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Abstract
In this paper, a mathematical model, consists from a predator interacting with stage
structured prey, is proposed and analyzed. The existence, uniqueness and
boundedness of the solution of the proposed model are discussed. The existence and
the stability analyses of all possible equilibrium points are studied. The global
stability of these equilibrium points are performed with suitable Lyapunov
functions. Finally, the dynamical behavior of the model isinvestigated numerically.
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1. Introduction

Over the last decades there has been a
considerable interest in the study of population
dynamics with stage structure. Such studies are
important, since the life cycle of the most of the
animals and insects in nature have two stages:
immature and mature. The species in the first
stage can't interact or reproduce with the other
species rather than that; it depends completely
on its relative from mature species, see for
example [1-4] and the references therein. Most
of these studies were focused on prey-predator
interactions involving a stage structured
predators with or without time delay.
Later on Cui and Song [5] proposed and
analyzed a prey-predator model with stage
structure for prey. It is assumed that the predator
consumed the immature prey according to
Lotka-Volterra type of functional response.
They obtained a set of sufficient and necessary
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conditions which guarantee the permanence of
the system. However, Chen [6] studied the
permanence of periodic predator—prey system
with stage structure for prey. He obtained
sufficient and necessary conditions which
guarantee the predator and the prey speciesto be
permanent. Recently, Chen and You [7] studied
the permanence, extinction and periodic solution
of the periodic predator—prey system with
Beddington—DeAngelis functional response and
stage structure for prey. They obtained a set of
sufficient and necessary conditions which
guarantee the permanent of the system.

In this paper however, we will propose and
analyze Holling type-ll prey-predator having
stage structure for prey. The intraspecific
competition for immature prey and predator is
aso included in the system.
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2. Mathematical model

In this section, an ecological model consists
of prey-predator system with stage structure for
prey is proposed. In order to formulate the
dynamic equations for such a model the
following assumptions are made.
A1) The prey population is divided into two
classes, immature prey population, whose
population density at time T is denoted by
X (T), and mature prey population, whose
population density at time T is denoted by
X(T).
A2) It is assumed that in the absence of
predation only the mature prey population has
the ability for reproduction logistically with
carrying capacity k (k> 0) and intrinsic growth
rate a (o >0). However, the immature prey
population depends completely in his
reproduction on the food supplied by mature
prey. In addition to the above, the immature
prey individuals still compete between each
other for food and space with intraspecific rate
constant  (n >0).

A3) The immature prey population transfer to
mature prey population at arate S X, , where 8
(B>0) represents the conversion rate

coefficient. Finaly, both the immature and
mature prey populations decreases due to the

natural deathrates ry (r;, >0)and r, (r, >0)
respectively. Thus, depending on the above

assumptions the evolution equations for prey
can be written as:

& axz(l— XTZJ — 11 Xq = BXy —nX{
....... (1a)

dx ,

—=< = BX; —I,X 1b

= BXq = T2X; (1b)

Ad) In case of existence of predator, whose
population density denoted by x3(T), it is
assumed that the predator consumes the
immature prey only (the immature prey is more
vulnerable to predation than the mature prey )
according to Holling type-1l functional response

B9 \where B, (,>0) and 7, (y,>0)

71X
represent respectively, the maximum attack rate
and half saturation constants. However, the
predator s contribution from the prey species is

assumed to be ;1/% where ¢ (c> 0) denotes to

conversion rate constant.
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A5) Finally, it is assumed that , the predator
individuals still compete with each other for
food and spaces with intraspecific rate constant
n, (1, >0), and decrease due to natural death

raer (r >0).

Consequently, in the existence of predator
species, the evolution equation (1) of a stage
structure prey species becomes:

%ZQXZ 1_2 —I’lxl—ﬂxl
dT k
5 ceennnen(29)
Xq X
—lez— 1%1X3
71t %
dx,
—5 = BXy —IoXo . 2b
e BXy = TaX; (2b)
%z_r3+cﬁlxl3— 1x§ .......... (2¢)
dT }/1+X1

Now, for further simplifying the system (2), the
following dimensionless variables are used

cp cp B
yl=—lX1, Y2=—1X21 Y3=—1X3’

ayq ay, ay,
t=aT.

