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Abstract
The aim of this paper is to present method for solving high order nonlinear ordinary
differential equations with initial conditions using semi-analytic technique with
constructing polynomial solutions. The original problem is concerned using two-
point osculatory interpolation with the fit equal numbers of derivatives at the end
points of an interval [0, 1] and give example illustrate suggested method and
accuracy, easily implemented. The accuracy of the method is confirmed by
compared with conventional methods ( RK4, RK-Butcher, DTM ).
The existence, uniqueness and sensitivity of the solution is discussed.
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لمــسائل القــیم الابتدائیــة لمــسائل القــیم الابتدائیــة ت رتــب عالیــة ت رتــب عالیــة حــل معـادلات تفاضــلیة اعتیادیــة ذاحــل معـادلات تفاضــلیة اعتیادیــة ذاالهـدف مــن هــذا البحــث عــرض طریقــة لالهـدف مــن هــذا البحــث عــرض طریقــة ل

أصـل المـسالة یتعلـق باسـتخدام الانـدراج التماسـي أصـل المـسالة یتعلـق باسـتخدام الانـدراج التماسـي ، ، باستخدام التقنیة شبه التحلیلیة مع تكوین الحـل كمتعـددة حـدودباستخدام التقنیة شبه التحلیلیة مع تكوین الحـل كمتعـددة حـدود

ـــــــــــــــــــرة ـــــــــــــــــــة الفت ـــــــــــــــــــي نهای ـــــــــــــــــــد نقطت ـــــــــــــــــــة ومـــــــــــــــــــشتقاتها عن ـــــــــــــــــــق مـــــــــــــــــــع الدال ـــــــــــــــــــذي یتف ـــــــــــــــــــین وال ـــــــــــــــــــرةذو النقطت ـــــــــــــــــــة الفت ـــــــــــــــــــي نهای ـــــــــــــــــــد نقطت ـــــــــــــــــــة ومـــــــــــــــــــشتقاتها عن ـــــــــــــــــــق مـــــــــــــــــــع الدال ـــــــــــــــــــذي یتف ـــــــــــــــــــین وال ذو النقطت

[0 دقتهـا وسـهولة الأداء حیـث تـم توضـیح الدقـة مـن دقتهـا وسـهولة الأداء حیـث تـم توضـیح الدقـة مـن ، ، كذلك وضـحنا بمثـال الطریقـة المقترحـة كذلك وضـحنا بمثـال الطریقـة المقترحـة علیها علیها  المعرفة المعرفة[1,

..نة الطریقة المقترحة مع طرق أخرىنة الطریقة المقترحة مع طرق أخرىخلال مقارخلال مقار

..الوحدانیة والتحسس للمعادلات التفاضلیة الاعتیادیةالوحدانیة والتحسس للمعادلات التفاضلیة الاعتیادیة، ، كما تضمن البحث مناقشة الوجودكما تضمن البحث مناقشة الوجود

1. Introduction
Many problems in engineering and science

can be formulated in terms of differential
equations. A differential equation is an equation
involving a relation between an unknown
function and one or more of its derivatives.

An ordinary differential equation (ODE) has
only one independent variable, and all deriva-
tives in it are taken with respect to that variable.
Most often, this variable is time t. Gerald and
Wheatley flip around a lot, using both t and x as
the independent variable; pay careful attention
to what the derivative is taken with respect to so
you don't get confused .

The problems of solving an ODE are
classified into initial value problems (IVP) and
boundary value problems (BVP), depending on
how the conditions at the endpoints of the
domain are specified. All the conditions of IVP
are specified at the initial point. On the other
hand, the problem becomes a boundary value
problem if the conditions are needed for both
initial and final points. [1]
A general mth-order initial value problem:
y(m)=f(x,y,y',y",...,y(m-1)),axb (1)
With initial conditions:

m
m ayayay    )(,...,)(,)( )1(

21 (2)
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The system of m first-order differential
equations (meaning that only the first derivative
of y appears in the equation and no higher
derivatives) have the form :
y'

1 = f1 ( x , y1 , …, ym)
y'

2 = f2 ( x , y1 , …, ym)
.
.

y'
m=fm(x,y1,y2,…,ym) (3a)

with initial conditions :
y1(a)=α1, y2(a) = α2, … ,ym(a) = αm (3b)

It is an easy to see that (3) can represent
either an mth-order differential equation, a
system of equations of mixed order but with
total order of m, or system of m first -order
equations.

