactic errors. This

is analogous to spelling and grammar checks in
a word processor. If errors are found, exceptions
are thrown and reported to the developer. If,
however, no errors are found, method calls are
made to the backend and synthesis begin [2].

This paper is of interest not only to new
comers to assembler construction, but to those
already familiar with the subject who wishes to
follow the development of assembler for
microprocessors requires. It can therefore be

Melhum and Mahmood Iraqi journal of science, Vol.53, No.1, 2012, pp.179-185180

180

used as an extensive programming project in a
software engineering setting.

In this research, it shows how to build the
assembler using some compiler development
tools like LEX and YACC[3] having the ability
to implement the lexical analyzer and parser also
help us to generate the syntax and parsing
modules in a short period of time.

In the next section, the structure of the
assembler is implemented by using two pass
assembler, the two pass assembler refer to the
number of time reading file.

1.1 LEX and Yacc
An assembler, compiler or interpreter for a

programming language is often decomposed into
two parts:[4]
1-Read the source program and discover its
structure.
2-Process this structure, e.g. to generate the
target program.

Lex and Yacc can generate program
fragments that solve the first task. The task of
discovering the source structure again is
decomposed into subtasks:

1-Split the source file into tokens (Lex).
2-Find the hierarchical structure of the program

(Yacc).
Lex and Yacc are tools that help

programmers build compilers and interpreters,
but they also have a wider range of applications
like converting text data to HTML ,XML or
Latex.

1.2 Lex : A lexical Analyzer Generator
Lex helps to write programs whose control

flow is directed by instances of regular
expressions in the input stream. It is well suited
for editor-script type transformations and for
segmenting input in preparation for a parsing
routine. While Lex can be used to generate
sequences of tokens for a parser, it can also be
used to perform simple input operations. A
number of programs have been written to
convert simple English text into dialects using
only Lex.

Lex source is a table of regular expressions
and corresponding program fragments. The table
is translated to a program which reads an input
stream, copying it to an output stream and
partitioning the input into strings which match
the given expressions. As each such string is
recognized the corresponding program fragment
is executed. The recognition of the expressions
is performed by a deterministic finite automaton
generated by Lex. The program fragments

written by the user are executed in the order in
which the corresponding regular expressions
occur in the input stream[5, 6], the following is
a sample code for Lex part, in the left hand the
description of Token and in the right hand the
associative action for it.
%{
#include <stdlib.h>
void yyerror(char *);
#include "y.tab.h"
%}
%%
/* variables */
[a-z] {yylval = *yytext - 'a';

return VARIABLE;}

/* integers */
[0-9]+ { yylval = atoi(yytext);

return INTEGER;}
}

/* operators */
[-+()=/*\n] { return *yytext; }
/* skip whitespace */
[\t] ;
/* anything else is an error */
. yyerror("invalidcharacter");
%%
int yywrap(void) {
return 1 ;}

1.3 Yacc: Yet Another Compiler –
Compiler

Computer program input generally has some
structure; in fact, every computer program that
does input can be thought of as defining an
``input language'' which it accepts. An input
language may be as complex as a programming
language, or as simple as a sequence of
numbers. Unfortunately, usual input facilities
are limited, difficult to use, and often are lax
about checking their inputs for validity.

Yacc provides a general tool for describing
the input to a computer program. The Yacc user
specifies the structures of his input, together
with code to be invoked as each such structure is
recognized. Yacc turns such a specification into
a subroutine that handles the input process
frequently, it is convenient and appropriate to
have most of the flow of control in the user's
application handled by this subroutine [5, 6].
The following a sample code for Yacc part, in
the left hand the description of Grammar rule
and in the right hand the associative action for it.
%token INTEGER VARIABLE
%left '+' '-'

Melhum and Mahmood Iraqi journal of science, Vol.53, No.1, 2012, pp.179-185181

181

%left '*' '/'
%{
void yyerror(char *);
int yylex(void);
int sym[26];
%}
%%
program:
program statement '\n'
|
;
statement:
expr { printf("%d\n", $1); }
| VARIABLE '=' expr { sym[$1] = $3; }
;
expr:
INTEGER
| VARIABLE { $$ = sym[$1]; }
| expr '+' expr { $$ = $1 + $3; }
| expr '-' expr { $$ = $1 - $3; }
| expr '*' expr { $$ = $1 * $3; }
| expr '/' expr { $$ = $1 / $3; }
| '(' expr ')' { $$ = $2; }
;
%%

2. Proposed structure of the Assembler
Since problem of assembler is as old as

symbolic languages, there are many different
solutions of it described in details in the
literature. All the approaches may be roughly
classified according to the number of readings
(passes) of the input file. So there are one-pass,
two pass and multi-pass assembler; they have
well known advantages and disadvantages, the
two pass assembler is surely the simplest for
implementation and that's why we have decided
to accept this approach.
In this paper, the whole algorithm has been
divided into two parts called "pass 1" and" pass
2" performing the functions as shown in
(Figure 1) and (Figure 2).