Then system (2) can be turned into the following
dimensionless form:

d
%zyZ(l_leZ)_Wﬂl—Wsyl
(39)
2 VY3
—W _
4 Y1 1+ woy,
dy
—Z=wgy; - WeY, (3b)
dt
dys
Y| TWr - 3c
dt y{ 1y 5 Y1 8Ys (3c)
W5=CL/31; W6=;—2, w; =L and WB_% are

the dimensionless parameters.

System (3) needs to analyzed with a specific
initial condition, which may be taken as any
point in the region
RY ={(Y1.¥2.¥3)eR®:y; 20,i =123 .
Theorem 1:- All solutions of system (3),
which areinitiatein R® are uniformly bounded.
Proof:- Let (y,(t), y,(t), y5(t)) beany solution
of system (3) with non-negative initiate
conditions.

Let w(t) =y, (t) + y, (t) + y5(t), then we get that
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dw

E=Y2

2 2
—WiYy —Wo Y1 —WgaY1 —WgYo
2
—W7Y3 —WgY3

<Yo(1-WYo) =W,y —WeYo — Wy Y3

1
<———N[y; + Y, + Y3,
aw, [y1+ Y2+ Y3l
whereN = min .{w,,wg, w5} .

obtain:

Thus we

Now by comparing the above differential
inequality with the associated linear differential
eguation, we obtain

~Nt ~Nt
w(t)§4W1N(1—e ) +w(0)e
Therefore O<w(t)<R;, a t—w«, where
Rlzmax.{W(O), 1 }

4w, N
Hence, all solutions of system (3) that initiate in
R® ae confined in the region

{(yl, Vo, Y3) eRIW) <R+ >0}. Thus all
solutions are uniformly bounded, and then the
proof is complete. [ |

3. Existence and stability analysis of
system (3):

The stage structured prey-predator model
given by system (3) has a most three

nonnegative  equilibrium  points, namely
Eo =(0,00), Ei=(V1,Y2.0), and
Ey = (Y1, Y2, ¥3)-

The equilibrium point E, aways exists,

however the equilibrium point E; exists in

theInt.R? of y,y, —plane where

o (s ve)vg +vang

Y= (4a)
(40§ + i)

7 %vl (4b)

provided that:

W3 > (W, +W3)We ©)

Finally the positive equilibrium point

E, =(¥1,Y2,¥3) where
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. W3
—_3 6
Yo We Y1 (69)
L —W y
Jg = —1 n_ (6b)
wg  Wg(l+wsY,)

while ¥, isapositive root of the following third
order equation:

Ay: + A YL+ Agyy + Ay =0.

Here
Wy W3 W W2 2
A1=—2+W4W3W5 >0,
We
py = VG 2uvens 2
W w5
VNGNS + 200,
_ 2
Aq - 2W3W5Wg N W1W32 Wg + 20, Wa Wi
W6 W6

+ 2W3WgWs + Wy Wg — W5 W, +1,

—W3Wg
Ay = + W,y Wg + W3 Wg — W5,

We
Obviously E, exists uniquely in the Int.Rf if
and only if the following conditions hold

Wy

W,oWg < W3 < —— (8a)
Ws
W, ,
—WeWZ| ——w, [+ R>0; with (8b)
We
2w, W2 Wi W,
R= # + WaWgWE + 2W, WgWs , and
We

1> Wy (1+ws ) (8c)

In the following, the local dynamical
behavior of system (3) around each of the above
equilibrium points is discussed. First the
jacobian matrix of system (3) at each point is
determined and then the eigenvalues for the
resulting matrix are computed. The jacobian
matrix of system (3) at the equilibrium point
Ey =(0,0,0) can be written by

—(Wy+wgz) 1 0
J(Ep) = W3 -wg 0
0 0 -w

Therefore, it is easy to verify that, the

eigenvalues of J(Ey), say Ag,Ag and Agg
that describe the dynamics in the y;,y, and
y;-direction respectively satisfy the following
relations :

2/01 + 2/02 = _(W2 + W3) - W6 < 0 (9&)



Naji and Majeed
Aor-Aoz = (Wp +W3)Wg —W; (9b)
2/03 = _W7 < 0 (90)

Note that, according to Eg. (9b), the eigenvalues
Ao1 @nd g, have opposite sign provided that

Wg > (Wy +W3)Wg . (10a)
Hence E, is asaddle point in the R? of y;y,-
plane and since the eigenvalue A,; that
describes the dynamics in yj-direction is

negative , hence E, isasaddlepointin R® with
locally stable manifold of dimension two and
with localy unstable manifold of dimension
one.

