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abstract

The aim of this paperis to study the effects of a magnetic field on unsteady flow
of a viscoelastic fluid with the fractional Burgers' model between two parallel plates
.The fractional calculus approach is introduced to establish the constitutive
relationship of the viscoelastic fluid. Closed form solutions for velocity and shear
stress are obtained by using the finite Fourier sine transform and discrete Laplace
transform of the sequential fractional derivatives. For a=B=1 the solution that are
obtained are going corresponding to ordinary Oldroyd-B fluid. Finally, the effect of
the material parameters on the velocity profile and shear stress profile spotlighted by
means of the graphical illustrations.
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1. Introduction

In recent years, the flow of non-Newtonian
fluid(paints, grease, oils liquid polymers,...)
has received much attention for their
increasing  industrial and  technological
applications such as extrusion polymers fluid,

exotic lubricants, colloidal and suspension
solutions, food stuff and many other
applications. ~ Mathematically  the  non-

Newtonian fluids have non-linear relationship
between the stress and the rate of strain, because
of this there is no model which can alone describe
the behavior of all non-Newtonian fluid. Therefore,
several constitutive equations for the non-
Newtonian fluid models have been proposed. The
Oldroyd-B fluid is one of them which cannot
describe by a typical relation between shear stress
and the rate of strain, for this reason many models
of constitutive equations have been proposed for
these fluids [1,23]. The subject of fractional
calculus [4] has been successfully used to
describe the viscoelasticity.In general, the
constitutive equations for generalized non-
Newtonian fluids are modified from the well
known models by replacing the time derivative
of an integer order with the so called Riemann-
Liouville fractional calculus operators. Qi and
Xu[1] discussed the Stokes' first problem for a
viscoelastic fluid with generalized Oldroyd-B
model. Fetecau et al.[5,6] discussed some
accelerated flows of generalized Oldroyd-B
fluid. Khan[7] investigated the
magnaticohydrodynamic  (MHD) flow of
generalized Oldroyd-B fluid in a circular pipe.
Liancun et al.[8] considered the MHD flow of
an incompressible generalized Oldroyd-B fluid
due to an infinite accelerating plate. Later on
[9]ithe same authors, investigated the slip
effects on MHD flow of a generalized
Oldroyd-B fluid with fractional derivative.
Hyder Ali[10] , discussed some unidirectional
flow of a viscoelastic fluid between two
parallel plates with fractional Burgers' fluid
model.

In the present work we studied the effects of
MHD on the unsteady flow of a viscoelastic
fluid between two parallel plates with
fractional Burgers' fluid model that given by
Hyder [10], also some especial cases are
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recovered. The exact solutions for wvelocity
distribution and shear stress are established by
using the finite Fourier sine transform and
discrete Laplace transform of the sequential

fractional derivatives.

2. Governing equations
The fundamental equations governing the
unsteady motion of an incompressible

viscoelastic ~ fluid include the continuity
equation and the momentum equations are

div V=0 (1)
oI 4 (VIV)] = —Vp+V S )

ot

Where V is the velocity field, p is the fluid
density, p the pressure and S the extra stress
tensor. The extra stress tensor S for a fractional
Burgers'  fluid satisfies the  following
constitutive equation

(1+ 4208+ 2202%)s = u(1+ 2507)A (3)

Where A =L+ LT is the first Rivlin-Eriksen

tensor with L the wvelocity gradient, 1 the
dynamic viscosity, Mand A3 (As < A, ) are the
relaxation and retardation times, respectively,
L. is a material constant. @ andf are
fractional calculus parameters such that
0=a=f and D, is the upper convected

time derivative defined as[11],
DfS=DF+ (V.V)S — LS —SLT

and D#"s=DFD"s) (4)

5fs = Df + (V.V)S — LS — SIT
Where Df is the fractional differential
operator, which is defined as[4]

1 d
Df [F()] = ma

0=m=1

[l{t — 1) % flrddr,
]

Where I'() is the Gamma function.For
unidirectional flow , we shall consider
unsteady flows wherein velocity and stress
filed are of the form
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V= V(yh=ulyhi,  S=S(y.), ()
Where i is the unit vector in the x-coordinate
direction of the Cartesian coordinate system.
For such flow the constraint of
incompressibility is automatically satisfied.
Substituting Eq.(5) into Egs.(1) and (3) and
taking into account the initial condition
8(y,0) = =22 = ¢ (6)
1.e., the fluid being at rest up to time t=0. For
the components of stress field S we have
Syy=S,=5x=S,,=0 and S,=S,x, we obtain the
relevant equations

pe=—2+2¢ —oBlu U
2 — Brfy
(1+2808+ 18D%°)s, = (1 + 2DF)Z (9)

Eliminating Sxy between Egs. (7) and (8) ,
we arrive at the following fractional
differential equation

(1+A“DI+A“D3“)NM 5{1+A§D{‘+

EDFIZ +4(1 44 DE)“"“ M(14

A4DF + 18 DEYu(yc)

©

Where v = i/ p is the kinematic viscosity
of the fluid and M=cBj/p.

