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Abstract

Our goal in this work is to describe the structure of a class of bimodal self maps
on the compact real interval | with zero topological entropy and transitive.
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1
-Introduction

One of the central questions in the
theory of dynamical systems is how to recognize
chaos and how to see how large is it? One of the
best known methods of measuring chaoticity is
by means of topological entropy of the system
(see [1] for definition). Then we can restate our
question as: how can one get estimates for
topological entropy form other properties of the
system?

Many authors introduced various
definitions of chaos . The notion of chaos that
was introduced by Li and Yorke [2] is weaker
than other definitions [3]. It turns out that chaos
in the sense of Li and Yorke is a weaker
property than positive topological entropy (and
is equivalent to the property that the map has a
trajectory which is not approximable by cycles
[4]. An example showing this is given in [5].
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M.Misiurewicz and J.Smital in [6] find a class
of £ maps of the interval with zero topological
entropy and chaotic in the sense of Li and Yorke
, there maps are unimodal . In this work we
study an analogous

class of bimodal maps of the interval with zero
entropy and transitive.

2-Preliminary Definitions
Let | be a compact real interval |,
f+1 = I denotes a continuous map of | into itself

, We use the symbol f™ to denote f°f°f ... f(n-
times) £ denotes the identity map on I. For a

compact real interval | and a continuous map
f:I =1 there are several ways of describing the

behavior which has chaotic properties, one of
these properties is transitivity
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Definition 2.1 [7]
A map f: T —= 1 is called transitive if f is onto

and there is a point with a dense orbit.

Definition 2.2 [4]
We recall that the w-limit set of x &1 |
denoted by w (x) is the set of limit points of the

sequence {f™(x)} =,

Definition 2.3 [4]
F is chaotic (in the sense of Li and Yorke )
if there is some € =0 and a non-empty

perfect set 5 = I such that for any x, v € 5
X = y and any periodic point p of f,
limyee sup ™ x) — ) = e ...(2.1)
My, inflf™(x) — R =0 ...22)
lim,, .. sup|f(x) — f*(p)l = e ...(2.3)
Theorem 2.4
If there is a point x €I such that the set
ws (x) is infinite and f is not injective on
w; (x) then f is transitive.

Proof: By[ theorem 1,10], f is chaotic in the

sense of Li and Yorke. Let U,V be open sets .
We may assume U NV = ¢g. By the definition

of Li and Yorke , there is a perfect set S with the
properties listed easlier section thus U in 5 = ¢ .

Yeelns and yeEUNS,x v,
inf|f*(x) — F*(y)] = 0 . This implies, for all
open neighbourhood
M, N, ,f™(M.)n f*(N,) = @Then by
[theorem2.2]there is a positive integer m such
that f™(M,)NN, =@ this implies f is

transitive.m

3- Preliminary Constructions
Let f: I =1 be a continuous bimodal map ,

we will define an equivalence relation on | and
study the maps from the quotient space into
itself , we start by the following :

Definition 3.1

Let f: I — I be a continuous map where I1=[a,b] f
is called bimodal if there exists ¢1,¢5 € (a, b)
such that f is strictly increasing on
[a, £1] andle2, b] and decreasing on [ey. ¢2].
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We shall call f weakly bimodal if there exists
¢1,¢2 € (@, b) such that f is non-decreasing on

[a, ¢1] and[e2, b] and non-increasing on [y, ¢2].
Let f: 1 —1 be weakly bimodal , we say that
x, ¥ €1 are equivalent (denoted by x~) if there
exists m =1 such that f™ is constant on
[x, v]or [y, x] (x may be equal to y ). The

definition of this relation is similar to the
relation given for unimodal map in [5].

Proposition 3.2
Let I = [a,b] and f: I = I be a continuous map.
Define a relation ~ on | as above . Then this
relation is an equivalence relation.
Proof: Since for all =1, f™ is constant on the
closed degenerate interval {x} then the relation
~ js reflexive . Let x,v €1 such that ~v, then
by definition of the relation y~x, hence the
relation is symmetric . Let x,y,z €1 such that
x~yand y~z then there is n; €N such that
f™ is constant on [x,¥] and there is n such
that f™ is constant on [v,z]. Then f™™= s
constant on [x,z]. Thus the relation ~ is
transitive. m
Each equivalence class is a closed interval |,
possibly degenerate to a point . i
Let I = I/~ be the quotient space , I can be
identified with a closed interval . This
interval may degenerate to a point , I is

equipped with the quotient topology. We
will define order in I as follows , for all

[x4], [x2] €1, [x1] < [x2] means for all
v1 € [xq] andyz € [x2)y <v;  ...(1).Let
m:1 — [ be the natural projection , then 7 is
continuous .