However, 1y; and Aq, are negative provided
that

W3 < (W5 +Wg)Wg (10b)
and then E; isalocally asymptotically stablein

the R3.

The Jacobian matrix of system (3) at the
equilibrium point E; =(Y;,Y,,0) is given by:
J(Ey) = (b ) 3.3, Where

bry =-Wp — W3 — 2w, ¥, b, =1-2wWY,,
y
b3 = 1+wlsyl , Dy =W, bo, =W,
y
by =g =b3; =0, bgg =—w; + 1+W2V1 :

Now, straightforward computation shows that ,
the eigenvalues of the jacobian matrix J(E;),

say A1, Ap and 243 which describe the
dynamics in the directions y;, y, and yj
respectively, satisfy the following relations:

M1+ 20 =—(Vb+W5) — 20y, —W <O, (114)
M1Ap =—M1+Myyy, (11b)
Y1
Az =—W- + 11c
13 " rwey, (11c)
where  Mj =w; —(W, +W3)wg, Wwhich is

positive under the existence condition of E,,
Wwa

3 ) .
We
Note that, according to the Egs. (11a)-(11c) we
have the following two cases :
Case 1:- If the following condition holds

Y1

1+wsy,
Then E, islocally asymptotically stable in y;-
direction, and hence we have the following two
subcases:

M3 <0 <Wy. (12a)
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1. 1E, is locally asymptotically stable in R>
provided that the following condition holds
M, <M,y; (12b)
E, is a saddle point in R® with locally
stable manifold of dimension two and

locally unstable manifold of dimension one
provided that the following condition holds:

M >M,y; (12c)
Case 2:- If the following condition holds
Y1
M3z >0s > W 12d
13 1+ woy, 7 (12d)

Then E, isasaddle pointin R>.

Finally, the jacobian matrix of the system (3) at
the positive equilibrium point E, = (Y4, V2, Y3)
can be written as:

J(E2) =(ajj) 33 (13)

o Vs .

here Ay =—(Wy +W3) — 2w, ¥, — N—32
0

_ oo _ 5. g -
8y =1-2wy,; A3 =R, Ay =Ws;
_ . - Y. N
Ayp =-Ws; 83=0; 431 =z g =0;

g . A
a.33=_W7 +N—](')_2W8y3, NO :1+ W5y1.

Accordingly the characteristic equation of
J(E,)isgiven by

2B+ AN+ AA+A;=0 (14a)
where
1 2
0
W,
Ay :N—g[Nl+ NoNz]
i’ (140)
——3[912— NlNZ]_W3N3
No
- Wg [. wW3;N,N
A= [52 NN, |- N2 (1)
Np No
with

Ny = (W, +W3+2W4§/1)N§ +Y3>0,

Ny = (W7 +2Wg¥3)Ng — ¥1, N3 =1-2wy,.
Note that, due to Routh-Harwitz criterion, the
necessary and sufficient conditions for E, to be

locally asymptoticaly stable in the Int.Rf, are

A >0, A;>0and A=AA -A;>0.
Straightforward computation shows that, if the
following condition holds

N, >0 ¥ < (W7 +2wg¥3)Ng (15a)
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Then we obtain A, > 0. In addition to condition
(15a), if the following conditions hold

1
N; <0<y, >—,and 15b
3 Y2 ow, (13b)
97 < NN, , (15¢)
Thenwe get that Az > 0.
Finally, substituting the values of A for

i=123 in A= AA, — Ay and then simplifying
the resulting term we get that

_ (N NoNo) | g
N2 {Ng(Nﬁ NoN2)

—l\%(?f—'\'lNz)—V\éNaﬂLV\é}
N
e

= N4 +W3N3N5 )
where
Y
( )
L\'o N+ NN,

(N+NGN,)
TR
—%(%—MM)—%MH/@}O

obviously A>0 if and only if in addition to
conditions (15a)-(15c) one of the following two
conditions holds:

N

N5 <0 —2<wg (15d)
N0

or

Ng >O0with N, + WN3Ng >0 (15€)

Consequently the following theorem for locally
stability of E, can be proved easily.

