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Abstract
In this paper, a mathematical model, consists from a predator interacting with stage
structured prey, is proposed and analyzed. The existence, uniqueness and
boundedness of the solution of the proposed model are discussed. The existence and
the stability analyses of all possible equilibrium points are studied. The global
stability of these equilibrium points are performed with suitable Lyapunov
functions. Finally, the dynamical behavior of the model is investigated numerically.

مراحل عمریة مركبةتحلیل الاستقراریة لنظام بیئي یتكون من مفترس وفریسة ذات 

ازهار عباس مجیدرائد كامل ناجي، 

.العراق- بغداد. جامعة بغداد، كلیة العلوم،قسم الریاضیات

المستخلص
 ـ ـوذج ریاض  ي یتك  ون م  ن مفت  رس یتفاع  ل م  ع فری  سة ذات مرا  ـ ـتراح وتحلی  ل نمـــ ح  ل یت  ضمن ھ  ذا البح  ث اقــ

 ـ ـتم ت مناق  شة وج ود.عمری ة مركب  ة  ــوذج المقت  رحقیــــة و، وحدانیـ  ــود الح  ل للنمــ كم ا قمن  ا بدراس ة وج  ود .ـ
 ــذا النم وذج  ــة لھـ  ــدام ة ال شاملة للنق اط الثاب ة تحلیلی اك ذلك درس نا الاس تقراری.واستقراریة النق اط الثابتــ  باستخــ

.واخیرا السلوك الدینامیكي الشامل بحث عددیا.دوال لیابانوف

1. Introduction
Over the last decades there has been a

considerable interest in the study of population
dynamics with stage structure. Such studies are
important, since the life cycle of the most of the
animals and insects in nature have two stages:
immature and mature. The species in the first
stage can’t interact or reproduce with the other
species rather than that; it depends completely
on its relative from mature species, see for
example [1-4] and the references therein. Most
of these studies were focused on prey-predator
interactions involving a stage structured
predators with or without time delay.
Later on Cui and Song [5] proposed and
analyzed a prey-predator model with stage
structure for prey. It is assumed that the predator
consumed the immature prey according to
Lotka-Volterra type of functional response.
They obtained a set of sufficient and necessary

conditions which guarantee the permanence of
the system. However, Chen [6] studied the
permanence of periodic predator–prey system
with stage structure for prey. He obtained
sufficient and necessary conditions which
guarantee the predator and the prey species to be
permanent. Recently, Chen and You [7] studied
the permanence, extinction and periodic solution
of the periodic predator–prey system with
Beddington–DeAngelis functional response and
stage structure for prey. They obtained a set of
sufficient and necessary conditions which
guarantee the permanent of the system.
In this paper however, we will propose and
analyze Holling type-II prey-predator having
stage structure for prey. The intraspecific
competition for immature prey and predator is
also included in the system.
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2. Mathematical model
In this section, an ecological model consists

of prey-predator system with stage structure for
prey is proposed. In order to formulate the
dynamic equations for such a model the
following assumptions are made.
A1) The prey population is divided into two
classes, immature prey population, whose
population density at time T is denoted by

)(1 Tx , and mature prey population, whose

population density at time T is denoted by
)(2 Tx .

A2) It is assumed that in the absence of
predation only the mature prey population has
the ability for reproduction logistically with
carrying capacity k ( 0k ) and intrinsic growth
rate  ( 0 ). However, the immature prey
population depends completely in his
reproduction on the food supplied by mature
prey. In addition to the above, the immature
prey individuals still compete between each
other for food and space with intraspecific rate
constant  ( 0 ).

A3) The immature prey population transfer to
mature prey population at a rate 1x , where 

( 0 ) represents the conversion rate

coefficient. Finally, both the immature and
mature prey populations decreases due to the

natural death rates 1r ( 01 r ) and 2r ( 02 r )

respectively. Thus, depending on the above
assumptions the evolution equations for prey
can be written as:
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A4) In case of existence of predator, whose
population density denoted by )(3 Tx , it is

assumed that the predator consumes the
immature prey only (the immature prey is more
vulnerable to predation than the mature prey )
according to Holling type-II functional response
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, where 1 ( 01  ) and 1 ( 01  )

represent respectively, the maximum attack rate
and half saturation constants. However, the
predator's contribution from the prey species is

assumed to be
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where )0( cc denotes to

conversion rate constant.