The IVP is said to be homogeneous if both
the differential equation and the initial
conditions are homogeneous. Otherwise the
problem is non homogeneous. [2]

Since there are relatively few differential
equations arising from practical problems for
which analytical solutions are unknown, one
must resort to numerical methods. In this paper
we study the solutions of high order ordinary
differential equations with initial condition,
where the problems define on the interval [0, 1]
using semi – analytic technique that give
solution with high accuracy and easy
implemented from other numerical methods.

2. Existence And Uniqueness For Solution
Of Higher-Order IVP

To discuss existence and uniqueness of
solutions of high order ordinary differential
equation with initial condition, we give the
following theorem :

Theorem 1 [3 ], [4]
Consider the initial value problem :

y(n) + p1(x) y(n-1) + … + pn-1(x) y' + pn(x) y = q(x),
with :
y(x0) = y0 , y'(x0) = y'0 , … ,
y(n-1) (x0) = y(n-1)

0

If the functions {pi(x)},i=1,2,…,n and q(x) are
continuous on the open interval (a, b) , then
there exists a unique solution to the problem .

3. Approximation Theory
The primary aim of a general approximation

is to represent non-arithmetic quantities by
arithmetic quantities so that the accuracy can be
ascertained to a desired degree. Secondly, we
are also concerned with the amount of
computation required to achieve this accuracy.

A complicated function f(x) usually is
approximated by an easier function of the form
φ(x; a0, . . . , an) where a0, . . . , an are parameters
to be determined so as to characterize the best
approximation of f .

In this paper, we shall consider only the
interpolatory approximation. From Weierstrass
Approximation Theorem, it follows that one can
always find a polynomial that is arbitrarily close
to a given function on some finite interval. This
means that the approximation error is bounded
and can be reduced by the choice of the
adequate polynomial. Unfortunately Weierstrass
Approximation Theorem is not a constructive
one, i.e. it does not present a way how to obtain
such a polynomial. i.e. the interpolation problem
can also be formulated in another way, viz as the
answer to the following question: How to find a
good representative of a function that is not
known explicitly, but only at some points of the
domain .In this paper we use Osculatory
Interpolation since has high order with the same
given points in the domain .

3.1.Osculatory Interpolation [5]
Given the data {xi}, i = 0,1, . . . ,n and values

fi
(0), . . . , fi

(m
i

) ,where mi are nonnegative
integers and fi = f(xi ).We want to construct a
polynomial P(x) such that :
P(j)(xi) = fi

(j) (4)
For each i = 0, 1. . . n and j = 0, . . . , mi .
i.e. the osculating polynomial approximating a
function f  Cm [a , b], where m = max {m0 , m1

, … , mn } and xi [a , b], for each i = 0, 1, . . . ,
n. Such a polynomial is said to be an osculatory
interpolating polynomial of a function f.

Remark [5]

The degree of P(x) is at most M= nm
n

i
i 

0

since the number of conditions to be satisfied is

)1(
0




nm
n

i
i ,and a polynomial of degree M

has M + 1 coefficients that can be used to satisfy
these conditions.
There exist various form for osculatory
interpolation, but all of these differed only in
formula, the following theorem illustrate this:

Theorem 2 [6], [7]
Given the nodes {xi}, i = 0, . . . , n and values

{ fi
(j) } , j = 0, . . . , mi ,

there exists a unique polynomial satisfying( 4 ).
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In this paper we use two-point osculatory
interpolation [8]. The idea is to approximate a
function y(x) by a polynomial P(x) in which
values of y(x) and any number of its derivatives
at given points are fitted by the corresponding
function values and derivatives of P(x).

