

REMARKS OF THE INTERSECTION OF YOUNG'S DIAGRAMS CORE

Ammar S. Mahmood, Sarah M. Mahmood, Fadia S. Naoum
Department of Mathematics, College of Education, University of Mosul. Mosul-Iraq.

Abstract

In this research, many simple new techniques will be used supported by numerical and theoretical proofs of the methods of the intersection of β-numbers for any partition μ of r; which represented by Mahmood in 2010, in which he could appoint the location and the number of beads using "Guide value" and "The main diagram" methods

ملاحظات حول تقاطع قلب مخططات يونك

$$
\begin{aligned}
& \text { عمار صديق محمود، سارة موفق محمود، فادية سنحاريب نـوم } \\
& \text { قسم الرياضيات، كلية النربية، جامعة الموصل. الموصل-العراق. } \\
& \text { ملخص البحث: } \\
& \text { في هذا البحث يتم استخدام تقنيـات جديدة وسهلة مدعومـة ببراهين نظريـة وحسابية لمفهوم تقاطع أعداد } \\
& \text { لتجزئة معينة } \mu \text { من } r \text { والتي قدمها محمود في } 2010 \text { حيث تمكن من تحديد موقع وعدد الكرات أو (العقد) } \\
& \text { باستخدام مفهومي "القيمة الليل" و "الكخطط الرئيسي". }
\end{aligned}
$$

I. Introduction:

Let r be a non-negative integer. A composition μ of r is a sequence $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$ of non-negative integers such that $|\mu|=\sum_{j=1}^{n} \mu_{j}=r$.
A composition μ is a partition if $\mu_{j} \geq \mu_{j+1}$, for all $j \geq 1$.
β-numbers is defined by; see James [1]:
" Fix μ is a partition of r. Choose an integer b greater than or equal to the number of parts of μ and define $\beta_{i}=\mu_{i}+b-i, \quad 1 \leq i \leq b$. The set $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{b}\right\}$ is said to be a set of β numbers for μ."

For example, if $\mu=(5,4,4,2,1)$, then $n=5$ and if we take $b=7$, then β-numbers are $\{11,9,8,5,3,1,0\}$.
We can represent β-numbers by the diagram (A):

where every β will be represented by a bead which takes its location in (diagram A). Returning to the above example we will see:

Many researchers had been study this subject as it has a connection with representation theory of Iwahori-Hecke algebras, such as Fayers in [2] and [3].

II. The intersection of $\boldsymbol{\beta}$-numbers :

In this part, we will deal with the main diagram and guide value methods which represented by Mahmood in [4]. We will try to give this subject by new technique which support the previous results.

Since the value of $b \geq n$, then we deal with an infinite numbers of values of b. Here we want to mention that these values have a special diagram (A) for it, but there is a repeated part of this diagram with other values where a "Down-shifted" or "Up-shifted", occurs when we take the following:
b_{1} if $b=n, \quad b_{2}$ if $b=n+1, \ldots,$.
b_{e} if $b=n+(e-1)$
Definition (2.1):[4] For any β-numbers in (diag.A), the values of $b_{1}, b_{2}, \ldots, b_{e}$ are called the guides.

By the above example, the guides values are $b_{1}=5$ and $b_{2}=6$ when $\mu=(5,4,4,2,1)$:

$\mathrm{e}=2$		$\mathrm{b}_{1}=5$		$\mathrm{b}_{1}+1(\mathrm{e})$	
0	1	-	\bullet	-	-
2	3	-	\bullet	-	-
4	5	-	-	-	-
6	7	-	\bullet	-	-
8	9	-	-	-	\bullet
10	11	-	-	-	\bullet
12	13	-	-	-	-

And

$\mathrm{e}=2$		$\mathrm{~b}_{2}=6$		$\mathrm{~b}_{2}+1(\mathrm{e})$
0	1	$\bullet \bullet$	-	\bullet
2	3	\bullet	-	
4	5	\bullet	-	
6	7	-	\bullet	\bullet
8	9	\bullet	-	\bullet
10	11	\bullet	-	-
12	13	-	-	\bullet

we will define any (diagram A) that corresponds any b guides as a "main diagram" or "guide diagram".[4]
Theorem (2.2): [4, 2.5] There is e of main diagrams for any partition μ of r.
Now, we return to the intersection method by:

1. let τ be the number of redundant part pf the partition μ of r, then we have $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)=\left(\mu_{1}^{\tau_{1}}, \mu_{2}^{\tau_{2}}, \ldots, \mu_{m}^{\tau_{m}}\right)$ such that $r=\sum_{j=1}^{n} \mu_{j}=\sum_{l=1}^{m} \mu_{l}^{\tau_{l}}$.
2. We denote the intersection of main diagrams

$$
\text { by } \bigcap_{s=1}^{e} m \cdot d{ }_{b_{s}} \text {. }
$$

We see in (2.3) that there is just one bead where there isn't any bead in (2.4). So the intersection result as a numerical value will be ϕ in the case of no existence for any bead, or, v in the case that v common beads exist in main diagrams (A).

