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abstract 

     The aim of this paper is to study the effects of a magnetic field on unsteady flow 

of a viscoelastic fluid with the fractional Burgers' model between two parallel plates 

.The fractional calculus approach is introduced to establish the constitutive 

relationship of the viscoelastic fluid. Closed form solutions for velocity and shear 

stress are obtained by  using the finite Fourier sine transform and discrete Laplace 

transform of the sequential fractional derivatives. For ==1 the solution that are 

obtained are going corresponding to ordinary Oldroyd-B fluid. Finally, the effect of 

the material parameters on the velocity profile and shear stress profile spotlighted by 

means of the graphical illustrations. 
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 الخلاصة
ن متوازيية إنّ هدفَ هذا البحث هو دراسة تأثيراتَ  حقل مغناطيسيي عميا التيدفال اليلا مسيتقرل بيين صي يحتي     

لمائع لزج بنموذجل بيركر ذو المشتقات الكسريه. حساب الت اضيل والتكاميلل الكسيرد ايد اسيتخدا لكتابية م ياد ت 
الحركيية . باسييتخداا تحييويلات فورييية و بييلاس حصييمنا عمييا الحييل المضييبوط  لكييل ميين حقييل السييرعةَ و إجهييادل 
د مين الينمطنحصيل عميا الحَيلّ لميائع أولدرويي =α   1= βالقيِّ  . عنيدما     B أخييرا,  تيأثير الم مميات عميا .      
كييييييييييل ميييييييييين حقييييييييييل السيييييييييييرعةَ و إجهييييييييييادل القييييييييييِّ  اييييييييييد درسيييييييييييت ميييييييييين خييييييييييلال ا يضيييييييييياحات التخطيطيييييييييييية .
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1. Introduction 
     In recent years, the flow of non-Newtonian 
fluid(paints, grease, oils liquid polymers,…)  
has received much attention for their 
increasing industrial and technological 
applications such as extrusion polymers fluid, 
exotic lubricants, colloidal and suspension 
solutions, food stuff and many other 
applications. Mathematically the non-
Newtonian fluids have non-linear relationship 
between the stress and the rate of strain, because 

of this there is no model which can alone describe 

the behavior of all non-Newtonian fluid. Therefore, 

several constitutive equations for the non-

Newtonian fluid models have been proposed. The 

Oldroyd-B fluid is one of them which cannot 

describe by a typical relation between shear stress 

and the rate of strain, for this reason many models 

of constitutive equations have been proposed for 

these fluids [1,2,3]. The subject of fractional 
calculus [4] has been successfully used to 
describe the viscoelasticity.In general, the 
constitutive equations for generalized non-
Newtonian fluids are modified from the well 
known models by replacing the time derivative 
of an integer order with the so called Riemann-
Liouville fractional calculus operators. Qi and 
Xu[1] discussed the Stokes' first problem for a 
viscoelastic fluid with generalized Oldroyd-B 
model. Fetecau et al.[5,6] discussed some 
accelerated flows of generalized Oldroyd-B 
fluid. Khan[7] investigated the 
magnaticohydrodynamic (MHD) flow of 
generalized Oldroyd-B fluid in a circular pipe. 
Liancun et al.[8] considered the MHD flow of 
an incompressible generalized Oldroyd-B fluid  
due to an infinite accelerating plate. Later on 
[9],the same authors, investigated the slip 
effects on MHD flow of a generalized 
Oldroyd-B fluid with fractional derivative. 
Hyder Ali[10] , discussed some unidirectional 
flow of a viscoelastic fluid between two 
parallel plates with fractional Burgers' fluid 
model. 
In the present work we studied the effects of 
MHD on the unsteady flow of  a viscoelastic 
fluid between two parallel plates with 
fractional Burgers' fluid model that given by 
Hyder [10], also some especial cases are 

recovered. The exact solutions for velocity 
distribution and shear stress are established by 
using the finite Fourier sine transform and 
discrete Laplace transform of the sequential 

fractional derivatives. 

2. Governing equations 
     The fundamental equations governing the 
unsteady motion of an incompressible 
viscoelastic fluid include the continuity 

equation and the momentum equations are 

                                                (1) 

                   (2) 

Where  is the velocity field,  is the fluid 

density, p the pressure and S the extra stress 
tensor. The extra stress tensor S for a fractional 
Burgers' fluid satisfies the following 
constitutive equation                                                                                                            

 (3) 

Where  is the first Rivlin-Eriksen 

tensor with  the velocity gradient,  the 

dynamic viscosity, λ1and λ3 (λ3 < λ1 ) are the 
relaxation and retardation times, respectively, 

λ2 is a material constant.  and  are 

fractional calculus parameters such that 

 and  is the upper convected 

time derivative defined as[11], 

     

and                                 (4)  