In this paper we are particularly concerned
with fitting function values and derivatives at
the two end points of a finite interval, say
[0, 1],where a useful and succinct way of
writing osculatory interpolant P2n+1(x) of degree
2n + 1 was given for example by Phillips [9] as :

P2n+1(x)=


n

j 0

{y )( j (0) q j (x) + (-1) j y )( j (1)

q j (1-x) } (5)

q j (x) = ( x j / j!)(1-x) 1n 




jn

s 0







 

s

sn
xs =

Q j (x) / j! (6)

so that ( 5 ) with ( 6 ) satisfies :

y )( j (0) =
)(

12

j

nP  (0) , y )( j (1) =
)(

12

j

nP  (1) , j =

0, 1, 2,…, n .
implying that P2n+1(x) agrees with the

appropriately truncated Taylor series for y(x)
about x = 0 and x = 1. The error on [0, 1] is
given by [9]:
R2n+1 = y(x)-P2n+1(x) =

)!22(

)()1()1( )22(1)1(1



 

n

yxx nnnn 
where

ε  (0, 1) and y )22( n is assumed to be
continuous.

The osculatory interpolant for P2n+1(x) may
converge to y(x) in [0 , 1] irrespective of
whether the intervals of convergence of the
constituent series intersect or are disjoint .The
important consideration here is whether R2n+1 → 
0 as n→ ∞ for all x in [0 ,1]. We observe that (5) 
fits an equal number of derivatives at each end
point but it is possible and indeed sometimes
desirable to use polynomials which fit different
numbers of derivatives at the end points of an
interval .

Finally we observe that (5) can be rewritten
directly in terms of the Taylor coefficients ai and
bi about x = 0 and x = 1 respectively, as:

P2n+1(x)=


n

i 0

{aiQi(x)+(-1)ibiQi(1-x)} (7)

4. Solution Of Higher-Order Nonlinear
IVP

Many important physical problems for
example, electrical circuits and vibrating
systems involve IVP whose equations have
orders higher than one. This section contains an
introduction to the semi - analytic solution of
higher-order nonlinear differential equations
subject to initial conditions (equations (1) and
(2)). The techniques discussed are limited to
those that transform a higher-order nonlinear
equation into system of first-order nonlinear
differential equations in the form equation (3).
The object is to find m functions y1, … ,ym that
satisfy each of the differential equations together
with all the initial conditions .

New techniques are not required for solving
these problems; by relabeling the variables, can
reduce a higher-order nonlinear differential
equation into a system of first-order nonlinear
differential equations and then apply semi-
analytic technique.

A general mth-order initial value problem (1)
with initial conditions (2) can be converted into
a system of equations in form (3) by the
following:

Let ),...,(')(),()( 21 xyxuxyxu  and

)()( )1( xyxu m
m

 . This produces the first-

order system :

m

m
m u

dx

dy

dx

du

u
dx

dy

dx

du

u
dx

dy

dx

du










)2(
1

3
2

2
1

'



And

),,...,,,(),...,',,( 21
)1()(

)1(

m
mm

m
m uuuxfyyyxfy

dx

dy

dx

du
 



With initial conditions:

m
m

m ayau

ayauayau








 )()(

,...,)(')(,)()(
)1(

2211

then solving by apply semi-analytic technique as
the following :

first we discuss the method where m = 2
, i.e.:
y'

1 = dy1 / dx = f1( x, y1, y2 )
y'

2= dy2 / dx = f2( x, y1, y2) (8a)
For 0  x  1, with the initial conditions:
y1(0) = a0 , y2(0) = b0 , (8b)
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where fi , i = 1, 2 are in general nonlinear
functions of their arguments .

