

The Γ – permutation BCK-algebras with their Γ – permutation ideals

Ali Abbas Asmael, Shukr Khalil*

Department of Mathematics, College of Science, University of Basrah, Basrah 61004, Iraq.

Received: 25/2/2024

Accepted: 24/1/2025

Published: 30/1/2026

Abstract

In this work, we propose the notion of Γ – permutation BCK – algebras as an extension of BCK – algebras and investigate them. We also present Γ – permutation BCK – subalgebra, Γ – permutation BCK – ideal, Γ – permutation BCK – closed ideal, Γ – permutation normal BCK – subalgebra, Γ – permutation normal BCK – ideal, and quotient Γ – permutation BCK – algebra. We show that if $h: X \rightarrow Y$ is a normal homomorphism of Γ – permutation BCK – algebras X and Y , the quotient Γ – permutation BCK – algebra Y/V is isomorphic to $Im(h)$, where $V = ker(h)$.

Keywords: Symmetric group, BCK – algebra, Permutation, Quotient, Equivalences, Normal Ideal.

MSC: 03G25, 08A35.

جبر-بي سي كي التباديلي-كاما مع مثالياته التبادلية-كاما

علي عباس اسماعيل ، شكر خليل*

قسم الرياضيات ، كلية العلوم ، جامعة البصرة ، البصرة ، العراق

الخلاصة

في هذا البحث تم تقديم مفهوم، جبر-بي سي كي التباديلي-كاما كتوسيع لجبر-بي سي كي ، ايضاً تم تقديم المفاهيم مثل الجبر الجزئي-بي سي كي التباديلي-كاما و المثلية -بي سي كي التبادلية-كاما و المثلية المغلقة -بي سي كي التبادلية-كاما و الجبر الجزئي-بي سي كي العادي التباديلي-كاما و المثلية العادية -بي سي كي التبادلية -كاما و جبر-بي سي كي القسمة التباديلي-كاما ، كذلك بينما اذا كان $h: X \rightarrow Y$ هو الهمومورفزم العادي حول جبور -بي سي كي التبادلية-كاما X و Y ، فان Y/V جبر-بي سي كي القسمة التباديلي-كاما يتشاكل مع صورة التطبيق h حيث $Im(h) = ker(h)$

1. Introduction

The collection of all negative integers Z is not a semiring in terms of normal addition and multiplication, but it does form a Γ – semiring, where $\Gamma = Z$. The primary reason for the evolution of Γ – semiring consists of the development of outcomes of rings, Γ – rings, ternary semirings, semigroups, and semirings. In 1966, Y. Imai and K. Iseki [1] established two classes of abstract algebras, namely *BCK* and *BCI* – algebras, to broaden the concept of set – theoretic difference and non-classical propositional calculus. Every *BCI* – algebra M satisfies $0 \# r = 0$ for every $r \in X$ is a *BCK* – algebra. Every abelian group is a

*Email: shuker.khalil@uobasrah.edu.iq

BCK –algebra, with $\#$ representing group subtraction and 0 representing group identity. As a result, various researchers have investigated generalizations of *BCK/BCI/RHO* –algebras (see [2-10]). Moreover, there are other classes are studied by many researchers, [11-16]. The product of disjoint cycles $\beta = (b_1^1, b_2^1, \dots, b_{\alpha_1}^1) (b_1^2, b_2^2, \dots, b_{\alpha_2}^2) \dots (b_1^{c(\beta)}, b_2^{c(\beta)}, \dots, b_{\alpha_{c(\beta)}}^{c(\beta)})$ can be decomposed virtually uniquely for each permutation β in the symmetric group S_n , [17]. As a result, β can be written as $\lambda_1 \lambda_2 \dots \lambda_{c(\beta)}$. The division is referred to as the cycle type of β , [18]. The particular laws for union, intersection, and other laws of permutation sets (for short, β –sets) are described, [19]. Following that, this concept and its applications are investigated and discussed in a variety of domains such as topology and algebra, and others [20], [21].

The research structure in this paper as following, in the second section the basic notions are recalled which are needed in our work. After that, in the third section, the concept of Γ – permutation *BCK* –algebras $[(\Gamma - (PBCK - A))]$ have been considered. Also, the notions of $\Gamma - (PBCK - SA)$, $\Gamma - (PNBCK - SA)$, $\Gamma - (PCBCK - A)$, and quotient $\Gamma - (PBCK - A)$ are given and we discussed their properties and equivalence classes. Next, in the fourth section some notions like Γ – permutation *BCK* –ideal, Γ – permutation *BCK* –closed ideal, and Γ – permutation normal *BCK* –ideal, are given and we discussed their properties. Finally, in the last section, the conclusions for our results and future work are shown.

2. Basic fundamentals

In this section, we recall the following definitions which are necessary for completeness.

Definition 2.1: [19]

Let S_n be a symmetric group on the set $\Omega = \{1, 2, \dots, n\}$ with $B \in S_n$ and the cycle type of permutation B is $\infty(B) = (\infty_1, \infty_2, \dots, \infty_{c(B)})$, then B composite of pairwise disjoint cycles $\{\mu_t\}_{t=1}^{c(B)}$ where $\mu_t = (\mu_1^t, \mu_2^t, \dots, \mu_{\alpha_t}^t)$, $1 \leq t \leq c(B)$. If $\mu = (\mu_1, \mu_2, \dots, \mu_h)$ is h –ycle in S_n . We say $\mu^B = \{\mu_1, \mu_2, \dots, \mu_h\}$ is a B –set of cycle μ , where $\{\mu_t\}_{t=1}^{c(B)} = \{\mu_t^B = \{\mu_1^t, \mu_2^t, \dots, \mu_{\alpha_t}^t\} | 1 \leq t \leq c(B)\}$.

Definition 2.2: [2]

A *BCK* –algebra is an algebra $(X, *, 0)$ of type $(2, 0)$ satisfies the following axioms for every $x, y, z \in X$

1. $((x * y) * (x * z)) * (z * y) = 0;$
2. $(x * (x * y)) * y = 0;$
3. $x * x = 0;$
4. $0 * x = 0;$
5. $x * y = 0$ and $y * x = 0$ implies $x = y$.

3. On Γ – permutation *BCK* –algebras

This section introduces and investigates the concept of Γ – permutation *BCK* –algebras $[(\Gamma - (PBCK - A))]$. Also, the notions of $\Gamma - (PBCK - SA)$, $\Gamma - (PNBCK - SA)$, and $\Gamma - (PCBCK - A)$ are given and we discussed their properties and equivalence classes.

Definition 3.1: Let $V \subseteq X = \{\lambda_i^\beta\}_{i=1}^{c(\beta)}$, where $\beta \in S_n$, and let Γ be non-empty sets. Assume T is a constant element in V and $\mu: V \times \Gamma \times V \rightarrow V$ is a map, where $\mu(\lambda_i^\beta, \alpha, \lambda_j^\beta) = \lambda_i^\beta \alpha \lambda_j^\beta$, for all $\lambda_i^\beta, \lambda_j^\beta \in V$ and $\alpha \in \Gamma$, if μ have the following identities:

- i) $\mu(\mu(\lambda_i^\beta, \alpha, \lambda_j^\beta), \beta, \mu(\lambda_i^\beta, \alpha, \lambda_m^\beta)) = T$,
- ii) $\mu(\lambda_i^\beta, \alpha, \lambda_j^\beta) = \mu(\lambda_j^\beta, \alpha, \lambda_i^\beta) = T \Rightarrow \lambda_i^\beta = \lambda_j^\beta$,
- iii) $\mu(\lambda_i^\beta, \alpha, \lambda_i^\beta) = T$,
- iv) $\mu(T, \alpha, \lambda_i^\beta) = T$ for all $\alpha, \beta \in \Gamma$, $\lambda_i^\beta, \lambda_j^\beta, \lambda_m^\beta \in V$.