                             

Where  is the fractional differential 

operator, which is defined as[4] 

 
   

Where Г(.) is the Gamma function.For 
unidirectional flow , we shall consider 
unsteady flows wherein velocity and stress 
filed are of the form  
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  V= V(y,t)=u(y,t)i,       S=S(y,t),              (5) 
Where i is the unit vector in the x-coordinate 
direction of the Cartesian coordinate system. 
For such flow the constraint of 
incompressibility is automatically satisfied. 
Substituting Eq.(5) into Eqs.(1) and (3) and 
taking into account the initial condition 

                             (6) 

i.e., the fluid being at rest up to time t=0. For 
the components of stress field S we have 
Syy=Szz=Sxz=Syz=0 and Sxy=Syx, we obtain the 
relevant equations 

                        (7) 

    (8)  

Eliminating Sxy between Eqs. (7) and (8) , 
we arrive at the following fractional 

differential equation 

                    
 Where  is the  kinematic viscosity 

of the fluid and M= .  

3.Plane Poiseuille flow 
     Let us consider the flow problem of an 
incompressible fractional Burgers' fluid 
between two infinitely parallel plates. Suppose 
that the fluid is bounded y two parallel plates 
in the (x,z) plane, these plates are placed  at y= 
0 and y = h. Initially, the fluid is at rest and at 
time t=0

+
 and the motion starts due to a 

constant pressure gradient  . Under 

these assumptions, the governing equation in 
the present of the pressure gradient in the flow 
direction is given by 

And its corresponding initial and boundary 

conditions are  

u(y,0)=0;  0 < y < h                               (11) 

u(0,t)=u(h,t)=0; for t ≥ 0                       (12) 

4. Calcution of the velocity field  
     In order to solve the above problem, we 
shall use the finite Fourier sine transform and 
fractional Laplace transform. Consequently, 
multiplying Eq.(10) by (2/π)sin(nπy/h) 
,integration with respect to y from 0 to h and 
keeping in mind the conditions(12) we get 
    

        

Where  is the finite Fourier sine 

transform of  and . Next, 

applying Laplace transform for sequential 

fractional derivative to Eq.(13) and using 

initial condition(10), we get  

 

 

                                     (14)  

In order to obtain an analytic solution for this 
problem and to avoid lengthy calculations of 
residues and contour integrals, we apply the 
discrete inverse Laplace transform method [4]. 
However, for more suitable presentation of 
final result, we rewrite Eq.(14) in series form 
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Where 

 .Taking the inverse Laplace transform of the 
last equation, we obtain 
   

 

 

 

      (15) 

 
In which Eα,β(z) is the generalized Mittage-
Leffler function [4] and 
 

 
In obtaining Eq.(15), the following property of 
the generalized Mittage-Leffler function is 
used[4]; 

      

Finally, the inverse finite Fourier sine transform 
gives the analytic solution of velocity 
distribution  

 

 
                                                                (16)      

5.Calcution of the shear stress 
     Applying the Laplace transform to Eq.(8) 
and using the initial condition(6), we obtain 

 
                                                           (17) 

The image function  of u(y, t) can be 

obtained in terms of (16). Substituting the 
result into Eq.(17),yields  

6.The limiting cases 
1- Making the limit of Eqs.(16) and (18) when 

α≠0  (a=0) and  (d=e=f=0),we 

can get the velocity distribution for a 
generalized Oldroyd-B fluid , as obtained in 
Ref[12].Thus the velocity and the stress fields 
reduce to 
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           (19) 

 

 

 
   

       
The consequence of this step is that, all the 
limiting cases that are covered in Ref[5],such 
as generalized second grade fluid, generalized 
Maxwell fluid and the Oldroyd-B fluid, can be 
covered also through our work.  
2- Making the limit of Eqs.(16) and (18) when 

α≠0 and  (d=e=f=0),we can get similar 

solutions velocity distribution for  unsteady 
flows of a viscoelastic fluid with the fractional 
Burgers’  model, as obtained in Ref[10].Thus 
the velocity and the stress fields reduce to 

 

 
                     

                                      

                                                                  (21) 

 

 
 

 

7. Results and discussion 
     Due to the increase in the importance of the 
viscoelastic fluid the exact analytic solution to 
unsteady flow of a viscoelastic fluid with the 
fractional Burgers' model is obtained in terms 
of Mittage-Leffler function by using the finite 
Fourier sine and the Laplace transform for 
fractional derivative. In the limiting cases α≠0 

