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Abstract

The aim of this paper is to present method for solving high order nonlinear ordinary
differential equations with initial conditions using semi-analytic technique with
constructing polynomia solutions. The original problem is concerned using two-
point osculatory interpolation with the fit equal numbers of derivatives at the end
points of an interval [0, 1] and give example illustrate suggested method and
accuracy, easily implemented. The accuracy of the method is confirmed by
compared with conventional methods ( RK4, RK-Butcher, DTM ).

The existence, uniqueness and sensitivity of the solution is discussed.
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1. Introduction

Many problems in engineering and science
can be formulated in terms of differential
equations. A differential equation is an equation
involving a relation between an unknown
function and one or more of its derivatives.

An ordinary differential equation (ODE) has
only one independent variable, and all deriva-
tivesin it are taken with respect to that variable.
Most often, this variable is time t. Gerald and
Wheatley flip around alot, using both t and x as
the independent variable; pay careful attention
to what the derivative is taken with respect to so
you don't get confused .
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The problems of solving an ODE are
classified into initial value problems (IVP) and
boundary value problems (BVP), depending on
how the conditions a the endpoints of the
domain are specified. All the conditions of IVP
are specified at the initial point. On the other
hand, the problem becomes a boundary value
problem if the conditions are needed for both
initial and final points. [1]

A general mth-order initial value problem:

YO=f (YY" -y ™) asx<b @)
Withinitia conditions;
y@=a,Y@=at...Y" @ =0, (2
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The system of m first-order differentia
eguations (meaning that only the first derivative
of y appears in the equation and no higher
derivatives) have the form:

yi=fi(X,y1, ..., Ym)

Yo=Fa(X, Y1, .oes Yim)

Y i =f Gy LY 2, - Vi) (3a)
with initial conditions:
Yi(@=01, Y2(8) = 02, ... .ym(@) =om  (3b)

It is an easy to see that (3) can represent
either an mth-order differential equation, a
system of equations of mixed order but with
total order of m, or system of m first -order
eguations.

The IVP is said to be homogeneous if both
the differential equation and the initia
conditions are homogeneous. Otherwise the
problem is non homogeneous. [2]

Since there are relatively few differentia
equations arising from practical problems for
which analytical solutions are unknown, one
must resort to numerical methods. In this paper
we study the solutions of high order ordinary
differential equations with initial condition,
where the prablems define on the interval [0, 1]
using semi — analytic technique that give
solution with high accuracy and easy
implemented from other numerical methods.

2. Existence And Uniqueness For Solution
Of Higher-Order IVP

To discuss existence and uniqueness of
solutions of high order ordinary differential
equation with initial condition, we give the
following theorem:

Theorem 1[3], [4]
Consider theinitial value problem :
YO+ i) Y 4 L+ pra(¥) Y+ p(X) Y = 9(x),
with :
y((>_<f)) = Yo, Y(X0) =Yo, ...,
y™ (xg) =™,

If the functions {pi(x)},i=1,2,...,n and g(x) are
continuous on the open interval (a, b) , then
there exists a unique solution to the problem .

3. Approximation Theory

The primary aim of a genera approximation
is to represent non-arithmetic quantities by
arithmetic quantities so that the accuracy can be
ascertained to a desired degree. Secondly, we
are aso concerned with the amount of
computation required to achieve this accuracy.
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A complicated function f(x) usualy is
approximated by an easier function of the form
a,) whereay, . . ., a, are parameters
to be determined so as to characterize the best
approximation of f .

In this paper, we shall consider only the
interpolatory approximation. From Weierstrass
Approximation Theorem, it follows that one can
aways find a polynomial that is arbitrarily close
to a given function on some finite interval. This
means that the approximation error is bounded
and can be reduced by the choice of the
adeguate polynomial. Unfortunately Weierstrass
Approximation Theorem is not a constructive
one, i.e. it does not present a way how to obtain
such a polynomial. i.e. the interpolation problem
can also be formulated in another way, viz asthe
answer to the following question: How to find a
good representative of a function that is not
known explicitly, but only at some points of the
domain .In this paper we use Osculatory
Interpolation since has high order with the same
given pointsin the domain .