Theorem 2:- Assume that the positive
equilibrium point E, of system (3) exists. Then
E, is localy asymptoticaly stable in the

Int.Rf if the conditions (15a)-(15c) with (15d)
or (15e) are satisfied.

In the following theorems, the global dynamical
behaviors of all equilibrium points of system (3)
are studied analyticaly.

Theorem 3: Assume that the equilibrium point
Ey =(0,0,0) islocaly asymptoticaly stable in
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Rf. Then it is globally asymptoticaly stable in
R3 provided that wg >1.

Proof:- Consider the following positive definite
function

3
Vi=Y ayi,

i=1
where a;; (i =1,2,3) are positive constants to be
determined. Clealy V;:R®*>R be a

continuously different-tiable function so that
V;(0,00)=0 and
Vi (Y1, Y2, ¥3) > 05V (Y1, Y2, ¥3) € Int.RY . Now
since

dv

o —2 = (g — W)Y, + (0t —0y W5y,

Y1Y3

_alw.l.yg —oWo Y1
Y1

+(az— 0‘1)
+

—ay Wy Vi g Y3 — a3
Then by choosing o; =, =3 >0 we obtain that:

d
?\t{ <(A-VE)arYs —qVoy, — oWy,

Clealy, T4=0 if and only if

(Y1, Y2,Y3)=Eq and 1<o otherwise.

dvy
Thus 3

Lyapunov function. Therefore E, = (0,0,0) isa

is negative definite and hence V; isa

globally asymptotically stablein R3.

Theorem 4. Assume that the equilibrium point
E; =(V1,Y,,0) islocaly asymptoti-cally stable

in Rf. Then it is globally asymptoticaly stable

in Rf provided that the following conditions are
satisfies.

_ + y y
Ay ry) e i cp o [ A (160)
Y WY YW\ YoYo
y1> B (16b)

_ _ 2
where B, = Max{ 22— 7 Ya¥z |
WaW7  WaY;

Proof:- Consider the following positive definite
function

VZ—Z(X

(yl yl ylln( )J+a3y3
i=1

where a;; (i
determined.

=1,2,3) are positive constantsto be
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Clearly v,:R®) >R be a continuously
differentiable function so that:
V2(¥1,¥2,0) =0 and
otherwise. Now since

Vo(Y1,Y2,Y3) >0

%:zal[(y. )}dy. v, s
dt & y; |t dt
— a{l_(yl_ v, )|: y2y])_/ yy1y2i|
11
o 1){ yzyly yyz yl}
171

A

|

- 0‘3“433’%-

—a(1—W) 13\;\2){
A

YiYo — VYo

Y2Y2
Y1¥3

1+wey

Then by choosing o4 =wsa, =a3 >0, and

then simplifying the resulting terms according to

conditions (16a-16b), we obtain

+oWs(Y, — Y ){

—RWrY3+ a3

&, _
dt
{ —=(y1-Y1)— (Y2 Y2)}
l l
—ai(y1-W) [W ——y }
el ! 1Y 2
+ — W
alys[l+W5y1 7}
Obviously, %:o if and only if
(Y1, Y2,Y3)=E; while &2 <O otherwise. Thus
A

dt
Lyapunov function. Therefore E; = (Vy,,,0) is

Is negative definite and hence V, is a

aglobally asymptoti-cally stablein R3.

Theorem 5: Assume that the equilibrium point
E; =(¥1,Y,,¥3) is locally asymp-totically
stable Int.R®> Then it is globally

asymptoticaly stable in Int.Rf provided that
the following conditions are satisfies.

. + y y
ﬂ(yz+y2)+us2,/i‘i‘/i% (178)
bl Yo i\ YoYo

y; > By, (17b)

in
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. .2
where B, = Max{ ¥, Y3 WY |
Y1¥3 WaYi

Proof:- Consider the following positive definite

function
(y. i = Vi In(=- )J

V3 = Za
i=1

where «;; (i =1,2,3) are positive constants to be

determined.