Then V is called a Γ – permutation BCK – algebra [for short, Γ – ($PBCK$ – A)].

Remark 3.2: If V is a Γ – ($PBCK$ – A) and $\alpha \in \Gamma$. Let $\tau : V \times V \rightarrow V$ be a map, where $\tau(\lambda_i^\beta, \lambda_j^\beta) = \lambda_i^\beta \alpha \lambda_j^\beta, \forall \lambda_i^\beta, \lambda_j^\beta \in V$. Then (\mathfrak{R}, τ, T) is symbolized by $\mathfrak{R}\alpha$, if it is a ($PBCK$ – A).

Example 3.3: Let $\beta = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12) \in S_{12}$ be a permutation in S_{12} . So, $\beta = (1 \ 4)(2 \ 6 \ 3) \ (5 \ 9)(7 \ 10)(11 \ 12)(8)$. Therefore, we have $X = \{\lambda_i^\beta\}_{i=1}^6 = \{\{1, 4\}, \{2, 3, 6\}, \{5, 9\}, \{7, 10\}, \{8\}, \{11, 12\}\}$ and $T = \{1, 4\}$. Let $\Gamma = \{\mu_1, \mu_2, \mu_3, \mu_4, \mu_5\}$ be a set of operations that are defined on X by Tables [(1)-(5)].

Table 1: $\mu_1 : X \times X \rightarrow X$

μ_1	{1,4}	{2,3,6}	{5,9}	{7,10}	{8}	{11,12}
{1,4}	{1,4}	{1,4}	{1,4}	{1,4}	{1,4}	{1,4}
{2,3,6}	{2,3,6}	{1,4}	{2,3,6}	{2,3,6}	{2,3,6}	{2,3,6}
{5,9}	{5,9}	{5,9}	{1,4}	{5,9}	{5,9}	{5,9}
{7,10}	{7,10}	{7,10}	{7,10}	{1,4}	{7,10}	{7,10}
{8}	{8}	{8}	{8}	{8}	{1,4}	{8}
{11,12}	{11,12}	{11,12}	{11,12}	{11,12}	{11,12}	{1,4}

Table 2 : $\mu_2 : X \times X \rightarrow X$

μ_2	{1,4}	{2,3,6}	{5,9}	{7,10}	{8}	{11,12}
{1,4}	{1,4}	{1,4}	{1,4}	{1,4}	{1,4}	{1,4}
{2,3,6}	{2,3,6}	{1,4}	{5,9}	{5,9}	{5,9}	{5,9}
{5,9}	{5,9}	{7,10}	{1,4}	{7,10}	{7,10}	{7,10}
{7,10}	{7,10}	{8}	{8}	{1,4}	{8}	{8}
{8}	{8}	{11,12}	{11,12}	{11,12}	{1,4}	{11,12}
{11,12}	{11,12}	{2,3,6}	{2,3,6}	{2,3,6}	{2,3,6}	{1,4}

Table 3 : $\mu_3 : X \times X \rightarrow X$

μ_3	{1,4}	{2,3,6}	{5,9}	{7,10}	{8}	{11,12}
{1,4}	{1,4}	{1,4}	{1,4}	{1,4}	{1,4}	{1,4}
{2,3,6}	{2,3,6}	{1,4}	{7,10}	{7,10}	{7,10}	{7,10}
{5,9}	{5,9}	{8}	{1,4}	{8}	{8}	{8}
{7,10}	{7,10}	{11,12}	{11,12}	{1,4}	{11,12}	{11,12}
{8}	{8}	{2,3,6}	{2,3,6}	{2,3,6}	{1,4}	{2,3,6}
{11,12}	{11,12}	{5,9}	{5,9}	{5,9}	{5,9}	{1,4}

Table 4 : $\mu_4: X \times X \rightarrow X$

μ_4	{1,4}	{2, 3, 6}	{5, 9}	{7, 10}	{8}	{11, 12}
{1,4}	{1,4}	{1,4}	{1,4}	{1,4}	{1,4}	{1,4}
{2, 3, 6}	{2, 3, 6}	{1,4}	{8}	{8}	{8}	{8}
{5, 9}	{5, 9}	{11, 12}	{1,4}	{11, 12}	{11, 12}	{11, 12}
{7, 10}	{7, 10}	{2, 3, 6}	{2, 3, 6}	{1,4}	{2, 3, 6}	{2, 3, 6}
{8}	{8}	{5, 9}	{5, 9}	{5, 9}	{1,4}	{5, 9}
{11, 12}	{11, 12}	{7, 10}	{7, 10}	{7, 10}	{7, 10}	{1,4}

Table 5 : $\mu_5: X \times X \rightarrow X$

μ_5	{1,4}	{2, 3, 6}	{5, 9}	{7, 10}	{8}	{11, 12}
{1,4}	{1,4}	{1,4}	{1,4}	{1,4}	{1,4}	{1,4}
{2, 3, 6}	{2, 3, 6}	{1,4}	{11, 12}	{11, 12}	{11, 12}	{11, 12}
{5, 9}	{5, 9}	{2, 3, 6}	{1,4}	{2, 3, 6}	{2, 3, 6}	{2, 3, 6}
{7, 10}	{7, 10}	{5, 9}	{5, 9}	{1,4}	{5, 9}	{5, 9}
{8}	{8}	{7, 10}	{7, 10}	{7, 10}	{1,4}	{7, 10}
{11, 12}	{11, 12}	{8}	{8}	{8}	{8}	{1,4}

Hence, X is $\Gamma - (PBCK - A)$.

Example 3.4:

Let $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 6 & 1 & 9 & 8 & 2 & 4 & 5 & 7 \end{pmatrix}$ be a permutation in S_9 . So, $\beta = (1\ 3)(2\ 6)(5\ 8)(7\ 4\ 9)$. Therefore, we have $Y = \left\{ \lambda_i^\beta \right\}_{i=1}^4 = \{\{1, 3\}, \{2, 6\}, \{5, 8\}, \{4, 7, 9\}\}$ and $T = \{1, 3\}$. Let $\Gamma = \{\omega_1, \omega_2\}$. The operations ω_1, ω_2 are defined on Y by Tables (6) and (7), respectively.