The simple idea behind the use of two-point
polynomials is to replace y(x) in problem (8a) –
(8b), or an alternative formulation of it, by
P2n+1which enables any unknown derivatives of
y(x) to be computed . The first step therefore is
to construct the P2n+1. To do this we need the
Taylor coefficients of y1(x) and y2(x)
respectively about x = 0:

y1 = a 0 + a 1 x + 


2i

a i x i (9a)

y2 = b 0 + b 1 x + 


2i

b i x i (9b)

where y1(0) = a0, y1
'(0) = a1 , … ,y1

(i)(0) / i! = ai ,
i = 2, 3, ……
and y2(0) = b0, y2

'(0) = b1 , … , y2
(i)(0) / i! = bi , i

= 2, 3, ……
then insert the series forms (9a) and (9b)
respectively into (8a) and equate coefficients of
powers of x .
Also, we need Taylor coefficients of y1(x) and
y2(x) about x = 1, respectively :

y1 = c 0 + c 1 (x-1) + 


2i

ci (x-1)i ( 10a )

y2 = d 0 + d 1 (x-1) + 


2i

di (x-1)i ( 10b )

where y1(1) = c0, y1
'(1) = c1 , … ,y1

(i)(1) / i! = ci,
i = 2, 3, ……
and y2(1) = d0, y2

'(1) = d1 , … ,y2
(i)(1) / i! = di , i

= 2, 3, ……
then insert the series forms (10a) and (10b)
respectively into (8a) and equate coefficients of
powers of ( x – 1 ) .

The resulting system of equations can be
solved using MATLAB version 7.9 to obtain ai,
bi, ci and di for all i ≥ 2, we see that ciۥs and diۥs
coefficients depend on indicated unknowns c0

and d0.
The algebraic manipulations needed for this

process .We are now in a position to construct a

P2n+1(x) and
12

~
 n

(x) from (9) and (10) of the

form (5) by the following:

P2n+1(x)=


n

i 0

{aiQi(x)+(-1)iciQi(1-x)}(11a)

And

12

~
n (x)=



n

i 0

{biQi(x)+(-1)idiQi(1-x)} (11b)

Where Qi(x) defined in (6), we see that (11)
have only two unknowns c0 and d0.

Now, integrate equation (8a) to obtain:

c0–a0= 
1

0

f1(x,y1,y2)dx (12a)

d0–b0= 
1

0

f2(x,y1,y2)dx (12b)

Use P2n+1 and 12

~
n as a replacement of y1 and y2

respectively in (12).
Since we have only the two unknowns c0 and

d0 to compute for any n we only need to
generate two equations from this procedure as
two equations are already supplied by (12) and
initial condition (8b). Then solve this system of
algebraic equations using MATLAB version 7.9
to obtain c0 and d0 ,so insert it into (11) thus (11)
represents the solution of (8) .

Extensive computations have shown that this
generally provides a more accurate polynomial
representation for a given n.
Use the same manner to solve in general the
system of more than two equations.

Now consider the following example
illustrate suggested method where the results are
presented in tables and figures for comparison
solutions and errors between P9 and exact, also,
between P9 , exact , RK4 , RK- Butcher, DTM
(Differential Transformation method) to assign
effectiveness and accuracy of the suggested
method.

Example
Consider the following 4 rth order nonlinear
initial value problem :

2)4( yey x , 0 ≤ x ≤ 1, subject to the IC 's:

y(0) = y'(0) = y''(0) = y'''(0) = 1
The exact solution given in [10]: y(x) = ex

Rewrite the 4 rth order IVP as a system of first
order differential equations:
y'1 = y2 y1(0) = 1
y'2 = y3 y2(0) = 1
y'3= y4 y3(0) = 1
y'4 = e-x y1

2 y4(0) = 1

From equations (5) and (6) we have:
P9 = 0.00000460685x9 + 0.00002072029x8 +
0.0002027435x7 + 0.0013866097x6

+ 0.0083338045 x5 + 0.0416666667 x4 +
0.1666666667 x3 + 0.5x2 + x + 1.0

P
~

9 = 0.000004712x9 + 0.00002025767x8 +

0.0002034583 x7 + 0.0013862208x6

+ 0.00833379401 x5 + 0.0416666667 x4 +
0.1666666667 x3 + 0.5 x2 + x + 1.0
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T9 = 0.0000046068 x9 + 0.00002167739x8 +
0.0001989157 x7 + 0.0013919606x6