3.Plane Poiseuille flow

Let us consider the flow problem of an
incompressible  fractional Burgers'  fluid
between two infinitely parallel plates. Suppose
that the fluid is bounded y two parallel plates
in the (x,z) plane, these plates are placed at y=
0 and y = h. Initially, the fluid is at rest and at
time t=0" and the motion starts due to a

. 2
constant pressure gradient A = —%ﬁ . Under

these assumptions, the governing equation in
the present of the pressure gradient in the flow
direction is given by

YVYY
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& Ty & y 2oy A A
{1+.1 D+ 43 D228 = (1 + 54
?u: —)a+v(1+25 DE}%—M{HHDH
A2 D2y £) (10)

And its corresponding initial and boundary
conditions are

u(y,0)=0;

u(0,t)=u(h,t)=0; fort>0

0O<y<h (11)

(12)

4. Calcution of the velocity field

In order to solve the above problem, we
shall use the finite Fourier sine transform and
fractional Laplace transform. Consequently,
multiplying  Eq.(10) by (2/n)sin(nmy/h)
Jintegration with respect to y from 0 to h and
keeping in mind the conditions(12) we get

(1+2§DF+ 23 D) =00 = ﬂ-:l—:—ﬂ“y(l N
?:1—_::3 ?Elt—:u_‘l) - vEﬂ:{l + ‘12 Dtﬁ}ua{ﬂ' £ -

M(1+ A¢ D8+ A% D2 )u, (n, ©) (13)

Where u.(&t) is the finite Fourier sine

transform of u(v.t) and €, = nm/h. Next,
applying Laplace transform for sequential
fractional derivative to EQ.(13) and using
initial condition(10), we get

u(n, s] Bvh

Ah?

B
(1+A%s%+ 2855 )/s(s + 1% s
25y e 21425 F) $ MO+ 22 4 A2520))
(14)

Uln, s) =

E'+1+

In order to obtain an analytic solution for this
problem and to avoid lengthy calculations of
residues and contour integrals, we apply the
discrete inverse Laplace transform method [4].
However, for more suitable presentation of
final result, we rewrite Eq.(14) in series form
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Uln, s)
_Bv(1-(=1)"

hie,
x ) (-1)¥
k=0

‘1—mjk+13+n'e‘1§'[a+fjlfz Sﬁ {1 + AE g% 4 ‘1? S:r::]

1
1
{s“ + A_E:]k+1
1

a.bcdefz0 -
k! M+t (y g 2)bee

alblctidlelfl

s+b+c+d+e+f=k

Where

d=—(k+2)+ ce+(2a+1)at+2af+fc
.Taking the inverse Laplace transform of the
last equation, we obtain

u;{ﬂut]_gv 1_{ 1] ]Z( ¥ x

abcdefzn
k! MA+e+t (g 2)Be

alblelidlelfl

a+b+c+d+e+f=k
A,_El:k-l-ﬂ-l- s AEEEH} ,lEE akta-d-
1 A

B o (F)+ 58X, (%) +

4 g® (1}
22 Tg-a-b .zlg

In which E,g4(z) is the generalized Mittage-
Leffler function [4] and

(15)

) o ~ = G+ m)zl
Ew(z]:@Enﬁ{ﬂ‘;j:r{aj+am+ﬁj

In obtaining Eq.(15), the following property of
the generalized Mittage-Leffler function is

used[4];
- et e

L_l {m! B:"_I'l

(e+c)
Finally, the inverse finite Fourier sine transform
gives the analytic solution of velocity
distribution

YVY
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u(y= 152 {1_{ 1] ]Z{ 1)