Table 6 : $\omega_1: Y \times Y \rightarrow Y$

ω_1	{1,3}	{2,6}	{5,8}	{4,7,9}
{1,3}	{1,3}	{1,3}	{1,3}	{1,3}
{2,6}	{2,6}	{1,3}	{5,8}	{5,8}
{5,8}	{5,8}	{4,7,9}	{1,3}	{4,7,9}
{4,7,9}	{4,7,9}	{2,6}	{2,6}	{1,3}

Table 7: $\omega_2: Y \times Y \rightarrow Y$

ω_2	{1,3}	{2,6}	{5,8}	{4,7,9}
{1,3}	{1,3}	{1,3}	{1,3}	{1,3}
{2,6}	{2,6}	{1,3}	{2,6}	{2,6}
{5,8}	{5,8}	{5,8}	{1,3}	{5,8}
{4,7,9}	{4,7,9}	{4,7,9}	{4,7,9}	{1,3}

Hence, we consider Y as $\Gamma - (PBCK - A)$.

Definition 3.5: Let V be a $\Gamma - (PBCK - A)$ and $\emptyset \neq A \subseteq V$. We say A is $\Gamma -$ permutation BCK -subalgebra [for short, $\Gamma - (PBCK - SA)$], if $\lambda_i^\beta \alpha \lambda_j^\beta \in A, \forall \lambda_i^\beta, \lambda_j^\beta \in A, \alpha \in \Gamma$.

Definition 3.6: Let V be a $\Gamma - (PBCK - A)$ and $\emptyset \neq A \subseteq V$. We say A is a Γ – permutation normal BCK – subalgebra [for short, $\Gamma - (PNBCK - SA)$], if $(\lambda_i^\beta \alpha \lambda_m^\beta) \alpha (\lambda_j^\beta \alpha \lambda_s^\beta) \in A$, $\forall \lambda_i^\beta \alpha \lambda_j^\beta, \lambda_m^\beta \alpha \lambda_s^\beta \in A$, $\alpha \in \Gamma$.

Example 3.7: Let $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 1 & 8 & 6 & 5 & 4 & 2 & 3 \end{pmatrix}$ be a permutation in S_8 . So, $\beta = (1 \ 7 \ 2)(3 \ 8)(4 \ 6)(5)$. Therefore, we have $X = \{\lambda_i^\beta\}_{i=1}^4 = \{\{1,2,7\}, \{3,8\}, \{4,6\}, \{5\}\}$ and $T = \{5\}$. Let $\mu = \{\mu\}$, where μ is defined on X by Table (8).

Table 8 : $\mu: X \times X \rightarrow X$

μ	$\{5\}$	$\{1,2,7\}$	$\{4,6\}$	$\{3,8\}$
$\{5\}$	$\{5\}$	$\{5\}$	$\{5\}$	$\{5\}$
$\{1,2,7\}$	$\{1,2,7\}$	$\{5\}$	$\{1,2,7\}$	$\{1,2,7\}$
$\{4,6\}$	$\{4,6\}$	$\{4,6\}$	$\{5\}$	$\{4,6\}$
$\{3,8\}$	$\{3,8\}$	$\{3,8\}$	$\{3,8\}$	$\{5\}$

Hence, $M = \{\{5\}, \{1,2,7\}\}$ is $\Gamma - (PNBCK - SA)$.

Definition 3.8:

(i) A $\Gamma - (PBCK - A)$ V is called Γ – permutation commutative BCK – algebra [for short, $\Gamma - (PCBCK - A)$], if $\lambda_j^\beta \alpha (\lambda_j^\beta \beta \lambda_i^\beta) = \lambda_i^\beta \alpha (\lambda_i^\beta \beta \lambda_j^\beta)$, $\forall \lambda_i^\beta, \lambda_j^\beta \in V$, and $\alpha, \beta \in \Gamma$.

(ii) A $\Gamma - (PBCK - A)$ V can be partially ordered by $\lambda_i^\beta \leq \lambda_j^\beta$ if and only if $\lambda_i^\beta \alpha \lambda_j^\beta = T$ for all $\alpha \in \Gamma$. This ordering is called a $\Gamma - BCK$ ordering.

Note: If V is a $\Gamma - (PBCK - A)$, then $\lambda_i^\beta \alpha T = \lambda_i^\beta$ is hold.

Example 3.9: Consider $X = \{\{1,2,7\}, \{3,8\}, \{4,6\}, \{5\}\}$ and μ in Example 3.7. Let $\Gamma = \{\mu, \omega\}$, where ω is defined by Table (9).

Table 9 : $\omega: X \times X \rightarrow X$

ω	$\{5\}$	$\{1,2,7\}$	$\{4,6\}$	$\{3,8\}$
$\{5\}$	$\{5\}$	$\{5\}$	$\{5\}$	$\{5\}$
$\{1,2,7\}$	$\{1,2,7\}$	$\{5\}$	$\{1,2,7\}$	$\{3,8\}$
$\{4,6\}$	$\{4,6\}$	$\{1,2,7\}$	$\{5\}$	$\{1,2,7\}$
$\{3,8\}$	$\{3,8\}$	$\{4,6\}$	$\{1,2,7\}$	$\{5\}$

Hence, X is $\Gamma - (PCBCK - A)$.

Definition 3.10: Let X and Y be $\Gamma - (PBCK - As)$. A map $f: X \rightarrow Y$ is called a homomorphism if $f(\lambda_i^\beta \alpha \lambda_j^\beta) = f(\lambda_i^\beta) \alpha f(\lambda_j^\beta)$, $\forall \lambda_i^\beta, \lambda_j^\beta \in X, \alpha \in \Gamma$.

Definition 3.11: Let X and Y be $\Gamma - (PBCK - As)$ with constant elements T_X and T_Y , respectively, and $f: X \rightarrow Y$ be a homomorphism. Then the set $\{\lambda_i^\beta \in X \mid f(\lambda_i^\beta) = T_Y\}$ is called the kernel of f and it is denoted by $ker(f)$ and the set $\{f(\lambda_i^\beta) \mid \lambda_i^\beta \in M\}$ is called the image of f and is denoted by $Im(f)$.

Theorem 3.12:

If V is $\Gamma - (PBCK - A)$, then $\lambda_i^\beta \alpha (\lambda_i^\beta \beta \lambda_j^\beta) \alpha \lambda_j^\beta = T$, $\forall \lambda_i^\beta, \lambda_j^\beta \in V$, and $\alpha, \beta \in \Gamma$.

Proof.

From Definition 3.8 - (i) of $\Gamma - (PBCK - A)$,

$$((\lambda_i^\beta \beta \lambda_j^\beta) \alpha (\lambda_i^\beta \beta \lambda_m^\beta)) \alpha (\lambda_m^\beta \beta \lambda_j^\beta) = T. \quad (1)$$

$\forall \lambda_i^\beta, \lambda_j^\beta, \lambda_m^\beta \in V$, $\alpha, \beta \in \Gamma$. Put $\lambda_j^\beta = T$, $\lambda_m^\beta = \lambda_j^\beta$, in (1), then $((\lambda_i^\beta \beta T) \alpha (\lambda_i^\beta \beta \lambda_j^\beta)) \alpha (\lambda_j^\beta \beta T) = \lambda_i^\beta \alpha (\lambda_i^\beta \beta \lambda_j^\beta) \alpha \lambda_j^\beta = T$.

Theorem 3.13: Let M be a $\Gamma - (PBCK - A)$. Then the following are equivalent:

(i) M is commutative;
(ii) $\lambda_i^\beta \leq \lambda_j^\beta \Rightarrow \lambda_i^\beta = \lambda_j^\beta \alpha (\lambda_j^\beta \beta \lambda_i^\beta)$ for all $\lambda_i^\beta, \lambda_j^\beta \in M$, $\alpha, \beta \in \Gamma$.