The functions of Pass_1:
-Checking lexical, syntax and semantic

correctness of a program.
-Storing label definitions and calls (references).
-Checking possibility of resolving all internal

and external references.
-Printing out the source program merged

(if such need) with error messages.

The functions of Pass_2:
-Checking semantic correctness of a program.

Figure 1: Flowchart of Pass 1

Figure 2: Flowchart of pass2
-Label processing (searching for the required

labels).
-Machine code generation.
-Generation of compilation listing- in case of

Melhum and Mahmood Iraqi journal of science, Vol.53, No.1, 2012, pp.179-185182

182

error suitable message is displayed.
The flowcharts were translated to the C
language program with the following structural
units:

- data
- main segment
- lexical analyzer routine
- terminal symbol table
- parser routine
- grammar rules actions
- post-pass 1 processing
- post pass 2 processing
The most important problem is distribution of

"work" (i.e. function specified for both the
passes) between these structural units.
Especially roles of lexical analyzer, parser, and
terminal symbol actions grammar rules actions
are exchangeable in a wide range. It is even
possible to organize the process of lexical
analysis within the parser routine but this is
surely an ineffective approach. On the other
hand, the lexical analyzer supported by carefully
design terminal symbol actions may shorten the
routine and speed up its execution. Assigning
strict and unique functions to the structural units
would result in inefficiency features of the
parser, lexical analyzer and C- language
constructions. So, the machine code can be
taken by the parser routine, whether from the
machine code tables or from the lexical
analyzer.

The internal structure of the design assembler
has been shown in the (Figure 3).

The first step, the context-free grammar for
assembly language was defined, once a context-
free grammar for the language has been properly
defined, the next step would be used to design
tools that will check the developer code for
errors, based upon these rules. The LEX /
YACC or the GNU(General Public license)
Flex/Bison[7], these are software tools that
essentially scan a grammar definition, given in
BNF, and then generate the lexer and parser
accordingly. First, it is need to specify all
pattern matching rules for lex (bas.l) and
grammar rules for yacc (bas.y).
A context-free grammar consists of four
components [8, 9]:
1. A set of tokens, known as terminal symbols.
2. A set of nonterminals.
3. A set of productions, i.e. a nonterminal
followed by a sequence of tokens and/or
nonterminals
4. A designation of one of the nonterminals as
the start symbol.

This definition essentially states a context-
free grammar must begin with a start symbol
and eventually reduced to a finite set of
keywords, known as tokens or terminals, and
non-terminals (e.g. variable names, strings of
numbers or characters). The rules that define
these objects and their order in the language are
known as productions. This will be made clearer
in the following example. Developed
collaboratively with John Backus, the father of
FORTRAN, Backus- Noir Format (BNF) is
syntax for describing context-free grammars, as
given by Chomsky.example of the BNF for a
simple calculator is shown below:

expr mexpr (+ mexpr) *
mexpr atom (* atom) *
atom 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Here, the tokens are
+ * 0 1 2 3 4 5 6 7 8 9

and the nonterminals are expr, mexpr and atom.

Figure 3: The internal structure of the
design –assembler

The start symbol is expr and the first two
lines are productions. The | is “or” and is the
symbol for definition such that the last line
defines an atom as a zero or a one or a two, and
so on. Note the quantifier ()* allows for zero or
more of the objects contained in the parentheses.
Hence, the first line essentially defines an
expression as a multiplicative expression,
optionally added to one or more multiplicative
expressions. This allows for statements such as

Melhum and Mahmood Iraqi journal of science, Vol.53, No.1, 2012, pp.179-185183

183

2+3*4 in this simple example grammar [3].the
following is a part of the BNF for the proposal
assembler

prog stmts end
stmts stmt newline stmts | epsiod
stmt line | comment | label line | equ arg
line ld arg , arg

| in arg , arg
| out arg , arg
| brs arg , arg
| al1
| al2
| al2 arg , arg
| posh ras
| ret conr

arg a | b | c | d | e | |h | i | r | hl | bc | de | af
| sp |af |ix | iy
| [bc |de | hl | sp |ixy | label | number]

conr z | c | p | m | nz | nc | po | pe
ixy i xy mp number
xy x | y
mp - | +

posh pop | push
al1 cp | sub | and | or | xor
al2 add | adc | sbc
al3 inc | dec
ras rlc | rrc | rl | rr | sla | sra

| srl
brs bit | set | res
................

