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Abstract

In this paper, the homotopy perturbation method is presented for solving the
second kind linear mixed Volterra-Fredholm integral equations. Then, Aitken
method is used to accelerate the convergence. In this method, a series will be
constructed whose sum is the solution of the considered integral equation.
Convergence of the constructed series is discussed, and its proof is given; the error
estimation is also obtained. For more illustration, the method is applied on several
examples and programs, which are written in MATLAB (R2015a) to compute the
results. The absolute errors are computed to clarify the efficiency of the method.

Keywords: Aitken method; homotopy perturbation method; second kind linear
mixed Volterra-Fredholm integral equations (LMVFIE2").
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1. Introduction
Volterra-Fredholm Integral equations have received significant meaning in mathematical physics,
biology, and contact problems in the theory of elasticity [1, 2]. Also, their solutions can be found
analytically in previous investigations [3]. At the same time, the sensing of numerical methods takes
an important place in solving these equations [4, 5].

The second kind mixed Volterra-Fredholm integral equation that will be considered in this work
has the form

ulx)=Fflx)+4 J‘ j k(r t)ult)dtdr a=x=bhb (1)
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Where the functions fix) ECla, b] and ki{rt) are continuous
onD ={{rtl:a=t =b&a =r = x = b}, while u(x) is the unknown continuous function in [a,b]
to be found.

Ibrahim used a new iterative method for solving the mixed Volterra-Fredholm integral equations
[6]. Wazwaz treated this problem by using the method of series solutions and the Adomian
decomposition method [7]. In addition, Wang used the least square approximation method to solve this
type of equations [8]. Ezzati and Najafalizadeh used Cas wavelets for solving Volterra-Fredholm
integral equations [9].

Homotopy perturbation method has been used by many authors for different purposes. Mirzaei
used it to solve the first kind Fredholhm integral equations [10]. Also, it was used by Biazar to find the
exact solution of non-linear Volterra-Fredholm integro-differential equation [11]. In addition, the
method was introduced and developed by Ji-Huan He to solve linear and nonlinear problems [12].
Behzazi used it for solving first kind non-linear Volterra- Fredholm integral equations [13], while it
was employed by Li for solving non-linear equations [14] and by Vahidi and Isfahani for solving
second kind Abel integral equation [15].

In the present work, an approximate solution of equation (1) using the homotopy perturbation
method is discussed. The main goal of this paper is to present a convergence condition for the method
and the error estimation for the solution. Also, Aitken method is used to accelerate the convergence of
the approximation.

2. Basic concepts [16]

This section deals with some important concepts which are used in this work.

Theoreml. Let {p.J5_, be any sequence converging linearly to the limit p

with e, = p, —p # 0 foralln = 0. The sequence {#, }>-, converges to p faster than {p, 15—, in the

Ba—

. a8 - n+17 7 2
sense lim,,; *— =0, where p,, = p, — (n+s—2n)
-

’P.‘L+z_2?’n+:+ﬁn'
3. Homotopy Perturbation Method (HPM)
Recall equation (1) and define the operator L as follows:

L) = u*(x) — £ x) — Aj f k(x, () dtdr = 0 @

With the solution is u*{(x) = u(x). The homotopy perturbation method defines a convex homotopy
H(u*,p): Rx[0,1] = R by
H(u*p) =(1—-p)F(u*) + pL{u*) =0 (3)
where F{u*) = u*(x) — f(x) is a functional operator, p € [0,1] is the homotopy parameter, and
uy(x) defines the initial solution of equation (1).

From equation (3), we have
H(u*,0) = F(u*), H(u* 1) = L{u*) (4)

where the changing of the imbedding parameter p from 0 to 1 is just that of H{u* p) from the
trivial problem H(u* 0) = F{u*) = 0 to the original problem H{u*,1) = L(u*) = 0. In topology, it
is called deformation while H{u*, 0) and H(u*, 1) are called homotopic.