Proof.

(i) \Rightarrow (ii) Suppose that M is commutative. Then $\lambda_i^\beta \alpha (\lambda_i^\beta \beta \lambda_j^\beta) = \lambda_j^\beta \alpha (\lambda_j^\beta \beta \lambda_i^\beta)$. for all $\lambda_i^\beta, \lambda_j^\beta \in M$ and $\alpha, \beta \in \Gamma$. So, if $\lambda_i^\beta \leq \lambda_j^\beta$ from Definition 3.8 - (ii), hence $\lambda_i^\beta \alpha \lambda_j^\beta = T$.

That implies $\lambda_i^\beta = \lambda_i^\beta \alpha T = \lambda_i^\beta \alpha (\lambda_i^\beta \beta \lambda_j^\beta) = \lambda_j^\beta \alpha (\lambda_j^\beta \beta \lambda_i^\beta)$, hence $\lambda_i^\beta = \lambda_j^\beta \alpha (\lambda_j^\beta \beta \lambda_i^\beta)$.

(ii) \Rightarrow (i) Suppose $\lambda_j^\beta \leq \lambda_i^\beta$ then $\lambda_i^\beta = \lambda_j^\beta \alpha (\lambda_j^\beta \beta \lambda_i^\beta)$. On the other hand, $\lambda_i^\beta \leq \lambda_j^\beta$, then $\lambda_i^\beta \alpha \lambda_j^\beta = T$. Then $\lambda_i^\beta = \lambda_i^\beta \alpha T = \lambda_i^\beta \alpha (\lambda_i^\beta \beta \lambda_j^\beta)$. Hence, $\lambda_i^\beta \alpha (\lambda_i^\beta \beta \lambda_j^\beta) = \lambda_j^\beta \alpha (\lambda_j^\beta \beta \lambda_i^\beta)$.

Lemma 3.14: Let M be a $\Gamma - (PBCK - A)$. Then $T \leq \lambda_i^\beta$ for all $\lambda_i^\beta \in M$.

Proof. We have $T \alpha \lambda_i^\beta = T$ for all $\alpha \in \Gamma$, then $T \leq \lambda_i^\beta$. Hence, T is the least element of the $\Gamma - (PBCK - A) M$.

Theorem 3.15: If $f : M \rightarrow N$ is a homomorphism of $\Gamma - (PBCK - A) M$ and N , then $Im(f)$ is a subalgebra of N .

Proof. Let $f : M \rightarrow N$ be a homomorphism of $\Gamma - (PBCK - A) M$ and N , $\lambda_i^\beta, \lambda_j^\beta \in Im(f)$.

Then there exist $u_i^\beta, v_j^\beta \in M$ such that $f(u_i^\beta) = \lambda_i^\beta$, $f(v_j^\beta) = \lambda_j^\beta$. That implies $f(u_i^\beta) \alpha f(v_j^\beta) = \lambda_i^\beta \alpha \lambda_j^\beta$ for all $\alpha \in \Gamma$. That implies $f(u_i^\beta \alpha v_j^\beta) = \lambda_i^\beta \alpha \lambda_j^\beta$. Then $\lambda_i^\beta \alpha \lambda_j^\beta \in Im(f)$. Hence, $Im(f)$ is a subalgebra of N .

Lemma 3.16: Let $f : M \rightarrow N$ be a homomorphism of $\Gamma - (PBCK - A) M$ and N . Then $ker(f)$ is a subalgebra of M .

Proof. Let $f : M \rightarrow N$ be a homomorphism of $\Gamma - (PBCK - A) M$ and N , $\lambda_i^\beta, \lambda_j^\beta \in ker(f)$. Then $f(\lambda_i^\beta) = f(\lambda_j^\beta) = T$ and so $f(\lambda_i^\beta \alpha \lambda_j^\beta) = f(\lambda_i^\beta) \alpha f(\lambda_j^\beta) = T \alpha T = T$. Hence, $\lambda_i^\beta \alpha \lambda_j^\beta \in ker(f)$. Therefore, $ker(f)$ is a subalgebra of M .

Lemma 3.17: Let $f : M \rightarrow N$ be a homomorphism of $\Gamma - (PBCK - A) M$ and N . Then

(i) $f(T) = T$.
(ii) if $\lambda_i^\beta \alpha \lambda_j^\beta = T$, then $f(\lambda_i^\beta) \alpha f(\lambda_j^\beta) = T$.

Proof. (i) Now, $f(T) = f(T\alpha T) = f(T)\alpha f(T) = T$.
(ii) Suppose $\lambda_i^\beta \alpha \lambda_j^\beta = T$. Then $f(\lambda_i^\beta \alpha \lambda_j^\beta) = f(T)$ implies $f(\lambda_i^\beta) \alpha f(\lambda_j^\beta) = T$.

Theorem 3.18: Let $f : M \rightarrow N$ be a homomorphism of $\Gamma - (PBCK - A)$, M and N . Then f is injective if and only if $\ker(f) = \{T\}$.

Proof. Suppose $\ker(f) = \{T\}$ and $f(\lambda_i^\beta) = f(\lambda_j^\beta)$, for some $\lambda_i^\beta, \lambda_j^\beta \in M$. Then $f(\lambda_i^\beta \alpha \lambda_j^\beta) = f(\lambda_i^\beta) \alpha f(\lambda_j^\beta) = T$, that implies $\lambda_i^\beta \alpha \lambda_j^\beta \in \ker(f) = \{T\}$, implies $\lambda_i^\beta \alpha \lambda_j^\beta = T, \forall \alpha \in \Gamma$.

Similarly, $\lambda_j^\beta \alpha \lambda_i^\beta = T, \forall \alpha \in \Gamma$. Therefore, $\lambda_i^\beta = \lambda_j^\beta$.

Conversely, suppose f is injective and $\lambda_i^\beta \in \ker(f)$. Then $f(\lambda_i^\beta) = T = f(T)$, that implies $\lambda_i^\beta = T$, implies $\ker(f) = T$.

Lemma 3.19: Let N be a $\Gamma - (PNBCK - SA)$ of a $\Gamma - (PBCK - A) M$. If $\lambda_i^\beta \alpha \lambda_j^\beta \in N$, for all $\lambda_i^\beta, \lambda_j^\beta \in M$, then $\lambda_j^\beta \alpha \lambda_i^\beta \in N, \alpha \in \Gamma$.

Proof. Let $\lambda_i^\beta, \lambda_j^\beta \in M$ and $\lambda_i^\beta \alpha \lambda_j^\beta \in N$: We have $\lambda_j^\beta \alpha \lambda_i^\beta = T \in N$ for all $\alpha \in \Gamma$. Then $\lambda_j^\beta \alpha \lambda_i^\beta = (\lambda_j^\beta \alpha \lambda_i^\beta) \alpha (T) = (\lambda_j^\beta \alpha \lambda_i^\beta) \alpha (\lambda_j^\beta \alpha \lambda_i^\beta) \in N, \alpha \in \Gamma$. Since N is a $\Gamma - (PNBCK - SA)$ of M . Therefore, $\lambda_j^\beta \alpha \lambda_i^\beta \in N$.