..................
..................
comment ; identifier
identifier letter identifier | letter letterdigit

| episode
label letter Letterdigit

letterdigit letter letterdigit | digit letterdigit
| _ letterdigit | episode

number digit number | episode
digit 0 | 1 | 2 | 3|… |9
letter a | b | c | d |…|z

2.1 Data (machine code for the
instructions)

The assembler uses 2 types of data:
-One or two dimension tables contain machine
codes of instruction for different operands. The
correct association of an instruction and
operands correspond to a non-zero value of a
machine code table element. Two lists of
symbolic names (labels):
- ldl, the list of the label definitions, the address

of actual label that appears in the label field .

- lrl, the list of the required labels, the labels
that appears in operand field.

Both lists have the same structure:
struct list { char name[10]; // name of label
int lnum; // line number
int address; // address contents of the

byte counter
struct list *next}

*ldl // pointer to the current element of the ldl
* pd // pointer to the last element of the ldl
* lrl // pointer to the current element of the lrl
*pr // pointer to the last element of the LRL

Applying the list structure is an acute
necessity since number of labels and references
to them is dependent on a program and can vary
in a big range.

2.2 Main segment
In contrast to the name this segment performs

only initialization of the lists LDL and LRL,
calls parser and after terminating its work, prints
the closing message.

2.3 Lexical Analyzer Routine
The lexical analyzer routine identifies

terminal symbols in the input text. Each time the
routine tries to find the longest string of
characters matching one of the given patterns of
terminal symbols. In case of ambiguity (there
are two or more patterns matching the same
string) the first pattern found is taken into
account. So the order of patterns have an
important role. Each of the patterns correspond
to the user define actions coded in the C–
language. Recognition of the given pattern in the
input text is associated with execution of the
suitable action.

This routine was produced by the lexical
analyzer generator LEX: input data to this
program is just specification of patterns and
corresponding to actions (terminal symbol
actions). Output file of the LEX is (yy.lex.c) file
that contains the C –language lexical analyzer
routine.

2.4 Terminal symbol actions
Main job of a terminal symbol action is

informing the parser routine about the identified
token. Additionally this action organizes of a
characters is printed out (by suitable place of the
output buffer char linebuf [75]). The number of
lexical rules decides about the size of the lexical
analyzer routine. It is common view, that an
action continues the process of input string

Melhum and Mahmood Iraqi journal of science, Vol.53, No.1, 2012, pp.179-185184

184

identification instead of multiplication rules it is
enough to add one or two statements in the C-
language. May be the final specification
becomes not so clear, but it undoubtedly
produces shorter (both source and object)
routine. Usually an action transmits a value
corresponding to the token: sometimes it is a
machine code, sometime s selector of an
instruction belonging to the token and
sometimes it is a string of characters.

2.5 Parser routine
The parser routine has to state correctness of

the input sentence. The sequence of tokens
received from the lexical analyzer is compared
with the grammar rules defined within the
parser, when such rule is found the tokens are
reduced to the nonterminal symbol and the
action corresponding to this grammar rule is
executed. If there is no such grammar rule the
parser calls function errorok() sending message
about the error and makes recovery (removes
effects of the error; usually rest of the line is
skipped).

The parser routine was produced by the
complier YACC [6, 7] on the base of an user
(designer) supplied grammar. This grammar
accompanied by actions (grammar rule actions),
YACC accepts this data and produces the C-
language routine yyparse() loaded to the file
y.tab.c. To obtain the object code of the
assembler the contents of the two files y.tab.c
and lex.yy.c must be processed by the C-
language compiler (CC).