X kzﬂ(—l]k

x Azmﬁk+13+n’5~‘1g{a+f_‘|ﬂ[§!: t£+5.5.1

. -t A -0
E:;:}:I::i( n‘]+_E.ms(_]+
sl g oo j_i . hmW

B L [t sin(—1)
t;ﬂ. O, = -& Af

5.Calcution of the shear stress
Applying the Laplace transform to Eq.(8)
and using the initial condition(6), we obtain
1428 5P 31 (y.5)
QV’S]=H{1+J{5“+L?S:“] ay

ab.cdefz0 -
k! MA+e+ (y g 2)prest

alble! ldlelfl

a+b+c+d+e+f=k

(16)

(17)
The image function u(y,s) of u(y, t) can be
obtained in terms of (16). Substituting the
result into Eq.(17),yields

T—lﬁuz (1—{ 1]]

= a.bedefzn
XZ{—IJ]‘
k=0

x A7t vas patad) ghe tﬂ*“‘”[E]‘ ()
ok L Af

k! "«'Id"'Hf {11 £ ::]h+|:+1
=t n

alblclldlelfl

a+b+e+d+e+i=k

.1'3 1

# o aps (%L)] cos(~- y) (18)

6.The limiting cases

1- Making the limit of Egs.(16) and (18) when
0£0 A; = 0 (a=0) and M — 0 (d=e=f=0),we
can get the wvelocity distribution for a
generalized Oldroyd-B fluid , as obtained in
Ref[12].Thus the velocity and the stress fields
reduce to
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i ek 1-Be

12 g {—t":l
t® w, atk+2-Fo Af

+E:I::]j£lk+2-B: { jJ_L;:I

(19)

sin( 77y

=

Tzlﬁuz S ) ey

nimlh
n=1

k+1 Tk+1

= k )
Sy (st

k=0 c=0 1

. . [ =
t§+1+]~'|3'=+1 [E:.c]?-:t+}:+2-l3|: (ﬁ)
i 1 —t= T
ry E:.t].M:t-l3+[k+2)-l3E ( %J] ':':'S':ﬂ'? ¥) (20)
The consequence of this step is that, all the
limiting cases that are covered in Ref[5],such
as generalized second grade fluid, generalized
Maxwell fluid and the Oldroyd-B fluid, can be
covered also through our work.
2- Making the limit of Egs.(16) and (18) when
a0 and M — 0 (d=e=f=0),we can get similar
solutions velocity distribution for  unsteady
flows of a viscoelastic fluid with the fractional
Burgers’ model, as obtained in Ref[10].Thus
the velocity and the stress fields reduce to

v A= (=0
u(y.t)=16 HZL R

= a,b.c20
— 1 Iyb+c+1
13k k! (v En ) ok+o—-G-1
(: 1:] Ibl | t
k=0 a+b+c=k e

EX (Z)+EeX (D) +

tIT.
a, a-5 E t2 o, -6
A5 EIZ];J ( —t"')
LG PR & A

= (1—(-1)m)

n‘mth

T=16pn

n=1
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2= ab.cz0
= 1 Iyb+c+1
E (—1)% E k! (v En ) .1_':':“1:'
alblc! t
k=D a+b+c=k

PEILRE S [E ) {—t“) L

L E
AE K -t nw
SE® (ﬁ]] cos(Z ) 22)
In Egs.(21) and (22) we have
§=—(k+2)+ (2a+1)at+ Bc.

7. Results and discussion

Due to the increase in the importance of the
viscoelastic fluid the exact analytic solution to
unsteady flow of a viscoelastic fluid with the
fractional Burgers' model is obtained in terms
of Mittage-Leffler function by using the finite
Fourier sine and the Laplace transform for
fractional derivative. In the limiting cases a0
A, =0 M—=0 and 0#0 and M — 0 our

solutions reduce to those corresponding to a
generalized Oldroyd-B fluid@and  the
consequences cases) and for unsteady flows of
a viscoelastic fluid with the fractional Burgers’
model.

In this section numerical results are given to
illustrate  the velocity and stress fields
corresponding to Egs (16) and (18)
respectively. The results are interpret with
respect to the variation of emerging parameters
of interest. In all figures we take v=0.002.

(Fig 1) is plotted to illustrate the effect of the
variation of A; .It can be seen that an increase
in A; is to slow down the flow and this is true
for small and large time. In contrary, the
increase in A, has leads to increase in the
velocity value, as shown in

(Fig 2). Figures (3 and 4) are depicted to show
the velocity changes with the parameters A;
and the fractional parameter § .From them we
can see that they have opposite effect on the
velocity distribution. Figures (5 and 6) are
plotted to illustrate the effect of the fractional
parameter o and the MHD parameter M, we
observed that they have the same effect with
exception that they have different effect on the
velocity value .(Fig 7),shows the effect of the
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time t, in which as t increases there is increase
in velocity.