A5) Finally, it is assumed that , the predator
individuals still compete with each other for
food and spaces with intraspecific rate constant

1 ( 01  ), and decrease due to natural death

rate r )0( r .

Consequently, in the existence of predator
species, the evolution equation (1) of a stage
structure prey species becomes:
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Now, for further simplifying the system (2), the
following dimensionless variables are used
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Then system (2) can be turned into the following
dimensionless form:
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the dimensionless parameters.
System (3) needs to analyzed with a specific
initial condition, which may be taken as any
point in the region

}3,2,1;0:),,{( 3
321

3  iyRyyyR i .

Theorem 1:- All solutions of system (3),

which are initiate in 3
R are uniformly bounded.

Proof:- Let ))(),(),(( 321 tytyty be any solution

of system (3) with non-negative initiate
conditions.
Let ),()()()( 321 tytytytw  then we get that
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where },,.{min 762 wwwN  . Thus we

obtain:
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Now by comparing the above differential
inequality with the associated linear differential
equation, we obtain
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Hence, all solutions of system (3) that initiate in
3
R are confined in the region

 0;)(:),,( 1
3

321   RtwRyyy . Thus all

solutions are uniformly bounded, and then the
proof is complete. 

3. Existence and stability analysis of
system (3):

The stage structured prey-predator model
given by system (3) has at most three
nonnegative equilibrium points, namely

)0,0,0(0 E , )0,,( 211 yyE  , and

)ˆ,ˆ,ˆ( 3212 yyyE  .

The equilibrium point 0E always exists,

however the equilibrium point 1E exists in

the 2. RInt of 21 yy plane where
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provided that:
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while 1ŷ is a positive root of the following third

order equation:
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Obviously 2E exists uniquely in the 2. RInt if

and only if the following conditions hold
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In the following, the local dynamical
behavior of system (3) around each of the above
equilibrium points is discussed. First the
jacobian matrix of system (3) at each point is
determined and then the eigenvalues for the
resulting matrix are computed. The jacobian
matrix of system (3) at the equilibrium point

)0,0,0(0 E can be written by
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Therefore, it is easy to verify that, the
eigenvalues of )( 0EJ , say 01 , 02 and 03

that describe the dynamics in the 1y , 2y and

3y -direction respectively satisfy the following

relations :
0)( 6320201  www (9a)
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36320201 )(. wwww  (9b)

0703  w (9c)

Note that, according to Eq. (9b), the eigenvalues

01 and 02 have opposite sign provided that

6323 )( wwww  . (10a)

Hence 0E is a saddle point in the 2
R of 21 yy -

plane and since the eigenvalue 03 that

describes the dynamics in 3y -direction is

negative , hence 0E is a saddle point in 3
R with

locally stable manifold of dimension two and
with locally unstable manifold of dimension
one.
However, 01 and 02 are negative provided

that

6323 )( wwww  (10b)

and then 0E is a locally asymptotically stable in

the 3
R .

The Jacobian matrix of system (3) at the
equilibrium point )0,,( 211 yyE  is given by:

331 )()(  ijbEJ , where
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Now, straightforward computation shows that ,
the eigenvalues of the jacobian matrix )( 1EJ ,

say 11 , 12 and 13 which describe the

dynamics in the directions 1y , 2y and 3y

respectively, satisfy the following relations:
02)( 614321211  wywww , (11a)

1211211 . yMM  , (11b)
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where 63231 )( wwwwM  , which is

positive under the existence condition of 1E ,

and )(2
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Note that, according to the Eqs. (11a)-(11c) we
have the following two cases :
Case 1:- If the following condition holds
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Then 1E is locally asymptotically stable in 3y -

direction, and hence we have the following two
subcases:

1. 1 1E is locally asymptotically stable in 3
R

provided that the following condition holds

121 yMM  (12b)

2. 1E is a saddle point in 3
R with locally

stable manifold of dimension two and
locally unstable manifold of dimension one
provided that the following condition holds :

121 yMM  (12c)

Case 2:- If the following condition holds
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Then 1E is a saddle point in 3
R .