Remark 3.3

T is non-decreasing.
Proof: Let x1,%2 €Isuch that x; < x3, we
consider two cases:
Case (1): If there is m €N .Such that f™ is
constant on [xq, %3] or [x2,x4] then [x,] = [x]
(by the definition ). This  implies
TF(JH} = Tf":xz}
Case (2) : There is no such n , then [x1] = [x2].
Thus either [x1]< [x2] or [xz]<[x4] | if
[x,] = [x4] then by definition (1) above , for all
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v2 € [xz] and for all 4 € [x1], vz <y in
particular xz < x4. But this is a contradiction ,
hence [-'X-'l] = [:X.':] , that is ,TE(:X.’:L} = ﬂ-'(x:} [ ]

Proposition 3.4
Let f:I =1 and x, v €1 such that x~¥ then

fl~f(y)
Proof :Since x~y then there is n € N such that
f™ is constant on [x,v] or [¥,x] thus F7*1 is
also constant on [x,v] or [v,x].Hence f™ is
constant on [f(x), F()] or [f(3), Fx)] this
implies F(x)~f(y). m

We now define F:I—=1 by
Flyl = [f(3) 1.1t is clear that this is a good
definition.Note that Fr = mf. The proof of the
following proposition is simple:

Proposition 3.5
Let F:I =1 be the function define above

then F is continuous.

Proposition 3.6

Let f: I — I be a weakly bimodal map and let
F:I — I be the function defined above . Then F
has one of the following properties:
1)monotone
2)unimodal
3)bimodal
Proof: Let f be weakly bimodal map then there
is £1, €2 € I two critical points such that f is non-
decreasing on [a,¢1] and [£2,5] ...(2) and f is
non increasing on [c1,2]...(3). Thus f has one
of the three forms given in Figures (a),(b) and

(©).
IdI.:I. '-Irrj I"-’El Clz
1 2
Figure (a) Figure (b) Figure (c)

Proposition 3.7
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Let f: I — I be a weakly bimodal and transitive
Jlet F:1 — I be the function define above then F

is tranitive.
Proof :Since f is transitive then by definition 2.1
, fis onto and there is a point x € I such that the

orbit of x is dence in I . That is , {f™(x):n € N}
is dence in I, hence fi(x) = f7(x) , hence fis
nont constant on  [fi(x), f{x)] or
[F7(x), fi(x)] for all i,jEN,i=j . Thus
[FE(x)] = [F7(x)] this implies Fi[x] = Fi[x] ,
for all i #j . Moreover , it is easily seen that
{F*[x]:n € N} dense in I and F is onto , thus ,
by definition 2.1, F is transitiveon [ . m

Lemma 3.8

a) Lety € I be a periodic point of F of period
k then there exists a unique periodic point
x €1 of f for which w{x) =y and the

period of x is k.
Let x € I be a periodic point of f period k

then m(x) is a periodic point for F of period
k.
Proof(a): Lety € I be a periodic point of
period k for F , that is , F¥(y) =1y ,
then w=1(y) is one Of two cases:

) 77y =la, bl

i) T (y) = {a}

Case(i) Since w (y) =[ay,by] then

f¥lay, by] € [aq, by].Since f is continuous then

by the intermediate value theorem there is
x € [ay,by] such that £%(x) = x and ml{x) = .

b)

To show that x is unique , assume
z € [ay, by] this implies x~y then by definition
there is renN ,such that

F*(z) = f™*(x) = f"(x) = x.Then z=x and
hence x is the ungiue periodic point of f in
[ﬂr bl]-

Case (ii) Let m 1(y) ={a}then mla) =y,
since y is a periodic point of F then
F¥(y) = v = F¥a{a) = nf*(a) which implies
a = f¥(a) , since =~*(a) consists of one point
then this periodic point is unique.