The output of Lex part will be the input to the
Yacc part, its token with its associated value
store in variable. The token are NA LABEL
JPCAL COMMT ORG ARG CONR LD
AL2 AL1 AL3 RAS BRS RAT IN OUT
RET POSH END CON DJR RESB ACON,
the following are examples about some token
with its value:
Token value associated with token
--------- --
ARG a | b | c | d | e | |h | i | r | hl | bc | de | af

| sp |af |ix | iy
| [bc |de | hl | sp |ixy | label |number]

AL2 add | adc | sbc
AL1 cp | sub | and | or | xor

AL3 inc | dec
RAS rlc | rrc | rl | rr | sla | sra | srl
BRS bit | set | res

POSH pop | push
JPCAL call | jp
END end
ORG org
RESB resb

2.6 Grammar rules actions
Most of the grammar rules are associated

with actions. It means that each time a grammar
rule is applied, the corresponding action is
performed. The top most grammar rule(
corresponding to recognition of a complete
assembly language line terminated by 'new line'
character) calls action printing out the line
along with an error message (if any) and the
byte counter will be incremented by the machine
code length for the current instruction.

Majority of actions cooperates with grammar
rules identifying assembly language statements.
Each such action identifies the kind of
instruction and operand(s) and continues testing
syntax correctness of the statement; if nothing
wrong is detected, the action finds a machine
code corresponding to the instruction (pass 2) or
only determines the length of the instruction
machine code.

2.7 Post - pass 1 processing
Pass 1 is terminated when the lexical

analyzer discovers end of the input file. The
lexical analyzer calls a designer supplied
function yywrap() . This function is called after
terminating of the pass 2.
In case of errors coming from syntax analysis of
a program or post pass 1 processing, the
assembler sends a message and ends its work.
Otherwise the input file is reopened and the pass
2 is started.

2.8 Post - pass 2 processing
At the end of file calls again the function

yywrap(Function yywrap is called by lex when
input is exhausted. Return 1 if you are done or 0
if more processing is required) like in post-pass
1 processing but this time the second part of the
function is active, to produce a reference table
including information about all defined
/declared labels and references to them.

3. Conclusion
It is worth to notice that LEX and YACC

seem to be a too advanced tool for constructing
of such simple compilers like assemblers. It also
helps us to generate the syntax parsing modules
in a short period of time, LEX and YACC
having the ability to implement the lexical
analyzer and parser and both are based on the
minimal specification of a programming
language which includes the definitions of the
set of symbols used (lexical rules), the set of
valid programs (syntax rules) and the "meaning"

Melhum and Mahmood Iraqi journal of science, Vol.53, No.1, 2012, pp.179-185185

185

of valid programs (semantics). Using this way
implemented by Z80 assembler.

References
1. Peter, P.K. And sammy, T.K., 1990.A

Generative Approach to universal cross
assembler Design, ACM SIGPLAN
25(1), pp 43-51.

2. Nakano, K. and Ito, Y. 2008. Processor,
Assembler, and Complier Design
Education using an FPGA, IEEE
International Conference on Parallel
and Distributed Systems, 14(1)
pp 723-728.

3. Lappalainen, P. 2001. Visualization of
assembly-code conversion into machine
code. http://www.ee.oulu.fi/~pl1/tkt1/

4. Niemann, T. 2004. A Guid to LEX &
YACC. http://www.scribd.com/ doc/
43874121/A-Guide-to-Lex-Yacc-By-
Thomas-Niemann

5. Linseman, A. and Nicol, S. 1988. MKS
LEX & Yacc reference manual, Mortice
Kerns Systems, Inc. pp 240-270.

6. Levine, J. and Mason, T. 1992. Lex &
Yacc. Second Edition O’Reilly and
Associates. Brown, pp 235-300.

7. Ashton, B.; Bradley, J.; Dixon, T.;
Gaines, J.; Lodder, M. and Ricks, M.,
2007. DDC Assembly Language
Specification and Assembler
Implementation, Engineering Clinic
Project Sponsored by Hill Air Force
Base, University of Utah.

8. Aho, A.V.; Sethi, R. and Ullman, J.
2006. Compilers Principles Techniques
and Tools, 2nd Edition,Dargon Book, pp
156-170 http://www.jim-gaines.com/
research_DDC/ DDCFinalPaper3.pdf

9. Nicol, G.T. 1993. Flex: the lexical
scanner generator. Free Software
Foundation, Version
2.3.7.http://www.amazon.com/Flex-
Lexical-Scanner-Generator-
Version/dp/1882114213