By using L{u*) and F(u*) defined above, the homotopy operator of the considered equation will
be obtained:

x b
Hw'p) = (1 —p) (@) = £) +p | w@ — 1) =4 [ [ ko o (Datar
Thus ,
Hu*,p) = u () — £(6) +p —,lj j k(r, Dt (D)dedr | = 0 (5)

The method admits the use of power series
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W) = ) phur(x) (®)
=0

If equation (6) has a radius of convergence not less than one, and the series 72, u*;(x) converges
absolutely, then by Abel’s theorem the approximate solution of equation (1) is found:
o0 a0

ulx) = linll E piut (x) = E u*; (x) (7)
Pl
i=0 i=0
Substituting (6) in equation (5) gives
x b

ipiu*i{x} =uglx)+p AJ‘ j k(r, t}ipiu*i(t}dtdr
i=0 2 a i=0

and equating the same power terms of the embedding parameter p gives the recurrence relations that
leads finally to the approximate solution:
P uty(x) = uplx) (8)

x b
pt: ut(x) = Aj j k(r,t)u*;_ (t)dtdr, i=1 (9)

The above relations are obtained with the assumption that the series (6) is convergent. In the
following Theorem, the conditions for such convergence will be discussed.
4. Convergence Analysis
Theorem 4.1 Let k € C([a, b] % [a,b]) and f € Cl[a, b], if moreover the following inequality

1
b-a Ho

is satisfied, and as an initial solution 1 € C[a, b] is chosen, then for each p € [0,1], the series (6)
converges uniformly in the interval [a, 5] in which the functions u*; are found by equations (8) and
9).
Proof: Since k and f are bounded, then there exist positive numbers M and L such that

lk(x,t)| =Mand |f(x)| =L Vx,t€E[a,b] (11)

|AIM <

Letug(x) € C[a, b]. Therefore, there exists a positive number Ly such that
lug(x)| =Ly Vx € [a,b]
The above assumptions imply the estimations below:

lu*o ()| = lug(x)] = Ly

()] = ijjak(n Eut o (E)dtdr

< |AIMLy(b—a)?
In general, we have

()] = ij k(r Du*,_ ()dtdr

o

X [v]
<12 f f IkCr, Ol lu*o (D] dtdr
(ird (ird

x []
<12 f j |k, )1 [u* oo (O dtir

= |2 MiLg((b—a)2)i, Wxelab], iz=1

In this way, for series (6), we have, forp € [0, 1],

Zpiu*g{x} = Zlu*i(x}l =1L (ZIA* |ME((b — a) 2}*‘)
=0 =0 =0

The above last series is a geometric series with the common ratio » = |A|M(b — a)* < 1 which is

convergent (by the assumption in equation (10)). Hence, series (7) converges uniformly in the interval
[a,b] foreachp €[0,1]. =
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If it is impossible or difficult to calculate the sum of series (7), for p=1, then the partial sum of it
can be accepted as an approximate solution of equation (1). In the limit for p — 1, the first n+1 terms

of series (7) produce the nth-order approxinlate solution in the form
()= ) wi(®) (12)
i=0

The level of the error of the solution i, (x) can be estimated by the following theorem:

Theorem 4.2 The estimated error of the nth-order approximate solution can be determined as follows:
|.-1n+1|Mn+1((b _ ﬂ} 2}n+1

1—|A|M(b—a)? !
Where £, = SUp, e[q|ulx) — ii,,(x)|, M and Ly are determined in theorem (4.1).

EHELE.

Proof: For any x € [a, b], the use of estimations of functions w*;(x) gives

0 = 2, (D) = | ) wrel) = Y w00 =| Y wo)
i=0 i=0 i=nt+l
< ) )l zLD(Z IAfIMf((b—a}z}f)
i=ntl i=nt+l

= Lol M (b — a) )™ {1+ [AIM(b —a)* + -}
|An+1|Mn+1((b - a}i}n+1
1—|AIM(b—a)?

=L|} |

5. The HPM Algorithm
To find an approximate solution of (LMVFIE2") by HPM, perform the following steps:
Step 1: select positive integers a, b, and n.
Step 2: put ug(x) = f{x) as an initial approximation.

Step 3: calculate u;{x) in equations (8-9) foralli = 1,2, ..., n.

Step 4: compute the partial sum ii,, (x) = 37—, 1%; (x]) from equation (12).
Step 5: find il,, (x; ), for some x; € [a, b].

