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Abstract

In this work, we study two species of predator with two species of prey model,
where the two species of prey live in two diverse habitats and have the ability to
group-defense. Only one of the two predators tends to switch between the habitats.
The mathematical model has at most 13 possible equilibrium points, one of which is
the point of origin, two are axial, tow are interior points and the others are boundary
points. The model with n =2, where n is the switching index, is discussed
regarding the boundedness of its solutions and the local stability of its equilibrium
points. In addition, a basin of attraction was created for the interior point. Finally,
three numerical examples were given to support the theoretical results.

Keywords: Prey-Predator; Switching; Group defense; Equilibrium point; Local
stability; Basin of attraction.
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1. INTRODUCTION

Predators feed themselves for some time in a habitat that contains adequate food, that is, there
exists a large number (large size) of prey or the prey has no ability to defend itself. When the food is
reduced, in other words, there is a small number (small size) of prey, the predators move to another
habitat, which is the so-called the switching phenomenon [1, 2]. While, the Group-defense means that
a prey can defend itself by attacking the predator collectively instead of waiting and giving the
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predator a chance to kill it. In 1920,Volera proposed a mathematical model for one predator and its
prey. Later, other mathematical models have been proposed by many researchers, which deal with the
relationship between prey and predators. Some of these models provided two prey with one predator
[3, 4, 5], one prey with two predators [6], two prey with two predators [4, 7, 8, 9, 10], and the insect
predation [11].

In one study [4], Bhattacharyya and Mukhopadhyay proposed and studied two models of prey—
predator . The first model was considered with a prey group defense, while the second was considered
without a prey group defense. The two prey species are supposed to live in two diverse habitats, while
the two predator species tend to switch between habitats. In another investigation [12], the first model
(with a prey group defense) was expanded by the following mathematical model:

. X1 X3y,
X1 =X [91(1—_>—ﬁ—ﬁ)’2]:

Xy = X [92 (1 - x_z) i b ],
ky)  xit+x3 (1.1)
O1x1x7  Opx1'x,

xt+x3 x4+ xﬁl]

Y1=W1 [—lh +

V2 = Yol—Hz +vx1],

where x;represents the density of the prey in their two divers' habitats; y; represents the density of
the predators. The two species of prey are supposed to grow logistically with a certain growth rate g;
and carrying environmental capacity k;to x;; a; represents the rate of predation by the predator y,, on
prey x;; B represents the rate of predation by the predator y, on x;; u; represents the mortality rate of
predators y; such that i = 1,2, and §;,5, and y are the corresponding conversion rates. The two
functions a;x2y, (x* + x2)~tand a; x1y, (x] + x3)~texplain the behavior of predator switching y;.
This Model includes two prey and two predators. The phenomenon of switching occurs only with one
of the two predators, while the two prey species live in two diverse habitats and have the ability of
group-defense against one of the two predators.

The model (1.1) was discussed for n = 1, as the switching index in the last mentioned work [12].
In this work, we discuss this model (1.1) for n = 2. At most, thirteen possible equilibrium points are
found for the system (1.1). One of these equilibrium points is the origin point, which means the
absence of all species, whereas two equilibrium points are axial (the absence of three species), two are
interior points (coexistent state or normal steady state), and the last equilibrium points are boundary.
Therefore, there are three states; one is the absence of two predators, another is the absence of one
prey and one predator, while the others are the absence of one predator for each state.
2. THE MATHEMATICAL MODEL
Consider the model (1.1), that was proposed in the aforementioned study [12], when n = 2, the
model (2.1) takes the form:

X1 = Xq 91(1 —ﬁ> —%—53’2]'
ki) x?+x2
Xy = %, [92 (1 - x_2> - alezyl],
< k) X2t A2 2.1)
. 51x1x22 52x12x2
|

V2 = Yal—pz + vxq].

3. BOUNDEDNESS OF THE SOLUTIONS
In this section, we prove that all the positive solutions of system (2.1) that start with ID are bounded
Let
D = {(xy, %5, y1,¥2) ERY,0 < x; < k;,y; >0,i =1,2}. (3.1)
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Lemmal: If §; < a;,i = 1,2, y < B, then all the positive solutions of the system (2.1) that start in D
are bounded.