3.1.0sculatory Interpolation [5]
leenthedata{x} i=01,..., n and values
0 f™ ) where m; are nonnegative
integers and f; = f(x; ).We want to construct a
polynomial P(x) such that :
PY(x) =, (4)
Foreachi=0,1...nand j=0,...,m;.
i.e. the osculating polynomial approximating a
functionf € C™[a, b], where m = max {mg, my
,m,} andx; €[a, b],foreachi=0,1,...,
n. Such a polynomial is said to be an osculatory
interpolating polynomial of afunction f.

Remark [5]

n
The degree of P(x) is at most M=)"m +n
i=0
since the number of conditions to be satisfied is

n
Zm +(n+1) ,and a polynomial of degree M
i=0
hasM + 1 coefficients that can be used to satisfy
these conditions.
There exist various form for osculatory
interpolation, but all of these differed only in
formula, the following theorem illustrate this:

Theorem 2[6], [7]
Giventhenodes{x;},i =0

{fiq)}1j:01 Sy My

there exists a unique polynomial satisfying( 4 ).
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In this paper we use two-point osculatory
interpolation [8]. The idea is to approximate a
function y(x) by a polynomia P(x) in which
values of y(x) and any number of its derivatives
at given points are fitted by the corresponding
function values and derivatives of P(x).

In this paper we are particularly concerned
with fitting function values and derivatives at
the two end points of a finite interval, say
[0, 1],where a useful and succinct way of
writing osculatory interpolant Py.1(X) of degree
2n + 1 was given for example by Phillips[9] as:

Pr0=Y, 1y 4,00 + (' y(

i=
q; (1-x) }

)
j . n+ < n+s S

a0 = (X1 HEAx™ S (s jx i
s=0

Q;(x) /]! (6)

sothat (5) with (6) satisfies:

. (i) . 0)

y(J)(O)z P (0) y(])(l): Poa (@, j=

0,12,...,n.

implying that Py.i(X) agrees with the

appropriately truncated Taylor series for y(x)

about x = 0 and x = 1. The error on [0, 1] is

given by [9]:

Ron+1 Y(X)-Pans1(X)

(_1) n+1x(n+1) (1_ X) n+l y(2n+2) (8)
(2n+2)!

¢ € (0, 1) and y®? is assumed to be
continuous.

The osculatory interpolant for Py,.(X) may
converge to y(x) in [0 , 1] irrespective of
whether the intervals of convergence of the
constituent series intersect or are digoint .The
important consideration here is whether Ry —
Oasn— oo forall x in [0,1]. We observe that (5)
fits an equal number of derivatives at each end
point but it is possible and indeed sometimes
desirable to use polynomials which fit different
numbers of derivatives at the end points of an
interval .

Finally we observe that (5) can be rewritten
directly in terms of the Taylor coefficients a and
b; about x = 0 and x = 1 respectively, as.

where

Paa(¥= Y {aQM+(-DbQAX} (7
i=0
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4. Solution Of Higher-Order Nonlinear
VP

Many important physica problems for
example, €lectrical circuits and vibrating
systems involve IVP whose equations have
orders higher than one. This section contains an
introduction to the semi - analytic solution of
higher-order nonlinear differential equations
subject to initial conditions (equations (1) and
(2)). The techniques discussed are limited to
those that transform a higher-order nonlinear
equation into system of first-order nonlinear
differential equations in the form equation (3).
The object isto find m functions yy, ... \yn, that
satisfy each of the differential equations together
with all theinitial conditions.

New techniques are not required for solving
these problems; by relabeling the variables, can
reduce a higher-order nonlinear differentia
eguation into a system of first-order nonlinear
differential eguations and then apply semi-
analytic technique.