Step 6: compute the absolute error of each root|u(x;) — i, (x;)].

6. Acceleration of the Approximation (Aitken)

In this section, the Aitken's method has been applied successfully on the homotopy perturbation
method to find the solution of our integral equation, where the first three approximations are computed
by HPM as discussed in section 3 and then substituted in the definition (2.3) to get the following
procedure:

ﬁz‘+1(ﬂﬁe—1(ﬂ - ﬁf(ﬂ )
a9 () — 241 () + ;4 ()’
where good estimations and sometimes exact solutions will be found.
7. Numerical examples
Several examples will be solved in this section to show the accuracy of our approach.
Example 1 Consider the following LMVFIE2™

U;(x) ~

i=1,2..,n (13)

ral

1 . 17* T
ulx) = cos(x) + sin(x) —=x2 4+ Zx+ —j (r — t)ult)dtdr, 0=x=—
PR A 2

The exact solution isu{x) = coslx) + sin (x).
First, it will be verified whether the described method can be used for solving this problem.
Since k £ C([ﬂ,:—?] bt [{L:‘—TD and [ € C{[{]ED, then we check the satisfying of inequality (10). In

. 1 _
this example |4 = ,and M = maxm[[,%jlk(n t)| = 3
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1 1 1
b—a)? (T _pgy2 2.4674011003
( ) -0

T
0.392699082 = 3= |A|M < = 0405284735

This means that HPM can be applied if a continuous function 1w, is selected in the interval [0, E]

Letug(x) = f(x). Applying the algorithm of the HPM with different values of n, the following nth-
order approximate solutions resulted:

1,
Ug*(x) = up(x) = cos(x) + sin(x) — Ex‘ + gx

x(2x—n) x(7z%+ 384)(2x—m)

iig(x) = cos(x) + sin(x) —

8 3072
xﬂ3{n34—384J(2x——ﬂﬁ_F{Xﬁﬁfﬁ34—384ﬁ(2x-— )
1179648 452984832

xm?(mi+ 384)(2x — ) +XTE12(‘R'3 + 384)(2x — )
173946175485 66795331387392
(xa‘rlE(?ra + 384)(2x — ﬂ-’})

256494072527538528
R . x(2x— ) x(z3+ 384)(2x —m)
iig(x) = cos(x) + sin(x) — 3 + 2073
mﬁﬁﬁ+33®@x—ﬂj+{mﬁﬁﬁ+3&ﬁ@x—fﬂ}
1179648 452934532
ami(mi+ 384)2x —m) xmi¥(m® + 384)(2x — m)
173946175488 66795331387392
(XTEIE(TEH + 384)(2x - "T}) xrl8(m? + 384)(2x — m)
- +
256494072527538528 0349372385059274752
(w3 + 384)(2x — W) N xr*(m? + 384)(2x — m)
3782158995862761504768  1452349054411300417830912
x(2x — m) x(m? + 384)(2x — )

1iy;(x) = cos(x) + sin(x) — 3 + 3073
mﬁﬁﬁ+33®@x—ﬂj+{mﬁﬁﬁ+3&ﬁ@x—fﬂ}
1179648 452984832

_mr'}{ﬁa + 384)(2x — ) N xrl3(m3 + 384)(2x — m)

173946175488 66795331387392

(xa‘rlE(?ra + 384)(2x — ﬁ}) xm18(3 + 384)(2x — )
B 25649407252758528 0849372385059274752
xril(md + 384)(2x — m) xr@(md + 384)(2x — m)

B 3782158995862761504768 + 1452349054411300417830912

xme(m? + 384)(2x — m) xm3®md + 384)(2x — m)
_55??0203589393935{]44?{]?{]2{]8 214157582167272714411674959372

xm3¥(m? + 384)(2x — )

_322355'1'1552232?22334033134590343

The absolute error of each of them is presented in Table-1.
Now to apply Aitken method, only the first three approximate solutions i, (x), fi,(x), and iz (x) will

be found by HPM and then substituted in the Aitken procedure of equation (13) to get
13 ()i (x) — 1,7 (x)
Lil-1 (x} o e e —
figpey — 2 tig(x) + 1y (x)
which gives the exact solution by only one iteration. The outcomes are tabulated in Table-1.
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Table 1-The results of Example 1 using HPM with n = 6,9,12 and Aitken with only one iteration
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absolute error for w(x;) using