Remark 3.20: Let N be a $\Gamma - (PNBCK - SA)$ of a $\Gamma - (PBCK - A) M$. Define a relation " $\sim N$ " on M by $\lambda_i^\beta \sim N \lambda_j^\beta$ if and only if $\lambda_i^\beta \alpha \lambda_j^\beta \in N$ for any $\lambda_i^\beta, \lambda_j^\beta \in M, \alpha \in \Gamma$.

Theorem 3.21: Let N be a $\Gamma - (PNBCK - SA)$ of a $\Gamma - (PBCK - A) M$. Then " $\sim N$ " is a congruence relation.

Proof. Let $\lambda_i^\beta \in M, \alpha \in \Gamma$. Then the relation \sim_N is reflexive, since $\lambda_i^\beta \alpha \lambda_i^\beta = T \in N$. The relation \sim_N is symmetric, follows from Lemma 3.19. Suppose $\lambda_i^\beta \sim_N \lambda_j^\beta, \lambda_j^\beta \sim_N \lambda_m^\beta \in N$. Then $\lambda_i^\beta \alpha \lambda_j^\beta \in N$ and $\lambda_j^\beta \alpha \lambda_m^\beta \in N$. By Lemma 3.19 $\lambda_m^\beta \alpha \lambda_j^\beta \in N$, thus $(\lambda_i^\beta \alpha \lambda_m^\beta) \alpha (\lambda_j^\beta \alpha \lambda_j^\beta) = (\lambda_i^\beta \alpha \lambda_m^\beta) \alpha T = (\lambda_i^\beta \alpha \lambda_m^\beta) \in N$, thus is $\Gamma - (PNBCK - SA)$. Hence $\lambda_i^\beta \sim_N \lambda_m^\beta$. Then " \sim_N " is an equivalence relation. Let $\lambda_i^\beta \sim_N \lambda_j^\beta$ and $\lambda_s^\beta \sim_N \lambda_m^\beta$ for all $\lambda_i^\beta, \lambda_j^\beta, \lambda_s^\beta$ and $\lambda_m^\beta \in M$. Then $\lambda_i^\beta \alpha \lambda_j^\beta \in N, \lambda_s^\beta \alpha \lambda_m^\beta \in N$, we have $(\lambda_i^\beta \alpha \lambda_s^\beta) \alpha (\lambda_j^\beta \alpha \lambda_m^\beta) \in N$. Therefore, $\lambda_i^\beta \alpha \lambda_s^\beta \sim_N \lambda_j^\beta \alpha \lambda_m^\beta$, since N is a $\Gamma - (PNBCK - SA)$. Hence, \sim_N is a congruence relation.

Definition 3.22: Let N be a congruence relation on a $\Gamma - (PBCK - A) M$. Denote $M/N = \{\left[\lambda_i^\beta \right]_N / \lambda_i^\beta \in M\}$, where $\left[\lambda_i^\beta \right]_N = \{\lambda_j^\beta \in M / \lambda_i^\beta \sim_N \lambda_j^\beta\}$. Define $\left[\lambda_i^\beta \right]_N \alpha \left[\lambda_j^\beta \right]_N = \left[\lambda_i^\beta \alpha \lambda_j^\beta \right]_N, \alpha \in \Gamma$. The M/N is a $\Gamma - (PBCK - A)$. Then $\Gamma - (PBCK - A) / M/N$ is called the quotient $\Gamma - (PBCK - A)$ and denoted by $\Gamma - (PQBC - A)$.

Example 3.23:

Consider $Y = \{1, 3\}, \{2, 6\}, \{5, 8\}, \{4, 7, 9\}$ and $\Gamma = \{\omega_1, \omega_2\}$ in Example 3.4. Hence Y is $\Gamma - (PBCK - A)$. Let $V = \{1, 3\}, \{2, 6\} \subseteq Y$. Then V is $\Gamma - (PNBCK - SA)$. Denote $\frac{Y}{V} = \{[\lambda_i^\beta]_v / \lambda_i^\beta \in Y\}$ and define $[\lambda_i^\beta]_v \omega [\lambda_j^\beta]_v = [\lambda_i^\beta \omega \lambda_j^\beta]_v$, where $\omega \in \Gamma$. Then Y/V is a quotient $\Gamma - (PBCK - A)$.

Theorem 3.24: Let N be a $\Gamma - (PNBCK - SA)$ of a $\Gamma - (PBCK - A) M$. Then the mapping $f : M \rightarrow M/N$ defined by $f(\lambda_i^\beta) = [\lambda_i^\beta]_N$ is a surjective homomorphism and $\ker(f) = N$.

Proof. Since $f(\lambda_i^\beta \alpha \lambda_j^\beta) = [\lambda_i^\beta \alpha \lambda_j^\beta]_N = [\lambda_i^\beta]_N \alpha [\lambda_j^\beta]_N = f(\lambda_i^\beta) \alpha f(\lambda_j^\beta)$, we have $f(M) = \{f(\lambda_i^\beta) / \lambda_i^\beta \in M\} = \{[\lambda_i^\beta]_N / \lambda_i^\beta \in M\} = M/N$. Therefore, f is surjective. The set $\ker(f) = \{\lambda_i^\beta \in M / f(\lambda_i^\beta) = N\} = \{\lambda_i^\beta \in M / [\lambda_i^\beta]_N = N\} = \{\lambda_i^\beta \in M / [\lambda_i^\beta]_N = [[T]]_N\} = \{\lambda_i^\beta \in M / \lambda_i^\beta \in N\} = N$.

4. Γ – permutation **BCK** –ideals of the $\Gamma - (PBCK - A)$

Here, some notions like Γ – permutation **BCK** –ideal, Γ – permutation **BCK** –closed ideal, Γ – permutation normal **BCK** –ideal, and quotient Γ – permutation **BCK** –algebra are given and we discussed their properties.

Definition 4.1: Let M be a $\Gamma - (PBCK - A)$ and I be a non-empty subset of M . Then I is called an Γ – permutation **BCK** – ideal [for short, $\Gamma - (PBCK - I)$] of M if

- i) $T \in I$,
- ii) $\lambda_i^\beta \alpha \lambda_j^\beta \in I, \alpha \in \Gamma$, and $\lambda_j^\beta \in I$, then $\lambda_i^\beta \in I$.

Where, M and $\{T\}$ are trivial ideals. An ideal I is proper if $I \neq M$.

Example 4.2:

Consider $= \{\lambda_i^\beta\}_{i=1}^4 = \{\{1,2,7\}, \{3,8\}, \{4,6\}, \{5\}\}$ in Example 4.7. Let $\Gamma = \{\mu, \omega\}$, where μ and ω are defined by Tables (11) and (12), respectively.