m.d. $\mathrm{b}_{1}=5$	m.d. $\mathrm{b}_{2}=6$		$\bigcap_{S=1}^{2} \mathrm{~m} \cdot \mathrm{~d} \cdot \mathrm{~b}_{\mathrm{b}}$
- •	- -		- -
- •			- -
- -	- -	\longrightarrow	- -
- •			- •
- •	- -		- -
- -	- -		- -

m.d. $b_{1}=5$	m.d. $\mathrm{b}_{2}=6$	m.d. $b_{3}=7$		$\bigcap_{S=1}^{3} \mathrm{~m} \cdot \mathrm{~d} \cdot \mathrm{~b}_{s}$
- - -	- - -	- •		- - -
- - -	- • -	-		- -
- •	- • -	- - •	\longrightarrow	- - -
-	-	-		- -

Remark (2.5): For any e, all beads in all runners of main diagram $b=l$ will be "rightshifted" in the next main diagram $b=l+1$
under consideration that the last runner will be right-shifted to the first runner adding 1 extra bead.

m.d. $\mathrm{b}_{1}=5$	m.d. $\mathrm{b}_{2}=6$	m.d. $b_{3}=7$		$\bigcap_{S=1}^{3} \mathrm{~m} \cdot \mathrm{~d} \cdot \mathrm{~b}_{s}$
			\longrightarrow	

This notice leads us to that, the main diagram for b_{1} plays an important role in this problem, that we can neglect the remaining main diagrams to find the intersection. By this let us take the following proposition:

Proposition (2.6):

1. In the case of existence of repetitions equal to one, then this part will appear
2. only in the (maindiagram $_{b_{1}}$) but not in other main diagrams where
$b_{1}<b_{2}<\ldots<b_{e}$. So $\bigcap_{s=1}^{e} m . d \cdot \cdot_{s}=\phi$.
3. In the case that there exist repetitions equal to 2 , this means that there exist 2 beads in
(m.d. $\cdot_{b_{1}}$). The least value of these 2 beads will be canceled, where the other will be exist.
4. If we choose $e>2$, this case in the same as in part one in this proposition, that we must cancel "the two least values of two repetitions where $e=3$, the three least values of two repetitions where $e=4, \ldots$, the least $(m-1)$ values of $(e-1)$ repetitions where $e=m$."
To explain this, let us take the example $\mu=\left(5,4^{2}, 2,1\right)$ then we see:

or if $\mu=\left(6,3^{3}, 2,1^{2}\right)$ and $e=3$, then

β-numbers $b_{1}=7$	β-numbers $b_{2}=8$	β-numbers $b_{3}=9$
$6+7-1=12$	$6+8-1=13$	$6+9-1=14$
$3+7-2=8$	$3+8-2=9$	$3+9-2=10$
$3+7-3=7$	$3+8-3=8$	$3+9-3=9$
$3+7-4=6$	$3+8-4=7$	$3+9-4=8$
$2+7-5=4$	$2+8-5=5$	$2+9-5=6$
$1+7-6=2$	$1+8-6=3$	$1+9-6=4$
$1+7-7=1$	$1+8-7=2$	$1+9-7=3$
	$8-8=0$	$9-8=1$
		$9-9=0$

$\ldots . .(2,8)$
So instead of putting β-numbers in diagram (A), we will put the numbers as a numerical series in one row with the following steps:

	9	8	7	6	5	4	3	2	1	0
$\mu=\left(5,44^{2}, 2,1\right)$	-	-	©	-	-	-	©	-	(0)	-
$\mathrm{e}=2$	-	-	-	-	-	-	-	-	-	-
$\mathrm{e}=3$	-	-	-	-	-	-	-	-	\cdot	\cdot

		26	25	24	23	22	21	20			18		16			13		12	11	10			6			32		
$\mu=\left(7^{5}, 5^{3}, 4^{4}, 2^{6}, 3^{3}\right)$			-	© 0	(4)	0-	-		©	c	0			C	C	,	(0	0					\bigcirc		
$\mathrm{e}=2$				(0		-	-			C					C	O												
$\mathrm{e}=3$				O.		-			\bigcirc.						C.			-			\bigcirc	-				\bigcirc		
$\mathrm{e}=4$			-	-	-	-	-							C.							-							
$\mathrm{e}=5$		\bigcirc		-	-	-	-				-	-	-							0								
$\mathrm{e}=6$		-	-	-	-	-	-				-	-	-					-		0								
$\mathrm{e}=7$				-		-						-	-					-		-								
			-	-									-					-	.							-		

We want to appoint that this simple technique which combine remark (2.5) and Proposition (2.6), will support the result of the intersection, by determining (2.7)-(2.9).

Many uses of technique in Proposition (2.6) and the studying of many cases as in (2.7)-(2.10) lead us numerically to the following relations such as knowing the new partition ρ_{e} directly from the main partition μ of r. First we must appoint that $\mu=\left(\mu_{1}^{\tau_{1}}, \mu_{2}^{\tau_{2}}, \ldots, \mu_{m}^{\tau_{m}}\right) \quad$ which means that there are m-sets which separated by a blank or set of blanks depending on the value of the difference between $\left(\mu_{l}-\mu_{l-1}\right)$, for
all $1 \leq l \leq m$ where in every set of m there exists τ_{l} beads.