+ 0.0083311453 x5 + 0.04166666667 x4 +
0.1666666667 x3 + 0.5 x2 + x + 1.0

T
~

9 = –0.00002188043x9+ 0.000139923x8 –
0.00000162427x7 + 0.0015455729x6

+ 0.0082861224 x5 + 0.04166666667 x4 +
0.16666666667 x3 + 0.5 x2 + x + 1.0

The result of the methods for n = 4 given in
(Table 1).
This problem was studied by [10] but applying
the DTM, RK4 and RK-Butcher, results are
summarized in (Table 2) that represents the
comparison between solution and errors for
using the methods for solving the problem.
(Figure 1) represents comparison between exact
solution and semi- analytic method, (Figure 2)
represents the comparison between different
above methods .

Table 1: The result of the method for n = 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5

x

y

y1

P9

P9 P
~

9
T9 T

~
9

b10 2.718281818221559456 2.718281818221559456 2.718281818221559456 2.718281818221559456

b20 2.718281776141231591 2.718281776141231591 2.718281776141231591 2.718281776141231591

b30 2.718281639144193335 2.718281639144193335 2.718281639144193335 2.718281639144193335

b40 2.718281447154106455 2.718281447154106455 2.718281447154106455 2.718281447154106455

X y1:exaxt P9 P
~

9
T9 T

~
9

0.1 1.105171 1.10517091807847 1.10517091807805 1.10517091805686 1.10517091774135

0.2 1.221403 1.22140275821099 1.22140275819076 1.22140275765595 1.22140275080204

0.3 1.349859 1.34985880777361 1.34985880759261 1.34985880443814 1.34985877039453

0.4 1.491825 1.49182469800689 1.49182469720188 1.49182468704941 1.49182459719638

0.5 1.648721 1.64872127103808 1.64872126861587 1.64872124537884 1.64872108205205

0.6 1.822119 1.82211880027067 1.82211879460860 1.82211875206183 1.82211852332721

0.7 2.013753 2.01375270629145 2.01375269521319 2.01375262882012 2.01375236660861

0.8 2.225541 2.22554092548648 2.22554090649895 2.22554081463729 2.22554055709926

0.9 2.459603 2.45960310527087 2.45960307587015 2.45960295986726 2.45960273177602
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5

x

y

y1

P9

Figure 1: Comparison between the exact solution
y1 and semi-analytic solution P9.