Table 11: $\mu: X \times X \rightarrow X$

μ	$\{5\}$	$\{1,2,7\}$	$\{4,6\}$	$\{3,8\}$
$\{5\}$	$\{5\}$	$\{5\}$	$\{5\}$	$\{5\}$
$\{1,2,7\}$	$\{1,2,7\}$	$\{5\}$	$\{1,2,7\}$	$\{4,6\}$
$\{4,6\}$	$\{4,6\}$	$\{4,6\}$	$\{5\}$	$\{4,6\}$
$\{3,8\}$	$\{3,8\}$	$\{4,6\}$	$\{3,8\}$	$\{5\}$

Table 12: $\omega: X \times X \rightarrow X$

ω	$\{5\}$	$\{1,2,7\}$	$\{4,6\}$	$\{3,8\}$
$\{5\}$	$\{5\}$	$\{5\}$	$\{5\}$	$\{5\}$
$\{1,2,7\}$	$\{1,2,7\}$	$\{5\}$	$\{1,2,7\}$	$\{4,6\}$
$\{4,6\}$	$\{4,6\}$	$\{4,6\}$	$\{5\}$	$\{4,6\}$
$\{3,8\}$	$\{3,8\}$	$\{3,8\}$	$\{3,8\}$	$\{5\}$

Then $A = \{\{5\}, \{1,2,7\}, \{3,8\}\}$ and $B = \{\{5\}, \{1,2,7\}, \{4,6\}\}$ are $\Gamma - (PBCK - SAs)$. Also, A is $\Gamma - (PBCK - I)$, but B is not $\Gamma - (PBCK - I)$ since $\exists \mu \in \Gamma$ with $\{3,8\} \mu \{1,2,7\} = \{4,6\} \in B$ and $\{1,2,7\} \in B$, but $\{3,8\} \notin B$.

Theorem 4.3: Let I be $\Gamma - (PBCK - I)$ of a $\Gamma - (PBCK - A) M$, if $\lambda_j^\beta \in M, \lambda_i^\beta \in I$ and $\lambda_j^\beta \leq \lambda_i^\beta$, then $\lambda_j^\beta \in I$.

Proof. Suppose $\lambda_j^\beta \leq \lambda_i^\beta, \lambda_i^\beta \in I, \lambda_j^\beta \in M$, then $\lambda_j^\beta \alpha \lambda_i^\beta = T$ for all $\alpha \in \Gamma$. So $\lambda_j^\beta \alpha \lambda_i^\beta \in I$, thus $\lambda_j^\beta \in I$, since $\lambda_i^\beta \in I$

Definition 4.4: A non-empty subset I of a $\Gamma - (PBCK - A)$. Then I is called an implicative ideal of M if it satisfies

- i) $T \in I$,
- ii) If $(\lambda_i^\beta \alpha (\lambda_j^\beta \beta \lambda_i^\beta)) \gamma \lambda_m^\beta \in I$ and $\lambda_m^\beta \in I$ implies $\lambda_i^\beta \in I$ for all $\lambda_i^\beta, \lambda_j^\beta \in M$, and $\alpha, \beta, \gamma \in \Gamma$.

Theorem 4.5: Every implicative ideal of a $\Gamma - (BCK - A) M$ is $\Gamma - (PBCK - I)$ of M .

Proof. Suppose I is an implicative ideal of M . Let $\lambda_i^\beta \gamma \lambda_m^\beta \in I, \lambda_m^\beta \in I, \lambda_i^\beta \in M, \alpha, \gamma \in \Gamma$. Then $\lambda_i^\beta \gamma \lambda_m^\beta = (\lambda_i^\beta \alpha T) \gamma \lambda_m^\beta = (\lambda_i^\beta \alpha (\lambda_i^\beta \beta \lambda_i^\beta)) \gamma \lambda_m^\beta \in I$. Therefore, $\lambda_i^\beta \in I$. Hence, I is $\Gamma - (PBCK - I)$.

Definition 4.6: Let I be a non-empty subset of a $\Gamma - (PBCK - A) M$. Then I is called a Γ -permutation BCK -closed ideal if I is both $\Gamma - (PBCK - I)$ and a $\Gamma - (PBCK - SA)$ of M and denoted by $\Gamma - (PBCK - CI)$.

Example 4.7:

Let $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 4 & 7 & 2 & 3 & 1 & 5 \end{pmatrix}$ be a permutation in S_7 . So, $\beta = (1 \ 6)(2 \ 4)(3 \ 7 \ 5)$. Therefore, we have $X = \{\lambda_i^\beta\}_{i=1}^3 = \{\{1, 6\}, \{2, 4\}, \{3, 5, 7\}\}$ and $T = \{2, 4\}$. Let $\mu = \{\mu, \omega\}$, where μ and ω are defined by Tables (12) and (13), respectively.

Table (12): $\mu: X \times X \rightarrow X$

μ	$\{2,4\}$	$\{1,6\}$	$\{3,5,7\}$
$\{2,4\}$	$\{2,4\}$	$\{2,4\}$	$\{2,4\}$
$\{1,6\}$	$\{1,6\}$	$\{2,4\}$	$\{1,6\}$
$\{3,5,7\}$	$\{3,5,7\}$	$\{3,5,7\}$	$\{2,4\}$

Table (13): $\omega: X \times X \rightarrow X$

ω	$\{2,4\}$	$\{1,6\}$	$\{3,5,7\}$
$\{2,4\}$	$\{2,4\}$	$\{2,4\}$	$\{2,4\}$
$\{1,6\}$	$\{1,6\}$	$\{2,4\}$	$\{3,5,7\}$
$\{3,5,7\}$	$\{3,5,7\}$	$\{1,6\}$	$\{2,4\}$

Hence, $A = \{\{1, 6\}, \{2, 4\}\}$ is a $\Gamma - (PBCK - CI)$ of the $\Gamma - (PBCK - A) X$.

Lemma 4.8: Let N be a $\Gamma - (PNBCK - SA)$ of a $\Gamma - (PBCK - A) M$. Then $[T]_N$ is a $\Gamma - (PBCK - CI)$ of M .

Proof. We consider that $[T]_N = \{\lambda_i^\beta \in M / \lambda_i^\beta \sim_N T\} = \{\lambda_i^\beta \in M / \lambda_i^\beta \alpha T \in N\} = \{\lambda_i^\beta \in M / \lambda_i^\beta \in N\} = N$. Suppose that $\lambda_i^\beta \alpha \lambda_j^\beta, \lambda_j^\beta \in [T]_N$. Then $\lambda_i^\beta \alpha \lambda_j^\beta \sim_N T$ and $\lambda_j^\beta \sim_N T$. Then $(\lambda_i^\beta \alpha \lambda_j^\beta) \alpha T, \lambda_j^\beta \alpha T \in N$. That implies $\lambda_i^\beta \alpha \lambda_j^\beta, \lambda_j^\beta \alpha T \in N$. This means $\lambda_i^\beta \alpha \lambda_j^\beta, T \alpha \lambda_j^\beta \in N$. Which gives $(\lambda_i^\beta \alpha T) \alpha (\lambda_j^\beta \alpha \lambda_j^\beta) \in N$. That implies $\lambda_i^\beta \alpha T \in N$. Therefore, $\lambda_i^\beta \in [T]_N$. Hence, $[T]_N$ is $\Gamma - (PBCK - I)$ of M . Let $\lambda_i^\beta, \lambda_j^\beta \in [T]_N$. Then $\lambda_i^\beta \sim_N T$ and $\lambda_j^\beta \sim_N T$, thus $\lambda_i^\beta \alpha \lambda_j^\beta \sim_N T$, and hence $\lambda_i^\beta \alpha \lambda_j^\beta \in [T]_N$. Therefore, $[T]_N$ is a $\Gamma - (PBCK - CI)$ of M .