A general mth-order initial value problem (1)
with initial conditions (2) can be converted into
a system of equations in form (3) by the

following:
Let u, (X) = y(x),u,(x) = y'(x),..., and
u_ (x) = y™?(x). This produces the first-
order system:
du, _dy _
dx dx -
dx  dx
du,, dy™? J
dx  dx "
And
dy oy
_—— :f AT m]) :f yUbyas I
o AlI 0 S LS G (TSN

Withinitia conditions;
u(a)=y(a)=ay, u,(a)=y'(@)=a,,..,

Upn (a) = y(m—l) (a) =an
then solving by apply semi-analytic technique as
thefollowing :
first we discuss the method where m = 2

,i.e:

yai=dyi/dx=fi(X,y1,Y2)

yo=dya/ dx =fx( X, y1, Y2) (82)

For 0 < x <1, with theinitial conditions:

¥1(0) =&, y2(0) = by, (8b)
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where f; , i = 1, 2 are in genera nonlinear
functions of their arguments.

The simple idea behind the use of two-point
polynomialsis to replace y(x) in problem (8a) —
(8b), or an dternative formulation of it, by
P,n+1which enables any unknown derivatives of
y(x) to be computed . The first step therefore is
to construct the P,,1. TO do this we need the

Taylor coefficients of yi(x) and Yy(X)
respectively about x = 0O:
yi=apta X+ z aixi (99)
i=2
Y2=bo+byx+ > byx’ (9b)

i=2
wherey;(0) = &, y1(0) =a, ... y:"(0) /il =a&,
i=2,3, .
and y(0) = bo, y2(0) = by, ..., y2(0) /il = by, i
=2,3 ......
then insert the series forms (9a) and (9b)
respectively into (8a) and equate coefficients of
powers of X .
Also, we need Taylor coefficients of y;(x) and
Y2(X) about x = 1, respectively :

0

Y1=Cot Cy(x-1) + D G (x-1)

i=2

Y2=dg+d;(x-1) + > di(x-1)
i=2

Whezregyl(l) = Co, yl( ) =Cp, ... 1y1(l)(1) [it= G,
=23, ......

and yo(1) = do, y2(1) = dy, ... ") /1! =di,i
=23,
then insert the series forms (10a) and (10b)
respectively into (8a) and equate coefficients of
powersof (x—1).

The resulting system of equations can be
solved using MATLAB version 7.9 to obtain g,
b, ¢;and d, for all i > 2, we see that ¢’'s and d’s
coefficients depend on indicated unknowns ¢
and do.

The algebraic manipulations needed for this
process .We are now in a position to construct a
Paa(X) andp, ., (x) from (9) and (10) of the

form (5) by the following:

(10a)

(100)

Paa()= Y, {2Q()+(-1)'cQ(1-%)} (11a)
i=0
And

13%1<x)=§{biQi(x)+(-1)idiQi(1-x)} (11b)

Where Q(x) defined in (6), we see that (11)
have only two unknowns ¢, and do.
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Now, integrate equation (8a) to obtain:

Coao=| fi(X,y1,y2)dx (12a)

do—b(): fg(x ,yl,yz) dx (12b)

!
i

Use Pon1 and B ,as a replacement of y; and y,
respectively in (12).

Since we have only the two unknowns ¢, and
do to compute for any n we only need to
generate two equations from this procedure as
two equations are already supplied by (12) and
initial condition (8b). Then solve this system of
algebraic equations using MATLAB version 7.9
to obtain ¢o and dy ,so insert it into (11) thus (11)
represents the solution of (8) .

Extensive computations have shown that this
generally provides a more accurate polynomial
representation for agiven n.

Use the same manner to solve in genera the
system of more than two equations.

Now consider the following example
illustrate suggested method where the results are
presented in tables and figures for comparison
solutions and errors between Py and exact, also,
between Py , exact , RK4 , RK- Butcher, DTM
(Differential Transformation method) to assign
effectiveness and accuracy of the suggested
method.

Example

Consider the following 4 rth order nonlinear
initial value problem :

y@ =e*y? | 0<x<1, subjecttothelC’s:
y(0) =y'(0) =y"(0) =y"(0) =1

The exact solution given in [10]: y(x) = €*
Rewrite the 4 rth order IVP as a system of first
order differential equations:

Y1=Yo y1(0)=1
Y2=Ys3 y2(0)=1
Y= Ya ) ys(0) =1
Ya=€"yy y40) =1

From equations (5) and (6) we have:
P, = 0.00000460685x° + 0.00002072029x°
0.0002027435x’ + 0.0013866097x°