0 0.5 1
1

1.5

2

2.5
The solution at n=4

x

y

y1

P9

RK4

RK-B

DTM

0 0.5 1
1

1.5

2

2.5
The solution at n=4

x

y

T9

RK4

ABM

Figure 2: Comparison between different methods

Table 2: A comparison between semi-analytic method and other methods
P9 by using

Osculatory error
DTM
error

RK-
Butcher

error

RK4 errory1:exac
t

X

8.19215300040809
8e-008

1.192093
e-6

5.364418
e-6

1.192093e-
7

1.1051
71

0.1

2.41789009924886
5e-007

4.410744
e-6

7.05719
e-5

2.384186
e-7

1.2214
03

0.2

1.92226389916783
1e-007

8.46386
e-6

3.601313
e-4

4.768372
e-7

1.3498
59

0.3

3.01993109852460
9e-007

1.192093
e-5

1.15943
e-3

5.960464
e-7

1.4918
25

0.4

2.71038079979746
3e-007

1.430511
e-5

2.889514
e-3

7.252557
e-7

1.6487
21

0.5

1.99729329963815
9e-007

1.478195
e-5

6.120682
e-3

1.072884
e-6

1.8221
19

0.6

2.93708549925497
7e-007

1.144409
e-5

1.1588 e-
2

1.430511
e-6

2.0137
53

0.7

7.45135202429025
9e-008

4.053116
e-6

2.020979
e-2

2.145767
e-6

2.2255
41

0.8

1.05270869799056
8e-007

8.583069
e-6

3.310585
e-2

2.622604
e-6

2.4596
03

0.9

S .S.E1= 4.095762648509462e-013

P9 by using OsculatoryDTM solutionRK-Butcher
solution

RK4
solution

y1:exactx

1.105170918078471.105171.1051671.1051711.1051710.1

1.221402758210991.2213981.2213331.2214031.2214030.2

1.349858807773611.349851.34951.3498581.3498590.3

1.491824698006891.4918131.4906671.4918241.4918250.4

1.648721271038081.6487071.6458331.6487211.6487210.5

1.822118800270671.8221041.8161.8221181.8221190.6

2.013752706291452.0137412.0021672.0137512.0137530.7

2.225540925486482.2255372.2053332.2255392.2255410.8

2.459603105270872.4596122.42652.4596012.4596030.9
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5. Sensitivity Of Solution To The Data
In our study of IVP (1), we have been guided

by the four questions: Does IVP (1) have any
solution? How many? What are they? How do
solutions respond to changes in the data? If the
function f and f / y are continuous in some

region R in the xy-plane and ( ox , oy ) is a point

of R, we gave satisfactory answers to the first,
second, and third questions.

In this section we show that these same
simple conditions on the data also lead to a
satisfactory answer to the last question.
Loosely phrased, the question amounts to this: Is
it always possible to find bounds on the

determination of the data f


(x, y) and 0y


in IVP

(1) which will guarantee that the corresponding
solution will be within prescribed error bounds
over a given x-interval?
If this question can be answered in the
affirmative, one consequence is that any “small”
enough change in the data of an IVP produces
only a “small” change in the solution.

In addressing the last question, it would be
extremely helpful to have a formula for the
solution of IVP (1) in which the data appear
explicitly.
But for general nonlinear differential equations,
there rarely is a solution formula for IVP (1) in
which the data appear explicitly .

To estimate the change in the solution to

IVP(1)as the data f


(x, y) and 0y


are modified,

we give the following theorem about
perturbation estimate :

Theorem 3 [4]
Let the function f in IVP (1) be continuous

with yf  / in a rectangle R described by the

inequalities:

byyaxxx  000 , .

Suppose that ),( yxg and yyxg  /),( are also

continuous functions on R and that on some

common interval: cxxx  00 , which ac ,

the solution y(x) of IVP(1) and the solution
y~ (x) of the “ perturbed ” IVP :

00
' ~)(),,(),( yxyyxgyxfy  (13)

Both have solution curves which lie in R, then
we have the estimate :

 

)14(

,1~)(~)(

00

)()(
00

00

cxxx

e
L

M
eyyxyxy xxLxxL



 

Where

L and M are any numbers such that

Rinyxall
y

f
LyxgM ),(,,),(




 Now,

in a position to answer that last of the basic
questions , we give the following theorem about
continuity in the data .

Theorem 4 [4]
let f , yf  / ,g and yg  / be continuous

functions of x and y on the rectangle R defined

by: ., 000 byyaxxx 

Let ε > 0 be a given error tolerance. Then there

exist positive constants bH  and c  a such

that the respective solution y(x) and y~ (x) of

the system of IVP :

o

o

yxyyxgyxfyb

yxyyxfya
~)(),(),()(

..........)(,),()(

0

0




(15)

Satisfy the inequality:

,)(~)( 00 cxxxxyxy   (16)

For any choice of 0
~y for which Hyy  00

~

6. Conclusions
A remarkable advantage of the semi-analytic

technique for solving high order ordinary IVP is
that it is easily implemented and gives a result
with high accuracy. The high accuracy of the
method is confirmed by example and the
suggested method compared with conventional
methods via example and is shown to be that
seems to converge faster and more accurately
than the conventional methods.
Another advantage of suggested method is that it
gives the approximate solution on the
continuous finite domain whereas other
numerical techniques provide the solution on
discrete only.
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