Theorem 4.9: Let $f: M \rightarrow N$ be a homomorphism of $\Gamma - (PBCK - A) M$ and N . Then $\ker(f)$ is a $\Gamma - (PBCK - CI)$ of M .

Proof. Let $f: M \rightarrow N$ be a homomorphism and $T \in M$. Then $f(T \alpha T) = f(T) \alpha f(T) \Rightarrow$

$f(T) = T$, that implies $T \in \ker(f)$. Let $\lambda_i^\beta \alpha \lambda_j^\beta \in \ker(f)$, $\alpha \in \Gamma$, $\lambda_i^\beta, \lambda_j^\beta \in M$ and $\lambda_j^\beta \in \ker(f)$. Then $T = f(\lambda_i^\beta \alpha \lambda_j^\beta) = f(\lambda_i^\beta) \alpha f(\lambda_j^\beta) = f(\lambda_i^\beta) \alpha T = f(\lambda_i^\beta)$ so $\lambda_i^\beta \in \ker(f)$. Hence, $\ker(f)$ is $\Gamma - (PBCK - I)$ of M : Suppose $\lambda_i^\beta, \lambda_j^\beta \in \ker(f)$ and $\alpha \in \Gamma$. Then $f(\lambda_i^\beta \alpha \lambda_j^\beta) = f(\lambda_i^\beta) \alpha f(\lambda_j^\beta)$, then $f(\lambda_i^\beta \alpha \lambda_j^\beta) = T \alpha T = T$, implies $\lambda_i^\beta \alpha \lambda_j^\beta \in \ker(f)$. Hence, $\ker(f)$ is a $\Gamma - (PBCK - CI)$ of M .

Definition 4.10: Let I be $\Gamma - (PBCK - I)$ of a $\Gamma - (PBCK - A) M$. Then I is called Γ – permutation normal BCK – ideal of M if it is a $\Gamma - (PNBCK - SA)$ and denoted by $\Gamma - (PNBCK - I)$.

Example 4.11: Consider $Y = \{\{1, 3\}, \{2, 6\}, \{5, 8\}, \{4, 7, 9\}\}$ and $\Gamma = \{\omega_1, \omega_2\}$ in Example 3.4. Hence Y is $\Gamma - (PBCK - A)$. Let $G = \{\{1, 3\}, \{2, 6\}\} \subseteq Y$. Hence, $G = \{\{1, 3\}, \{2, 6\}\}$ is a $\Gamma - (PNBCK - I)$ of the $\Gamma - (PBCK - A) X$.

Theorem 4.12: Let I be a $\Gamma - (PNBCK - I)$ of a $\Gamma - (PBCK - A) M$. Then I is a $\Gamma - (PBCK - SA)$ of M .

Proof. Let I be a $\Gamma - (PNBCK - I)$ of M and $\lambda_i^\beta, \lambda_j^\beta \in I$, $\alpha, \beta \in \Gamma$. Then $\lambda_i^\beta \alpha \lambda_i^\beta = T \in I$ and $\lambda_j^\beta \alpha T = \lambda_j^\beta \in I$. Therefore, $(\lambda_i^\beta \alpha \lambda_j^\beta) \beta (\lambda_i^\beta \alpha T) = (\lambda_i^\beta \alpha \lambda_j^\beta) \beta \lambda_i^\beta \in I$, since I is a $\Gamma - (PNBCK - I)$. Therefore, $\lambda_i^\beta \alpha \lambda_j^\beta \in I$. Hence, I is a $\Gamma - (PBCK - SA)$ of M .

Theorem 4.13: If I is a $\Gamma - (PNBCK - SA)$ of a $\Gamma - (PBCK - A) M$, then I is a $\Gamma - (PNBCK - I)$ of M .

Proof. Let I be a $\Gamma - (PNBCK - SA)$ of M . Suppose $\lambda_i^\beta \alpha \lambda_j^\beta \in I$, $\lambda_j^\beta \in I$ and $\alpha, \beta \in \Gamma$, we have $T \alpha \lambda_j^\beta = T \in I$. Then $(\lambda_i^\beta \alpha T) \beta (\lambda_j^\beta \alpha \lambda_j^\beta) \in I$, that implies $\lambda_i^\beta \beta T \in I$, means $\lambda_i^\beta \in I$. Hence, $\lambda_i^\beta \in I$.

Definition 4.14: A homomorphism $f : M \rightarrow N$, where M, N are $\Gamma - (PBCK - A)$, is said to be a normal homomorphism, if $\ker f$ is a $\Gamma - (PNBCK - I)$ of M .

Example 4.15: Consider $\{\lambda_i^\beta\}_{i=1}^4 = \{\{1, 2, 7\}, \{3, 8\}, \{4, 6\}, \{5\}\}$ in Example 4.7. Let $\Gamma = \{\mu, \omega\}$, where μ and ω are defined by Tables (14) and (15), respectively.

Table (14): $\mu : X \times X \rightarrow X$

μ	$\{5\}$	$\{1, 2, 7\}$	$\{4, 6\}$	$\{3, 8\}$
$\{5\}$	$\{5\}$	$\{5\}$	$\{5\}$	$\{5\}$
$\{1, 2, 7\}$	$\{1, 2, 7\}$	$\{5\}$	$\{1, 2, 7\}$	$\{5\}$
$\{4, 6\}$	$\{4, 6\}$	$\{4, 6\}$	$\{5\}$	$\{5\}$
$\{3, 8\}$	$\{3, 8\}$	$\{4, 6\}$	$\{1, 2, 7\}$	$\{5\}$

Table (15): $\omega : X \times X \rightarrow X$

ω	$\{5\}$	$\{1, 2, 7\}$	$\{4, 6\}$	$\{3, 8\}$
$\{5\}$	$\{5\}$	$\{5\}$	$\{5\}$	$\{5\}$
$\{1, 2, 7\}$	$\{1, 2, 7\}$	$\{5\}$	$\{4, 6\}$	$\{4, 6\}$
$\{4, 6\}$	$\{4, 6\}$	$\{3, 8\}$	$\{5\}$	$\{3, 8\}$
$\{3, 8\}$	$\{3, 8\}$	$\{3, 8\}$	$\{3, 8\}$	$\{5\}$

Therefore, X is $\Gamma - (PBCK - A)$. Define $g : X \rightarrow X$ by $g(\{5\}) = g(\{1, 2, 7\}) = g(\{4, 6\}) = \{5\}$ and $g(\{3, 8\}) = \{3, 8\}$. Hence, g is a normal homomorphism.