+ 0.0083338045 x> + 0.0416666667 x*
0.1666666667 x> + 0.5x* + x + 1.0

= o = 0.000004712x° + 0.00002025767x®

0.0002034583 x” + 0.0013862208x°
+ 0.00833379401 x° + 0.0416666667 x*
0.1666666667 x>+ 0.5 x>+ Xx + 1.0
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Ty = 0.0000046068 x° + 0.00002167739x®
0.0001989157 x’ + 0.0013919606x°

+ 0.0083311453 x°> + 0.04166666667 x*
0.1666666667 x> + 0.5 x> + x + 1.0

T, = -0.00002188043x°+ 0.000139923x®
0.00000162427x” + 0.0015455729x°

+ 0.0082861224 x° + 0.04166666667 x*
0.16666666667 x> + 0.5 x> + X + 1.0

Iragi Journal of Science, 2012, vol .53, No.1, pp 140-147

+

(Table 1).

+

The result of the methods for n = 4 given in

This problem was studied by [10] but applying

the DTM, RK4 and RK-Butcher, results are

+

summarized in (Table 2) that represents the
comparison between solution and errors for
using the methods for solving the problem.
(Figure 1) represents comparison between exact
solution and semi- analytic method, (Figure 2)

represents the comparison between different
above methods .

Table 1: Theresult of the method for n =4

To

Py 3 T,
bio 2.718281818221559456 | 2.718281818221559456 | 2.718281818221559456 | 2.718281818221559456
b2o 2.718281776141231591 | 2.718281776141231591 | 2.718281776141231591 | 2.718281776141231591
bso 2.718281639144193335 | 2.718281639144193335 | 2.718281639144193335 | 2.718281639144193335
bso 2.718281447154106455 | 2.718281447154106455 | 2.718281447154106455 | 2.718281447154106455
X | ypexaxt P |5 . Ty .F .
0.1 | 1.105171 1.10517091807847 1.10517091807805 1.10517091805686 1.10517091774135
0.2 | 1.221403 1.22140275821099 1.22140275819076 1.22140275765595 1.22140275080204
0.3 | 1.349859 1.34985880777361 1.34985880759261 1.34985880443814 1.34985877039453
0.4 | 1.491825 1.49182469800689 1.49182469720188 1.49182468704941 1.49182459719638
0.5 | 1.648721 1.64872127103808 1.64872126861587 1.64872124537884 1.64872108205205
0.6 | 1.822119 1.82211880027067 1.82211879460860 1.82211875206183 1.82211852332721
0.7 | 2.013753 2.01375270629145 2.01375269521319 2.01375262882012 2.01375236660861
0.8 | 2.225541 2.22554092548648 2.22554090649895 2.22554081463729 2.22554055709926
0.9 | 2.459603 2.45960310527087 2.45960307587015 2.45960295986726 2.45960273177602

25
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X yi.exact RK4 RK-Butcher DTM solution | Pg by using Osculatory
solution solution
0.1 1.105171 1.105171 1.105167 1.10517 1.10517091807847
0.2 1.221403 1.221403 1.221333 1.221398 1.22140275821099
0.3 1.349859 1.349858 1.3495 1.34985 1.34985880777361
0.4 1.491825 1.491824 1.490667 1.491813 1.49182469800689
0.5 1.648721 1.648721 1.645833 1.648707 1.64872127103808
0.6 1.822119 1.822118 1.816 1.822104 1.82211880027067
0.7 2.013753 2.013751 2.002167 2.013741 2.01375270629145
0.8 2.225541 2.225539 2.205333 2.225537 2.22554092548648
0.9 2.459603 2.459601 2.4265 2.459612 2.45960310527087