Finally, the jacobian matrix of the system (3) at
the positive equilibrium point )ˆ,ˆ,ˆ( 3212 yyyE 

can be written as:
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Accordingly the characteristic equation of
)( 2EJ is given by
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with
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2
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Note that, due to Routh-Harwitz criterion, the
necessary and sufficient conditions for 2E to be

locally asymptotically stable in the 3. RInt , are

01 A , 03 A and 0321  AAA .

Straightforward computation shows that, if the
following condition holds

038712 )ˆ2(ˆ0 NywwyN  (15a)
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Then we obtain 01 A . In addition to condition

(15a), if the following conditions hold
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obviously 0 if and only if in addition to
conditions (15a)-(15c) one of the following two
conditions holds:
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Consequently the following theorem for locally
stability of 2E can be proved easily.

Theorem 2:- Assume that the positive
equilibrium point 2E of system (3) exists. Then

2E is locally asymptotically stable in the

3. RInt if the conditions (15a)-(15c) with (15d)

or (15e) are satisfied.
In the following theorems, the global dynamical
behaviors of all equilibrium points of system (3)
are studied analytically.

Theorem 3: Assume that the equilibrium point
)0,0,0(0 E is locally asymptotically stable in

3
R . Then it is globally asymptotically stable in

3
R provided that 16 w .

Proof:- Consider the following positive definite
function
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dV1 is negative definite and hence 1V is a
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R .

Theorem 4: Assume that the equilibrium point
)0,,( 211 yyE  is locally asymptoti-cally stable

in 3
R . Then it is globally asymptotically stable

in 3
R provided that the following conditions are
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Clearly RRV 
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2 : be a continuously

differentiable function so that:
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Then by choosing 03231   w , and

then simplifying the resulting terms according to
conditions (16a-16b), we obtain
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Theorem 5: Assume that the equilibrium point
)ˆ,ˆ,ˆ( 3212 yyyE  is locally asymp-totically

stable in 3. RInt .Then it is globally

asymptotically stable in 3. RInt provided that
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Then by choosing 03231   w , and

using the given conditions (17a)-(17b), we
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Hence 03 
dt

dV
if and only if 2321 ),,( Eyyy 

and 03 
dt

dV
otherwise. Thus

dt

dV3 is negative

definite and hence 3V is a Lyapunov function.

Therefore )ˆ,ˆ,ˆ( 3212 yyyE  is a globally

asymp-totically stable in 3. RInt .

4-Numerical Simulation:-
In this section, the global dynamics of system

(3) is further investigated by solving it
numerically. The objective is to verify our
previous analytical results and understand the
effect of varying the parameters values.
For the following set of parameters value:

1.0,1.0,2.0

,1.0,2.0,1.0,1.0,02.0

876

54321





www

wwwww
(18)

The trajectories of system (3) approach
asymptotically to global stable point in the

3. RInt , as shown in Figure 1(a-c).Clearly, for

this set of data, the numerical result confirms
our analytical result. Moreover it is observed
that, increasing the conversion rate from
immature prey to mature prey further, i.e

1.03 w , system (3) still have a globally stable

point in 3. RInt .
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Figure1: (a) Globle stable point in 3. RInt .

(b) Time series of (a) starting from (0.5, 0.2, 0.4).
(c) Time series of (a) starting from (0.1, 0.6, 0.4).

However, for the parameters set (18) with
02.03 w , condition (10b) holds and the

trajectory of system (3) approaches
asymptotically to the origin as shown in
Figure. 2(a-b). Similar conclusion is drawn for

5.06 w .
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Figure 2: (a) (0, 0, 0) is global stable point.
(b) Time series of (a) starting from (0.1, 0.6, 0.4).

Finally, for the parameter set (18) with 3.17 w

system (3) has a globally asymptotically stable

point in 2. RInt of 21 yy -plane, see Figure 3(a-

b).
Note that, it is easy to verify that, for the
parameters set (18) with 276.17 w , 1E exists

and the conditions (12)(a-b) are satisfied.
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Figure 3: (a) Globle stable point in 2. RInt of

21 yy -plane. (b) Time series of (a) starting from

(0.5, 0.2, 0.4).
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