Figs.(8 and 14) show the effect of different
parameters upon the shear stress. The
parameters A; and B as they increase they have
the same effect upon the shear stress see
figures(8 and 11).For small value of X, leads to
decrease in shear stress value ,but for large
value of A, we observed opposite effect, see(
fig 9). As A increases there is small increasing
in the shear stress as shown in (fig 10).Finally,
the variation in o, the MHD parameter M and
the time t, we noted that there is a variation in
shear stress about the origin as shown in
figures (12,13 and 14).

o 0.2 0.4 0.8 0.8 1
Fig 1 : Velocity profile for A;=0.8,1,1.2,1.4
(Solid line, dash, dot-dash, dot)
A»=0.1,23=0.5,$=0.6,0=0.4, M=1,t=2.

o 0.z 0% o_& 0.8 i
Fig 2 : Velocity profile for A,=2, 3, 5,
(Solid line, dash, dot-dash, dot)
21=0.9,A5=0.2,$=0.6,0=0.4,M=1,t=0.05.
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L] 0.2 0.4 0.8 0.8 1
Fig 3 : Velocity profile for A3=0.05, 1, 2,3
(Solid line, dash, dot-dash, dot)
A1=4.2,A,=1,=0.6,0=0.4,M=1,t=1.

20
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0

o 0.2 0.4 0.6 0.8 1
Fig 4 : Velocity profile for § =0.5,2,2.5,3
(Solid line, dash, dot-dash, dot)
7\,1:1 ,7\,220 4 ,7\,3=0 .9,(l=0 4 ,M=5,t=0.5.
VNN
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0 0.2 0.4 0.6 0.8 1
Fig 5 : Velocity profile for a =0.1,0.3,0.5,0.7
(Solid line, dash, dot-dash, dot)
}\,1:0.9,)\.2:1,7\,3=0.8, B=0.8,M=1,t=0.5.
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o 0.2 0.4 0.6 08 1 o 1 2 2 4
Fig 6 : Velocity profile for M Fig 9 : Stress profile for 4,=0.001,0.01,0.1,0.3
- =0.001,1.24 (Solid line, dash, dot-dash, dot)
(Solid line, dash, dot-dash, dot) %4=0.9,15=0.8,8=0.6,0=0.4,M=1,t=2.
21=0.9,A,=1,A3=0.8, p=0.4, a =0.4,t=0.5.
0.006 [- ",
&0 - ~ b
0004 B ";\
s AN : A\
o e | e \
20 ] o ‘ ¥
2 —0.002 \.:d\. . ,‘f?*
ST
10 -
0 1 2 2 4
']
Fig 10 : Stress profile for A3=0.05, 1,2,2.8
(Solid line, dash, dot-dash, dot)
Fig 7: Velocity profile for t=0.3,0.5,1,1.2 (Solid A=3,2,=1,$=0.6,a=0.4,M=1,t=2.
ling, dash, dot-dash, dot
A1=0.9,A,=1,A3=0.8, p=0.5, o. =0.4,M=1.
0.5
0.4
0.2
0.2
- ¥
0.1
o D P ¥
TR %
-0.1 T
0.2 L] 1 2 2 4
. " n " " Fig 11: Stress profile for p=0.5,1,1.5,2
(Solid line, dash, dot-dash, dot)
Fig 8 :Stress profile for 4;=0.8,1,12,1.4 21=0.9,1,=0.01,A5=0.5,0=0.4,M=1,t=2.

(Solid line, dash, dot-dash, dot)
22=0.1,A3=0.7,$=0.6,0=0.4,M=1,t=2.
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Fig 12 : Stress profile for a =0.01,0.1,0.5,0.7
(Solid line, dash, dot-dash, dot)
21=0.9,A,=1 A3=0.8, p=0.8,M=1.5,t=2.

- .
2 "\\.“ ———

Fig 13: Stress profile for M =1,1.5,2.2,2.4
(Solid line, dash, dot-dash, dot)
A1=0.9,2,=1,25=0.8, p=0.6, o =0.4,t=2.
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Fig 14 : Stress profile for t=0.01,05,1,1.5
(Solid line, dash, dot-dash, dot) ,
A1=0.9,2,=1,25=0.8, p=0.6, o =0.4,M=1.5.
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