The solution at n=4 The solution at n=4
25 : 25 ;
—y1 § ——T19 Ef
+ P9 RK4 /
RK4 v ABM
7 RKB i
O DM /
2 2 i
15} 15} #
il #
1 L I 1 L 1 I 1 / //
01 02 03 04 05 06 07 08 08 @ o
1 ‘ 1 ‘
Figure 1. Comparison between the exact solution 0 05 L 0 05 L
X X

yiand semi-analytic solution Pq.
Figure 2: Comparison between different methods

Table 2: A comparison between semi-analytic method and other methods
X | yiexac | RK4 error RK- DTM Py by using

t Butcher error Osculatory error

error

0.1 | 1.1051 | 1.192093e- | 5.364418 | 1.192093 | 8.19215300040809

02| 12214 | 2384186 | 7.05719 | 4.410744 | 2.41789009924886
0.3 | 1.3498 | 4.768372 | 3.601313 | 8.46386 | 1.92226389916783
04 | 14918 | 5960464 | 1.15943 | 1.192093 | 3.01993109852460
0.5 | 1.6487 | 7.252557 | 2.889514 | 1.430511 | 2.71038079979746
06 | 1.8221 | 1.072884 | 6.120682 | 1.478195 | 1.99729329963815
0.7 | 20137 | 1430511 | 1.1588e- | 1.144409 | 2.93708549925497
0.8 | 22255 | 2145767 | 2.020979 | 4.053116 | 7.45135202429025
0.9 | 24596 | 2.622604 | 3.310585 | 8.583069 | 1.05270869799056

S .SE;= 4.095762648509462e-013
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5. Sensitivity Of Solution To The Data

In our study of IVP (1), we have been guided
by the four questions. Does IVP (1) have any
solution? How many? What are they? How do
solutions respond to changes in the data? If the
function f and of /0y are continuous in some
region Rinthexy-planeand (X, , Y,) isapoint
of R, we gave satisfactory answers to the first,
second, and third questions.

In this section we show that these same
simple conditions on the data also lead to a
satisfactory answer to the last question.

Loosely phrased, the question amountsto this: Is
it always possible to find bounds on the

determination of the data F(x, y) and Y, inIVP

(1) which will guarantee that the corresponding
solution will be within prescribed error bounds
over agiven x-interval ?

If this question can be answered in the
affirmative, one consequence is that any “small”
enough change in the data of an IVP produces
only a“small” change in the solution.

In addressing the last question, it would be

extremely helpful to have a formula for the
solution of IVP (1) in which the data appear
explicitly.
But for general nonlinear differential equations,
there rarely is a solution formula for IVP (1) in
which the data appear explicitly .

To estimate the change in the solution to

IVP(1)asthe data f (x,y) and Yy, are modified,

we give the following theorem about
perturbation estimate :
Theorem 3 [4]

Let the function f in IVP (1) be continuous
with of /0y in arectangle R described by the

inequalities:

Xo S X< Xo+a,]y—Yo|<b.

Suppose thatg(xy) and og(xy)/dy are aso
continuous functions on R and that on some
common interval: X <X<Xx,+C, which c<a,

the solution y(x) of IVP(1) and the solution
Yy (x) of the* perturbed " IVP:

y =fxy+axy), y)=Y% (13
Both have solution curves which lie in R, then
we have the estimate :
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Y -T09| <y~ e + M (et

L o _])’ Where

X SX<X+C 14

L and M are any numbers such that

M <|g(x,y)|,L <

ﬂ‘,all (x,y)in R Now,
oy

in a position to answer that last of the basic
questions , we give the following theorem about
continuity in the data .

Theorem 4 [4]

let f ,&/cy ,0 and Ag/dy be continuous
functions of x and y on the rectangle R defined
by: % <X<X+a|y-Y| <h
Let € > 0 be a given error tolerance. Then there
exist positive constants H <b and ¢ < a such
that the respective solutiony(x) and Y (x) of
the system of IVP:

@y=Ff(xy), Y(%,) = Yo-

~ 15
B y=1(xy)+axy) Yo) =,
Satisfy the inequality:
V() -Y(X)| <&, % <X<X+C (16)

For any choice of Y, for which |y, — Y| < H

6. Conclusions

A remarkable advantage of the semi-analytic
technique for solving high order ordinary IVPis
that it is easily implemented and gives a result
with high accuracy. The high accuracy of the
method is confirmed by example and the
suggested method compared with conventional
methods via example and is shown to be that
seems to converge faster and more accurately
than the conventional methods.
Another advantage of suggested method isthat it
gives the approximate solution on the
continuous finite domain whereas other
numerical techniques provide the solution on
discrete only.
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