Proof: Let the real function:

u(t) = x.(t) + x,(t) + y,(t) + y,(t), be a positive definitive on D.

From (2.1), we have:

) X x
U= x191 (1 - k_i) + X292 (1 - k—Z) — 1ty + Ya12) + (v — B)x1y2

N ((51 — ay)x1x5 + (8, — az)xfxz)h

xZ + x2
If 0 < p < max{u,,u,}, then we obtain:
' - _xm, P _x P _ _
U+ pu = X191 (1 P gl) + X292 (1 Pl gz) + il — ) +y2(p — 112)) +
((61—a1)x1x%+{52—a2)xfx2)y1

x2+x2
It is clear that

. X X
u+pu=s k_l (k191 — g1%1 + k1p) + k_z (k292 — 92Xz + kop) <
X, ! Xy 2
< — (kg1 t kip) + 7= (k292 + kop) <
ky k,
<ki(g1+p) + k(g2 +p)
This leads to 0 < u(t) < % + u(0)e~Pt, and for t—oo,

a
0<u(t) <-
p

where a = kq1(gy + p) + kz(g2 + p).
So that, we obtain that the positive solutions of the system(2.1), with initial conditions that belong to
D, and satisfy § < a; + a,,y < B, are bounded.
4. LOCAL STABILITY OF EQUILIBRIUM POINTS

It is well known that the model (2.1) has at most thirteen equilibrium points, four of them always
exist, but the existence of the other depends on the values of the parameters that defined the model and
that will be shown throughout this section. In this section, we will discuss the local stability of the so-
called equilibrium points.
I. The equilibrium point P; = (0,0,0,0) of the model (2.1) always exists. The following lemma shows
that the P; = (0,0,0,0) is not stable:
Lemma 2: If x;(0) > 0 or x,(0) > 0, then there is no trajectory of the system (2,1)can converge to
(0,0,0,0), which means that P, = (0,0,0,0) is unstable.
Proof: Let x;(0) > 0, (x4, x2,¥1,¥2) — (0,0,0,0), as t = oo,then

d
dt (Inxy) - g1-
It is clear that
= (nxy) 2 L1y, x5, y1,¥2) — (0,0,0,0) as t > oo,
then there exists t, > 0, such that;

t—t
x1(to) > 0x1(t) = x1(to)exp (w
In the same way , if x;(0) > 0,x; — oo, then there is no a trajectory to the system (2.1) that converges
to (0,0,0,0)
Hence, the equilibrium point P; = (0,0,0,0) is unstable.
I1. The equilibrium points P, = (k4,0,0,0) and P; = (0, k,, 0,0) of the system (2.1) always exist. The
Jacobian matrix of the system (2.1) at the equilibrium points P, is

)—)oo,aSt—>oo.SOx1—>OO.

—IJ1 0 0 0
0 g2 0 0
P.,) =
JP) =1 0 —t o I
0 0 0 vki—u;

And the Jacobian matrix of the system (2.1)atP;is
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91 0 0 0
_ 0 —9> 0 0

JPs) =1 0 —u O

0 0 0 —uy

It is clear that the sets of eigenvalues of the two matrices J(P,) and J(P;) are:
S(](Pz)) ={~91,92,— 11, vk; — 1z} and
S(](P3)) = {g1, — g2, —t1, —H2}, respectively.
Note that S(/(P;)), i = 2,3, has at least one positive eigenvalue and at least two negative eigenvalues,
which means that the two equilibrium points are saddle points (unstable).
I1l. The equilibrium point P, = (kq,k,,0,0) always exists. The Jacobian matrix of the system
(2.1)at Py is:

—91 0 a1k1k%(k12 + kzz)_1 —Bk,
J(P,) = 0 =92  ayk?k,(k¥+k3)™t 0

[ 0 0  (S1k k2 + 6,k2ky) (k2 + k2)™t — g 0 |

lo o 0 vky — 11,

And the set of the eigenvalues of the characteristic equations of the matrix J(P,) is:
(81kqk3 + 8,k7 k)
S(P4-) = {_gli_gZ' k12 + k22
Due to the stability criteria given in the above mentined study [12] by Routh-Hurwitz, the equilibrium
pointP, = (k4, k,,0,0) should be locally asymptotically stable, if it satisfies the following two
conditions:

— Uy, vk, — .uz}-

{51k1k% + 8kfk, < (K§ + k5 4.1
- g - - - kly < MZ - - -y .