Theorem (2.11): Let $\mu=\left(\mu_{1}^{\tau_{1}}, \mu_{2}^{\tau_{2}}, \ldots, \mu_{m}^{\tau_{m}}\right)$ be a partition of r. The new partition $\rho_{e=2}$ after the intersection of the main diagrams is equal to: $\rho_{2}=\left(\left(\mu_{1}+m\right)^{\tau_{1}-1},\left(\mu_{2}+(m-1)\right)^{\tau_{2}-2}, \ldots\right.$, $\left.\left(\mu_{m}+1\right)^{\tau_{m}-1}\right)$.
Proof: By Proposition (2.6) we will cancel the last bead in each set; (see (2.9)-(2.10)), i.e. we cancel m beads, that is, we add m blanks to $\mu_{1},(m-1)$ blanks to μ_{2}, \ldots and one blank to

$$
\begin{aligned}
& \mu_{m} . \quad \text { Hence } \\
& \rho_{2}=\left(\left(\mu_{1}+m\right)^{\tau_{1}-1},\left(\mu_{2}+(m-1)\right)^{\tau_{2}-2}, \ldots,\right. \\
& \left.\left(\mu_{m}+1\right)^{\tau_{m}-1}\right) .
\end{aligned}
$$

Remark (2.12): Let some or all $\tau_{l}-1=0$. Then this part with the new partition ρ_{2} which related with it and we ordered ρ_{2} without the existence of the part of order which equal zero, i.e. $\rho_{2}=\left(\left(\mu_{1}+m\right)^{\tau_{1}-1},\left(\mu_{2}+(m-1)\right)^{\tau_{2}-2}, \ldots\right.$, .

$$
\left.\left(\mu_{m}+1\right)^{\tau_{m}-1}\right)=\left(\sigma_{1}^{t_{1}}, \sigma_{2}^{t_{2}}, \ldots, \sigma_{c}^{t_{c}}\right), c<m
$$

Repeat the same steps of Theorem (2.11) and Remark (2.12) in order to find ρ_{3} as the following:

Theorem (2.13):

1. $\rho_{3}=\phi$ if $\rho_{2}=\phi$, (i.e. $\tau_{l}=1$) for all
$1 \leq l \leq m, c$. or $t_{x}=1$ for all $1 \leq x \leq c$
2. $\rho_{3}=\left(\left(\mu_{1}+2 m\right)^{\tau_{1}-2},\left(\mu_{2}+2(m-1)\right)^{\tau_{2}-2}, \ldots\right.$,

$$
\left.\left(\mu_{m}+2\right)^{\tau_{m}-2}\right) \text { if } \tau_{l}>2 \text { for all } 1 \leq l \leq m
$$

$$
\begin{aligned}
& 3-\rho_{3}=\left(\left(\sigma_{1}+c\right)^{t_{1}-1},\left(\sigma_{2}+(c-1)\right)^{t_{2}-1}, \ldots,\right. \\
& \left.\left(\sigma_{c}+1\right)^{t_{c}-1}\right) . \\
& \text { if } t_{1}, t_{2}, \ldots, t_{c} \geq 1
\end{aligned}
$$

Remark (2.14): We can find any ρ_{e} after repeating the same methods of Theorems (2.11) and (2.13) and Remark (2.12).

Example: Let $\mu=\left(7^{5}, 5^{3}, 4^{4}, 2^{6}, 1^{3}\right)$, then the number of parts is 5 . Then

$$
\begin{aligned}
& \rho_{2}=\left(12^{4}, 9^{2}, 7^{3}, 4^{5}, 2^{2}\right), \quad n=5, \\
& \rho_{3}=\left(17^{3}, 13,10^{2}, 6^{4}, 3\right), \quad n=5, \\
& \rho_{4}=\left(22^{2}, 17^{0}, 13,8^{3}, 4^{0}\right)=\left(22^{2}, 13,8^{3}\right), \quad n=3, \\
& \rho_{5}=\left(25,15^{0}, 9^{2}\right)=\left(25,9^{2}\right), \quad n=2, \\
& \rho_{6}=\left(27^{0}, 10\right)=(10), \quad n=1, \\
& \rho_{7}=\left(11^{0}\right)=\phi, \\
& \text { and } \rho_{e>7}=\phi .
\end{aligned}
$$

References:

1. James, G. 1978, Some combinatorial results involving Young diagrams, Math. Proc. Cambridge Philos. Soc. 83, 1-10.
2. Fayers, M. 2005, Weight two blocks of Iwahori - Hecke algebra in characteristic two, Math. Proc. Cambridge Philos. Soc. 139, 385-396.
3. Fayers, M. 2007, Another runner removal theorem for r-decomposition Numbers of Iwahori-Hecke algebra and q-Schur algebra, J. algebra, 310, 396-404.
4. Mahmood, A. S., On the intersection of Young's diagrams core, "Accepted in J. Education and Science (Mosul University) in 2010, to appear in 2011".