 ,  and α≠0 and ,our 

solutions reduce to those corresponding to a 
generalized Oldroyd-B fluid(and the 
consequences cases) and for  unsteady flows of 
a viscoelastic fluid with the fractional Burgers’  
model. 
In this section numerical results are given to 
illustrate the velocity and stress fields 
corresponding to Eqs (16) and (18) 
respectively. The results are interpret with 
respect to the variation of emerging parameters 
of interest. In all figures we take ν=0.002.  
(Fig 1) is plotted to illustrate the effect of the 

variation of 1 .It can be seen that an increase 

in 1 is to slow down the flow and this is true 
for small and large time. In contrary, the 

increase in 2 has leads to increase in the 
velocity value, as shown in 
(Fig 2). Figures (3 and 4) are depicted to show 

the velocity changes with the parameters 3 
and the fractional parameter β .From them we 
can see that they have opposite effect on the 
velocity distribution. Figures (5 and 6) are 
plotted to illustrate the effect of the fractional 
parameter α and the MHD parameter M, we 
observed that they have the same effect with 
exception that they have different effect on the 
velocity value .(Fig 7),shows the effect of the 
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time t, in which as t increases there is increase 
in velocity. 
Figs.(8 and 14) show the effect of different 
parameters upon the shear stress. The 

parameters 1 and β as they increase they have 
the same effect upon the shear stress ,see 

figures(8 and 11).For small value of 2 leads to 
decrease in shear stress value ,but for large 

value of 2 we observed opposite effect, see( 

fig 9). As 3 increases there is small increasing 
in the shear stress as shown in (fig 10).Finally, 
the variation in α, the MHD parameter M and 
the time t, we noted that there is a variation in 
shear stress about the origin as shown in 
figures (12,13 and  14). 
 

 
Fig 1 : Velocity profile for 1=0.8, 1, 1.2,1.4 

(Solid line, dash, dot-dash, dot) 
2=0.1,3=0.5,β=0.6,α=0.4,M=1,t=2. 

 

 
Fig 2 : Velocity profile for 2=2, 3,  5 , 

(Solid line, dash, dot-dash, dot) 

1=0.9,3=0.2,β=0.6,α=0.4,M=1,t=0.05. 

 

 

             
Fig 3 : Velocity profile for 3=0.05, 1, 2,3 

(Solid line, dash, dot-dash, dot) 
1=4.2,2=1,β=0.6,α=0.4,M=1,t=1. 

 

 
Fig 4 : Velocity profile for β =0.5 , 2 , 2.5 , 3 

(Solid line, dash, dot-dash, dot) 

1=1,2=0.4,3=0.9,α=0.4,M=5,t=0.5. 

 Fig 5 : Velocity profile for α =0.1,0.3,0.5,0.7   

(Solid line, dash, dot-dash, dot)                                                              

1=0.9,2=1,3=0.8, β=0.8,M=1,t=0.5.    
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                   Fig 6 : Velocity profile for M 

=0.001,1,2,4  

(Solid line, dash, dot-dash, dot) 

1=0.9,2=1,3=0.8, β=0.4, α =0.4,t=0.5. 

 

Fig 7: Velocity profile for t =0.3,0.5,1,1.2   (Solid 

line, dash, dot-dash, dot 

      1=0.9,2=1,3=0.8, β=0.5, α =0.4,M=1. 

 
        Fig 8 :Stress profile for  1=0.8, 1, 1.2,1.4 

(Solid line, dash, dot-dash, dot) 

2=0.1,3=0.7,β=0.6,α=0.4,M=1,t=2. 

 
Fig 9 : Stress profile for  2=0.001,0.01,0.1,0.3 

(Solid line, dash, dot-dash, dot) 

1=0.9,3=0.8,β=0.6,α=0.4,M=1,t=2. 

 
       Fig 10 : Stress profile for  3=0.05, 1, 2,2.8 

(Solid line, dash, dot-dash, dot) 

1=3,2=1,β=0.6,α=0.4,M=1,t=2. 

 
Fig 11: Stress profile for  β =0.5,1,1.5,2    

(Solid line, dash, dot-dash, dot) 

1=0.9,2=0.01,3=0.5,α=0.4,M=1,t=2. 
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Fig 12 : Stress profile for  α =0.01,0.1,0.5,0.7 

(Solid line, dash, dot-dash, dot) 

1=0.9,2=1,3=0.8, β=0.8,M=1.5,t=2. 

 
Fig 13: Stress profile for  M =1,1.5,2.2,2.4 

(Solid line, dash, dot-dash, dot) 

1=0.9,2=1,3=0.8, β=0.6, α =0.4,t=2. 

 

 
         Fig 14 : Stress profile for  t =0.01,0.5,1,1.5   

              (Solid line, dash, dot-dash, dot) , 

1=0.9,2=1,3=0.8, β=0.6, α =0.4,M=1.5. 
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