IV.The fifth equilibrium point is Ps = (¥4, 0,0, ¥,), which exists under the condition u, < yk;.
where:

e

Y
- g1 (1 Uz ) (4.2)
Y2 = B vki/'

The characteristic equation of the Jacobian matrix of (2.1) near the point P; = (%;,0,0, y,) is:

(g + D) (g2 = Dk A2 + (g1%1 + ki) A + g1 X1 p1p + ey fy¥,5,] = 0.

So that, the eigenvalues are as follows:

A =—u <0,1, = g, >0, and 13, A, are the solutions of the second degree equation:

ki A2 + (g1%1 + kpp) A + gi X1, + kg fy¥ 5, = 0.

Now, we have that 4; < 0 and 1, > 0, which means that the equilibriumPs = (¥4, 0,0, y,) is a saddle
point.

V.The equilibrium point Py = (%4, X, 0, ¥,), exists if the condition u, < yk,is satisfied.

where:

o Uz o
X1 =7, X, = ky,

)4
y=&(1—ﬂ) (4.3)
g B vki/’
The characteristic equation of the Jacobian matrix of(2.1)near the pointPs = (X1, X, 0, ¥,) is:
(As — D(g2 + D[A* — A11 — A346] = 0,

where:
g1%; ~ ~ ¥
A= - k Ay = —ay DXy, Az = —BX1, Ay = —ay DXy,
1
As = (81%, + 8,%)D — uy, Ag = vY,.
o G
4R

So that, the eigenvalues are:
Ay = As = (6:%; + 8,%)D —py, 4, = =g, <0,
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1 = —g1% — Y (91%1)? — K7y §.8%
3 — )
2k4
_ —g:% + Y (9:1%,)% — kivy,B%
2k ’
Itis clear that 1,, A5 and A, are negatives.
Now, we have that 1, < 0, A3 and 4, are negatives.

If (8,%, + 5%)% < py,then A; < 0.

Based on the criteria for the stability of Routh-Hurwitz [13], the equilibrium point Pg =
(%1, %5,0,¥,)should be locally asymptotically stable, if it satisfies the following condition:

A4

(8,%, + 8,%,) 22 <
X X)) —>0—— .
1X2 21%5_'_%22 251

VLThe existence of the equilibrium point P, = (%;, %,, 71, 0),is guaranteed under the condition:
(1 + %2) < ke (8; + 8,%),

where
{J? _,ul(l+fz) . %
L7 5 + 6,5 2T % (4.40)
tfﬁ:&<1—f_1)(1+f2):2(1—’7_2)(1""?2) |
a, kq a, k, X2

andx is a real positive root of thee equations:
ToX° + m &4 + myX3 + m3%% + muX + s = 0, (4.4b)

such that:

Ty = —gr1kaa214, Ty = g1Kk1koa,6,,

Ty = g1kaay(ki6y — piy), T3 = —gokya,(ky6, — ),
Ty = —gokikya,64, T = gokyaq .

It is clear that my < 0 and mg > 0. According to the criteria of Routh-Hurwitz [2], not all the
roots of equation (4.4b) are negatives. So that it is possible to obtain some positive real roots.
However, the numerical study for three examples presented in section 6 shows that, in the first
example, equation (4.4b) has only one real positive root, while in the second example, equation (4.4b)
does not have any real positive root, and, in the third example, equation (4.4b) has three real positive
roots.