Theorem 4.16: Let $f : M \rightarrow L$ be a normal homomorphism of $\Gamma - (PBCK - A)$ M and N . Then $\Gamma - (PBCK - A)$ $M = N$ is isomorphic to $Im(f)$ where $N = \ker(f)$:

Proof. Let $f : M \rightarrow L$ be a normal homomorphism of $\Gamma - (PBCK - A)$ of M and N . Then by definition $\ker(f)$ is a $\Gamma - (PNBCK - I)$ of M . Let $N = \ker(f)$. Therefore, $\ker(f)$ is a $\Gamma - (PNBCK - SA)$ of M . Define a mapping $\varphi : M/N \rightarrow Im(f)$ by $\varphi([\lambda_i^\beta]_N) = f(\lambda_i^\beta), \forall \lambda_i^\beta \in M$. Let $[\lambda_i^\beta]_N = [\lambda_j^\beta]_N$. Then $\lambda_i^\beta \sim_N \lambda_j^\beta$, [i.e., $\lambda_i^\beta \alpha \lambda_j^\beta \in N$ and $\lambda_j^\beta \alpha \lambda_i^\beta \in N$], that implies $(\lambda_i^\beta) \alpha f(\lambda_j^\beta) = [T]_L = f(\lambda_j^\beta) \alpha f(\lambda_i^\beta)$, implies $(\lambda_i^\beta) = f(\lambda_j^\beta)$, therefore $\varphi([\lambda_i^\beta]_N) = \varphi([\lambda_j^\beta]_N)$. Hence, φ is well defined. $\varphi([\lambda_i^\beta]_N \alpha [\lambda_j^\beta]_N) = \varphi([\lambda_i^\beta \alpha \lambda_j^\beta]_N) = f(\lambda_i^\beta \alpha \lambda_j^\beta) = f(\lambda_i^\beta) \alpha f(\lambda_j^\beta) = \varphi([\lambda_i^\beta]_N) \alpha \varphi([\lambda_j^\beta]_N)$. Then φ is a homomorphism from $M/\ker(f)$ $\rightarrow Im(f)$. Thus;

$$\varphi([\lambda_i^\beta]_N) = T_{Im(f)}, \text{ that implies } f(\lambda_i^\beta) = T_{Im(f)},$$

$$\Rightarrow \lambda_i^\beta \in \ker(f), \text{ implies } \lambda_i^\beta \in N.$$

$$\text{Therefore, } [\lambda_i^\beta]_N = [T]_N:$$

Therefore, φ is one-one. Hence, φ is an isomorphism from $M/\ker(f)$ onto $Im(f)$.

5. Conclusions

In this paper, we extended the concepts of $(PBCK - A)$ to $\Gamma - (PBCK - A)$, and quotient $\Gamma - (PBCK - A)$. We studied $\Gamma - (PBCK - CI)$, $\Gamma - (PNBCK - I)$ and some of properties were investigated. We proved that a $\Gamma - (PNBCK - I)$ of a $\Gamma - (PBCK - A)$ is a $\Gamma - (PBCK - SA)$, if $f : M \rightarrow N$ is a homomorphism of $\Gamma - (PBCK - A)$, then $\ker(f)$ is a $\Gamma - (PBCK - CI)$. We further study fuzzy implicative ideals of $\Gamma - (PBCK - A)$.

References

- [1] Y. Imai, and K. Iseki, "On axiom systems of propositional calculi, XIV", *Proceedings of the Japan Academy*, vol. 42, no. 1, pp. 19-22, 1966.
- [2] I. Ken and T. Shohei., "An introduction to the theory of BCK-algebras", *Mathematica Japonicae*, vol. 23, no. 1, pp. 1-26, 1987.
- [3] A. Atshan and S. Khalil, "On Complete Intuitionistic Fuzzy Roh-Ideals in Roh-Algebras," *Iraqi Journal of Science*, vol. 64, no. 7, pp. 3458-3467, 2023.
- [4] J. Young, "Lukasiewicz Fuzzy Ideals in BCK-Algebras and BCI-Algebras", *Journal of Algebra and Related Topics*, vol. 11, no.1, pp. 1-14, 2023.
- [5] S. Seok-Zun, M. A. Ozturk, and Y. B. Jun, "Positive Implicative Makgeolli Ideals of BCK-algebras", *European Journal of Pure and Applied Mathematics*, vol. 15, no. 4, pp. 1498-1511, 2022.
- [6] A. Khalaf and N. Ahmed, "On pre-topological BCK-algebras", *Journal of Algebra and Related Topics*, vol. 11, no. 1, pp. 65-80, 2023.
- [7] S. S. Ahn, H. Bordbar, and Y. B. Jun, "Interior BCK/BCI-Algebras", *International Journal of Computational Intelligence Systems*, vol.14, no.1, 1923 – 1933, 2021.
- [8] E. H. Roh, E. Yang, and Y. B. Jun, "Ideals of BCK-algebras and BCI-algebras Based on a New Form of Fuzzy Set", *European Journal of Pure and Applied Mathematics*, vol. 16, no. 4, pp. 2009–2024, 2023.
- [9] G. Muhiuddin, A. Alanazi, M. Elnair, and K. Shum, "Inf-hesitant Fuzzy Subalgebras and Ideals in BCK/BCI-algebras", *European Journal of Pure and Applied Mathematics*, vol. 13, no. 1, pp. 9-18, 2020.
- [10] E. H. Roh, E. Yang, and Y. B. Jun, "Intuitionistic Fuzzy Ordered Subalgebras in Ordered BCI-algebras", *European Journal of Pure and Applied Mathematics*, vol. 16, no. 3, pp. 342-1358, 2023.

- [11] I. S. Ahmed, H. H. Ebrahim, and A. Al-Fayadh "γ-algebra of Sets and Some of its Properties", *Iraqi Journal of Science*, vol. 63, no. 11, pp. 4918–4927, 2022.
- [12] N. Endou, K. Nakasho, and Y. Shidama, "σ-ring and σ-algebra of Sets", *Formaliz Mathematics*, vol. 23, no. 1, pp. 51–57, 2015.
- [13] A. Macodi-Ringia and G. J. Petalcorin, "On Intuitionistic Fuzzy Hyper GR-ideals in Hyper GR-algebras", *European Journal of Pure and Applied Mathematics*, vol. 13, no. 2, pp. 246-257, 2020.
- [14] K. A. Amoli, Z. Habibi, and R. Behboodi, "Some applications of k -regular sequences and arithmetic rank of an ideal with respect to modules", *Journal of Algebra and Related Topics*, vol. 11, no. 2, pp. 21-35, 2023.
- [15] R. Kumar, "On Derivation Algebra Bundle", *Journal of Algebra and Related Topics*, vol. 11, no. 1, pp. 43-48, 2023.
- [16] R. A. Borzooei, M. A. Kologani, Y. B. Jun, "Single valued neutrosophic ideals of pseudo MV-algebras", *Journal of Algebra and Related Topics*, vol. 11, no. 1, pp. 123-136, 2023.
- [17] G. D. James and A. Kerber, "The representation theory of the symmetric group", Addison - Welsey Publishing, Cambridge University Press, 1984.
- [18] D. Zeindler, "Permutation matrices and the moments of their characteristic polynomial", *Electronic journal of probability*, vol. 15, no. 34, pp. 1092-1118, 2010.
- [19] S. Mahmood, "The Permutation Topological Spaces and their Bases", *Basrah Journal of Science*, vol. 32, no. 1, pp. 28-42, 2014.
- [20] A. F. Al -Musawi, S. Alsalem, E. Suleiman, "On Permutation Quotient Object in Permutation G-Sets", *Smart Innovation, Systems and Technologies*, vol. 351, pp. 435-444, 2023.
- [21] N. M. A. Abbas, S. Alsalem and E. Suleiman, "On Associative Permutation BM-Algebras," 2022 14th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS), Karachi, Pakistan, pp. 1-5, 2022.