X; exact solution HPM Aitken
u(x;) lu— g Ju— Ge()  u— dy ()] lu— Uy (x)|
0 0
0.057 1 0 0 0 0
010w 11441228056  15386245¢-08  8.0999651e-12  4.4408921e-15 0
0157 12600735107  27353324e-08  14400250¢-11  7.5495166e-15 0
' 1.3449970239  3.5901238¢-08  1.8900215e-11  9.7699626e-15 0
0207 13068022467  4.1029986e-08  2.1600278e-11  1.1324275e-14 0
0257 14142135624  4.2739569e-08  2.2500224e-11  1.1768364e-14 0
030m  1.3968022467  4.1029986e-08  2.1600277e-11  1.1324275¢-14 0
0357 13449970239  3.5001238e-08  1.8900215e-11  9.7699626¢-15 0
040w 12600735107  2.7353324e-08  1.4400259e-11  7.5495166e-15 0
1.1441228056  1.5386245¢-08  8.0999651e-12  4.4408921e-15
0.45mT 1 0 0 0 0
0.50m

Example 2. Consider the foIIowmg mixed V-F integral equation

u(x}—xe-"——+ J‘ J‘m(t}dt 0=x=1
The exact solution is u{x) = xe*,
In this example, we have - =AM =:: =1,

:,z
As described in section 3,
Let uplx) = flx)

ug* (x) = up(x) = xe* — T

By choosing different values of (n), different values of the nth-order approximate solutions will be
found and the results are listed in Table 1.
Now to accelerate the convergence, the approximate solutions iy (x), 1i;(x),and iz{x) will be

found by HPM as follows:

xZ & x2
1 (x) = Zu {x) = xe¥ T ﬁz(x}Zu*i(x} = xg¥ — E7e
i=0 i=0
{i (x}=Zu*-(x} =xe¥ — X7
3 L0 6912

then they are substituted in the Aitken procedure to get Us (x) which gives the exact solution with only

one iteration. The outcomes are compared with HPM in Table-2.
Table 2-The results of Example 2 using HPM with n = 3,6, 9 and Aitken withn =1

x; exact solution absolute error for u(x;) using

ulxy)

HPM Aitken
lu — fiz(x)] lu— g (x]] lu — fig{x)] lu— Uy (x|
00 O 0 0 8.3724494e- 0 4.8451897e- O
0.1 0.1105170918 1.4467592e-06 10 13 0
0.2 0.2442805516  5.7870370e-06 3.3489798e-09 1.9380759¢-12 0
0.3 0.4049576423 1.3020833e-05 7.5352045e-09 4.3606707e-12 0
0.4 05967298791  2.3148148e-05 1.3395919¢-08 7.7521925e-12 0
0.5 0.8243606354  3.6168981e-05 2.0931124e-08 1.2112919e-11 1.0 e-15
0.6 1.0932712802  5.2083333e-05 3.0140818e-08 1.7442683e-11 0
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0.7 1.4096268952  7.0891204e-05  4.1025002e-08  2.3741374e-11 O
0.8 1.7804327428  9.2592593e-05 5.3583676e-08  3.1009214e-11 O
0.9 2.2136428000 1.1718750e-04  6.7816840e-08  3.9245981e-11 1.0e-15
1.0 2.7182818285 1.4467593e-04  8.3724494e-08  4.8451675e-11 O
8. Conclusion

In this paper, the sufficient condition of the convergence of the homotopy perturbation method for
the second kind linear mixed Volterra—Fredholm integral equations is formulated and proved. Also,
the estimation of the error is given. Moreover, HPM is used to solve the presented equation and then
the solution is accelerated by Aitken formula. Two examples illustrated the accuracy by obtaining
good approximate results. The results from HPM and Aitken are compared with the exact solutions to
demonstrate the implementation of the method. Also, it should be considered that better results could
have been obtained in HPM by increasing the number of components of the partial sum (n). The given
numerical examples and the outcomes in tables 1 and 2 supported these claims.
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