Therefore, P, = (%4, X2, ¥;, 0) exists under the two conditions:
X is positive,
{ (1 + %%) < kq(68; + 6,%),
So that if m where 0 < m < 5, is the number of the real positive roots ¥ of the equation (4.4b), that
satisfies p, (1 + %) < k,(8; + 6,%), then we have m equilibrium points of the type P,.
The characteristic equation of the Jacobian matrix of (2.1) at the point P; = (%;, X3, ¥;,0) is:
(v% —pup — DB+ FA22+ KA+ F) =0,

such that:
2
- X
o= ().
: ki
=1 )
5 = 9192515, Z (371Ml-aifi _ Rgifiae_i))
z kik, L\(1+72) k;
=
2 oL~ ~ o~
P = z <x1x2}’1gia(3—i) _ “1“2RY1xi) _
3 k(14 %2) ki(1+%2)) "
2%2§
R=—2_
(1 + x2)2
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81— %2] + 26,% _
1+x92 v
26,73 + 5,[x* — &2] _
S N CAR
According to the criteria of Routh-Hurwitz [2] of the system (2.1), if P, = (¥, X,, ¥;,0) exists,
then the necessary and sufficient conditions for P, = (%;, X,, 1, 0) to be locally asymptotically stable
are:

M1=

2 — Y% >0,
F, >0,
< F; >0,
\ FiF, > Fs.
VILTHE INTERIOR EQUILIBRIUM POINT

Consider the interior equilibrium point Py = (X1, X, ¥1, ¥2), such that:

7, =2 X, =0
1 - 2 — ]
Y

__ 92(ky—0)(u3 +y%0?)
< 7= azkou3

__ 910k — ) v?o?gy(k, — o)
Lyz B YBky Blous
where ¢ is a positive root of the equation:

(yu1 — 6142)Y0% = 8ppi50 + pyps = 0. (4.5b)
Now, if yu; = 61u,, theno = % and ifyu,; < 8,1, ,then equation (4.5b) has only one positive

2
root. So that equation(4.5b) has only one positive root, if yu; < 6;u,.

Otherwise, with the condition 82u3 > 4yu, (ypy, — 8145), equation(4.5b) has exactly two positive
roots.
So that, only one interior equilibrium point of the type Pg = (X1, X5, ¥1, ¥,) is obtained if:
{Vlh < 61Uz,
0 < k1goy>0%(ky — 0) < kpg1t5 (Yky — p2).
While there are exactly two interior equilibrium points of the type Pg = (iy, X5, y1, ¥2) if:
YU < 61l
8315 > dyps (Ypy — 8112),
0 < kigay3o2(ky, — 0) < kpgaps(Yks — p2).
It is not too difficult to show that the Jacobian matrix of the system (2.1) at the point Pg =
(%1, %5, ¥1, ¥2), can be written as:

(4.5a)

[ nay — 911:161 —ma ¥y %y " —paix; — fx; ]
J(Pg) = |—7m23?1_19?2 Ta, — % —pax, 0 |’
A N, 0 0
l Yy2 0 0 OJ
Such that
_ 2% X5y, X
T @ T @)

_ 51 [fg - f12x2] + n52x1x2 5
(X7 + %3)?

28,%3%, + 8, [xf — x7xZ] _
(%% + x2)? 1

The characteristic equation of the Jacobian matrix of (2.1) at the point

P8 = (fl' X2, V1, )72)is:

M+ePB+e,12+el+e,=0,

1

N1=
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where
2 _
v s t
i=1
_ 2 _
_ 9192X1X3 _ giXi _
& =———+ Byxiy, — z [7“753—1' = <Px3—iNiai]
kik; . k;

=1

_ 2 2
_ _ _ (92%2 giXi _ 2
e3 = Byy.% ( P naz) + <Pz [as—i % - 7T0»’1012Ni(x3—i + xi2x3_1i)]
2 n i
i=1
&, = —pa; N, By, o o )

The necessary and sufficient conditions for Py = (i, X,, ¥1,¥,), to be locally asymptotically for
the system (2.1) are:

>0, i=1234
e,8,—é3>0,
es(e,e, — ;) — e et > 0.

Next, we will define an appropriate Lyapunov function to create a basin of attractions for Pg =
(%1, X2, ¥1, ¥2)- _ ) i .
THEOREM 1: Assume that the equilibrium point P of (2.1) is locally asymptotically stable,
andx; = k;, §oXo — U1 = 0, where,

8o = min{d;, 5,}, Xo = min{X;, X5},
Then, a basin of attraction of Pg can be created by the set:
B = {(xy, %2, ¥1,¥2)1 % = %,y S ¥, 0 = 1,2}

Proof: The function
2

X _ i
i=1 Xi Yi

is positive definite .