Clearly V;:R®*—>R be a continuously

differentiable function so that

V3(¥1,¥2,¥3) =0 and V3(y;,Y,,y3) >0 for

Al (y1,¥2,¥3) € IR,
¥ — %

( J
|

=a1(y1_%){ yzy;l—%ylyz}

i=1

—opW(; - yﬁvyl fyl}
yi$h
B o2 (- (- %)
L) (L+veyy) (+viegy)
oW (Y —$) (hys — Y1)
(L+viey) @+ wesh)
Y% — %Yo
+opWs(Ys y){ Vo5 }

a(—H 05— %)
(L+veyy) AL+ veth)

Then by choosing a;=W;a, =a3>0, and
using the given conditions (17a)-(17b), we
obtain
PNy

dt

Y2
— a —
l{ Y1¥1

1

— (s —$o)° +

_ 2
(Y1—-%1) - { (Y2 — }A’z)}

Ya2Yo

1i¥1 }
~agWs (Y = ¥1)(Y1Y3 — Ya¥1)
(L+wsyy)(L+WsY;)

—azWg(ys — 93)2

W, .2

Y2

A

—ag(y1 - 91)2{W4 -
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av, . .
Hence -3 =0 if and only if (y;,Y,,¥3)=E;
and %<O otherwise. Thus % IS negative

definite and hence V; is a Lyapunov function.
Therefore E, =(Y4,¥2,Y3) is a globaly
asymp-totically stablein Int.R3.

4-Numerical Simulation:-

In this section, the global dynamics of system
(3) is further investigated by solving it
numerically. The objective is to verify our
previous analytical results and understand the
effect of varying the parameters values.
For the following set of parameters value:

w=002w =01 =01 =02w=01

w=02w=01v=01
The trgectories of system (3) approach
asymptoticaly to global stable point in the

Int.Rf, as shown in Figure 1(a-c).Clearly, for

this set of data, the numerical result confirms
our analytical result. Moreover it is observed
that, increasing the conversion rate from
immature prey to mature prey further, i.e
w; > 0.1, system (3) still have aglobally stable

(18)

pointin Int.R3.

12

o

Predator
o o

o

Initial point
(0.1,0.6,0.4)

I
IS

Initial point
(05,0.2,0.4)

o
o N

o

Stable point

(0.12,0.06,0.27, 08
0.4
04

0.2 0.2

Mature prey Immature prey

I
)
a

(b)
Predator
Immature prey

o
o
N
a

Mature prey

Population

>
2000
Time

Predator (©

o
o
N
o

Immature prey Mature prey

Population

0

2000
Time

0 4000

Figurel: (a) Globle stable point in Int.Rf.

(b) Time seriesof (a) starting from (0.5, 0.2, 0.4).
(c) Time series of (a) starting from (0.1, 0.6, 0.4).
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However, for the parameters set (18) with
w,; =0.02, condition (10b) holds and the
trgjectory of system (3) approaches
asymptotically to the origin as shown in
Figure. 2(a-b). Similar conclusion is drawn for
wg >0.5.

15

Predator

Initial point
(0.1,06,0.4)

0.8
04

0

Mature prey Immature prey

12

®)

/ Predator

o
©

Population

Immature prey

N
IS

Mature prey

0

0 2000 4000

Time
Figure2: (a) (0, 0, 0) isglobal stable point.

(b) Time seriesof (a) starting from (0.1, 0.6, 0.4).
Finally, for the parameter set (18) with w; >1.3
system (3) has a globally asymptoticaly stable
point in Int. Rf of y;Y,-plane, see Figure 3(a
b).

Note that, it is easy to verify that, for the
parameters set (18) with w; >1.276, E; exists

and the conditions (12)(a-b) are satisfied.
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@

Initial point
03 (05,0.2,0.4)

Predator
o
N

Stable point
(1.33,0.66,0)

1
05

Mature prey Immature prey

(b)

Immature prey

Mature prey

Population

/ Predator

0 1000 2000 3000
Time

Figure 3: (a) Globle stable point in Int.R+2 of

Y1Y2 -plane. (b) Time series of (a) starting from
(0.5,0.2,0.4).
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