2
. kq Yi
V(xq1, x5, V1, )=E x-(1——)+'-(1—?)
X2, Y1, Y2 (z x; Vi 7,

i=1

2
= D 16 = 76y, %) + G~ TG (3, %))
i=1

Such that
2 2
X1 a1xX3 Y1 X2 a2X1Y1
G ) = (1—_)_ - pG , = (1__)_ ’
1(x1,%2) [91 k) %2+ a2 /’))’2] 2 (%1, %2) [92 ky) X% + 22

81x1x22 62x12x2

)

G3(xq,%x) = |—p +
3(1 2) [Ml x12+x§ xf+x2

and Gy (xy,x7) = [—p2 + yx1].
It is clear that G; (x1,x,) < 0, (x; — ;) > 0,i = 1,2, so that

2
> G = 764G, x2) < 0.
i=1

and

0 < 8pXp — U < G3(xq,x7), Vx; > X, i =12,
0= (G‘l-(fl'fZ) < (G4(X1, xZ)l vxi > fl’Ji = 1:2

And since

1 —¥1) <0, —¥2) <0,V<,y; <¥y;,i = 1,2,
then

2
Z(Yi = ¥)Giy2(x1,x2) <0, Vx> X,y <yupi=12
=1

=
So that
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2

D 10 = 7)61Gxn, 62 + 01 = TG O01, 1)) < O,
i=1
V(x1, %2, ¥1,¥2) < 0,V(x1,%2,¥1,¥2) € B —{(%X1, %2, 1, ¥2)},
And V(xq,x5,v1,y2) = 0. B

Therefore, any trajectory with the initial condition  (xg1,X02, Yo1,Vo2) € B converges
asymptotically to (x;, %,, V1, ¥,), which means that B is a basin of attraction for Py = (%, X5, V1, ¥2)-
Thus, the proof is complete.
5. NUMERICAL SIMULATIONS

In this section, we will analyze three sets of parameter values for the system (2.1), which are
provided in Tables-(1, 2, and 3), repectively. The system (2.1), that is defined by the parameters of
table 1, has eight equilibrium points. While the system (2.1), that is defined by the parameters of
Table- 2, has only four equilibrium points, and the system that is determined by the parameters of
Table-3 has ten equilibrium points. These results support our argument that the existence of some
equilibrium points depends on the values of the parameters.
The main results can be summarized as follows:
1- The equilibrium points assigned with the parameters of table 1 are:
P; =(0,0,0,0); P, = (2.8,0,0,0); P; = (0,2.4,0,0); P, =(2.8,2.4,0,0);
Ps = (2.5,0,0,1.6071); Ps = (2.5,2.4,0,1.6071); P, = (2.6642,1.0856,2.5545,0)
andPg = (2.5,,1.0801,2.6105,0.7859).The first seven points are unstable while the eighth point (the
interior point) is asymptotically locally stable, as shown in Figures-(1-3).

Table 1-
i k; gi Ui d; a; B Y
1 2.8 1.5 0.6 0.6 0.2
2 2.4 2 0.25 0.4 0.5 0.1 0.1

2- The equilibrium points assigned with the parameters of table 2 are four points, as follows:
P, =(0,0,0,0); P, =(1,0,0,0) and P; =(0,1.4,0,0) are unstable, while P, =(1,1.4,0,0) is
asymptotically locally stable, is shown in Figure- 4.

Table 2-
i k; gi K d; a; B 4
1 1 0.5 1 0.3 0.2
2 14 2 0.6 04 0.8 0.1 0.5

3- The system (2.1) that is defined by the parameters of table 3 has ten equilibrium points, as follow:
P; =(0,0,0,0); P, = (2.5,0,0,0), P; = (0,2.5,0,0), while P, = (2.5,2.5,0,0) and
Py = (0.5,0,0,1.4063), P, = (0.625,2.5,0,1.4063) and
Pg = (0.625,0.4575,3.7644,1.0779).
Equation (4.4b) has 5 roots, three of them are positive, that is ¥ = 0.1636, 0.5884 or 4.9432.
Therefore, from each root, we obtain one equilibrium point, as follows:
X =0.1636 = P; = (0.3858,2.3586,6.5124,0)
X = 0.5884 = P;* = (0.4029,0.6847,8.4697,0)
X =4.9432 = P;* = (2.4672,0.4991,2.4993,0)
All the equilibrium points of the system (2.1) that are defined by the parameters of table 3 are
unstable, except P7, that is P; is locally asymptotically stable. see Figures- (5-9).

Table 3-

l k; 9i Ui 9; a; B Y
1 2.5 1.5 0.25 0.6 0.2
2 2.5 1.5 0.25 0.4 0.5 0.8 0.4

The next Figures-(1-8) show the numerical simulation to the trajectories of the system (2.1) with the
different parameterS:
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Figure 1-The trajectory of the system (2.1) with the parameters given in Table-1.We see that the
initial point .(2.49,,2.39,0.01,1.60 ) is located close to Pgand it is moving away from Pg and
approaching Pg.

3 '
L
2.5 -
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w2
=
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=
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. v,
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-
-
n — _|'_- 1 1 1 1 1 1 1 1
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Figure 2-The trajectory of the system (2.1) with the parameters given in Table (1).We see that the
initial point (2.66,,1.08,2.55,0.01) is located close to P, and it is moving away from P- and
approaching Pg.
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1
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Figure 3-The trajectory of the system (2.1) with the parameters given in Table-1. We see that the
initial point (2.4,,1.1,2.7,0.7)is located close toPgand it is approaching Pg.
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Figure 4-The trajectory of the system (2.1) with the parameters given in Table-2. We see that the
initial point (0.7,,1.1,0.3,0.4) is approaching Py.
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Figure 5-The trajectory of the system (2.1) with the parameters given in Table-3.We see that the
initial point (0.624,2.49,0.01,1.4064), is located close to Pgand it goes away from Pg and is
approachingP;*
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Figure 6-The trajectory of the system (2.1) with the parameters given in Table-4.We see that the
initial point (0.3,2.4,6.4,0.2), is located close to P; and is approaching P;.
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Figure 7-The trajectory of the system (2.1) with the parameters given in Table-4. We see that the
initial point (0.402,0.684,8.469,0.004), located close P;* and it goes away from P;* and is
approaching P;.
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Figure 8-The trajectory of the system (2.1) with the parameters given in Table-4.We see that the
initial point (2.47,0.5,2.5,0.02), is located close P;**and it goes away from P;** and is approaching
P7.
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Figure 9-The trajectory of the system (2.1) with the parameters given in Table-4. We see that the
initial point (0.264,0.458,3.76,1.08), is located close toPgand it goes away from Pg and is
approaching P;.

618



Farhan Iragi Journal of Science, 2020, Vol. 61, No. 3, pp: 608-619

6. CONCLOSIONS

In this paper, we study a model of two species of predators and two species of prey, where the two
species of prey live in two different habitats and have the ability to group-defense. Only one of the two
predators tends to switch between the habitats. We have found that the system has, at most, thirteen
possible equilibrium points, one of them is the origin, two are axial, two are interior points, and the
rest of the equilibrium points are boundaries. Four of equilibrium points always exist, regardless of the
values of the parameters, whereas the existence of the remaining equilibrium points depends on the
values of the parameters, that implies that some sufficient conditions were given to ensure their
existence. Moreover, we have studied the boundedness of the solutions and the local stability of the
equilibrium points, and we have found that four points are unstable and the rest are locally
asymptotically stable under certain conditions. Furthermore, We explained the general stability of the
interior equilibrium point by means of the Lyapunov function to create a basin of attraction for the
studied point.

Finally, we have given three examples; each of them is a set of parameter values. One of them
shows that the system has eight points, seven of them are unstable and one (the interior point) is
locally asymptotically stable. In the second example, the system has only four equilibrium points,
three are unstable and one is locally asymptotically stable. The third example shows that the system
has ten equilibrium points, nine of them are unstable and one is locally asymptotically stable. Our next
work will be on studying the same model that we have discussed in this paper with n > 1 as the
switching index.
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