Proof (b):Let x € I be a periodic point of f such
that F*(x) = x.nf*(x) = wlx) = F*a(x), then
m(x) is a periodic point of F of period = k . To
show that the period of m(x) is not less than k .
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Assume m(x) = Fim(x) such that i<k. Then
m(x) is a periodic point of period I for F . thus
by (a) there exists a unique periodic point x4 €1
of f for which m{xy) = m(x) and the period of
x4 is i<k, but this is a contradiction. m

4. Main Results

In [6] , Misiurewiz,M. and
Smital,J.found a class of C* maps of an interval
which are unimodal with zero topological
entropy and chaotic in the sense of Li and Yorke
. In this section , we will use the construction
which was given in section three to get results
similar to the results of [6] except that we
replace chaotic in sense of Li and Yorke by
transitivity.
Let H be the class of all weakly bimodal maps f
for which the sets:
Lr={xel:f(x) = fly); vy e}
consists of more than one point...(4)
Jr={x€Lf0) = fy)ivy 1}
consists of more than one point...(5)
For all n = 0, f has a periodic point of
period 2™ ... (6)

F has no periodic point of other
periods...(7)

Lemma4.1

Let H be the class of all weakly bimodal
maps f that satisfy (4),(5),(6) and(7) above , and
let F:1 — I be the induced map by f. Then F is
bimodal and for all n = 0 |F has a periodic point
of period 2™ and F has no periodic point of other

periods.
Proof:Since each L and J¢ consists of more than

one point ,that is , these sets are not empty. Then
F has maximal and minimal points then by
proposition 3.6, F is bimodal.By lemma 3.8, and
condition (6), F has a periodic point of all period
2™ for all n = 0 ,and by condition (7), F has no

periodic point of other period. m

Theorem 4.2
Let H be the class of maps defined above |,
then any map f € H is transitive and has zero

topological entropy.
Proof:Let f € H then f is weakly bimodal and

each of L¢ , ]+ has more than one element , and f

864

Iragi Journal of Science. Vol 54.No 3.2013.Pp 861-865

has periodic points only of the form 2™ | for all
n = 0Then by [5],h(f) = 0.

Let © be the map from I into the set of all
kneading sequences .By Lemma 4.1, F is
bimodal and has a periodic point of period 2™ ,

for all n =0, and there are the only periodic

points, therefore, it has the same kneading
sequences (see[8]).Hence the realation position
of turning points, its images and the periodic
points are the same for © and F since 7 is non-

decreasing by remark 3.4 .By Lemma 3.8, it is
the same also for If. However for o this relation
position is well known (see[4]).

Let ¢;, c5 be the critical points of © and let a,, be

the periodic point of © of period 2™ with the
largest image under o. Then from[2] we get:

0(c)) <oy <0F(e]) <oy <o <] <m0y <) <0y <0 () < g < 0
And

o)) <0 <0¥ (6] < gy <€) <m0, <0 (E) <0y < 0 (6] < 4y < 0 ()

Assume ¢; = ¢4 since o is increasing (see[9])
then w*{c;) < w*(c;) , for all k €N | then
o) <o) <ay < <o <oy <

e < ag < 02 (ch)

. Therefore , if b, is the periodic point of f of
period 2™ with the largest image under f and
dy,da €] such  thatd; < d; then
F2dy) < F2(d) < by < £ (dy) <

FPdy) < <dy <dy< e < by <

FP(dy) < f2(d,) < by < f¥(dy) <

£ (d2).

Let dy =lim, .. bynsq and d; = lim,,_,.. ba,, |,
since olag) < olay) < - < ole) < ole)
We have
also:f(bg) < f(by) < - < fldy) < fda).
Therefore

lim,, .. f (b;) = f(dy) = f(d;) = f(d;) =
fldy).

Since

im0, ©(@,) = lim, .. 02"+l (1) =

CD":'fi} = lim,, e 0?1 (C:} = CD":C:}

and ¢y,¢2 are not periodic points of o , the
itineraries of all
points vy € [lim,_... Fr(b,),Fr(dy)] that is,
vy € llim, . 7f (b,),mf(dy)] and in the same
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way Vi E llim, ... f{dy), mf(d,)]  hence
d! € ws(f(d;)),i = 1,2. Since d; are arbitrary
elements of Jr then ] < [dy,d;] such that
dy = d; then by above , we get f(d;) = fld;)
that is f is not injective on w(f(d;)) .by
Lemma 2.4, fis transitive. m

To show that there exist smooth maps satisfying
Theorem 4.2 in H we give the following:

Theorem 4.3
Let H be the class which is defined in
Lemma 4.1 then H contains a C* map.

Proof:Let g: [0,1] = [0,1] be aC™> map which
is weakly bimodal such that each of /5 and L¢
has more than element and g(0) =0 and
g(1) =1. Set ga(x) = Ag(x) for all A for all
x € [0,1] . then g; is of classC™ , for all 4 . let

{A: g has periodic pointsof period 2", foralln =
0}

. it is easily seen that A is closed , g1 = g then
g1 has a periodic point of period 2™ , for all
n=0. gylx) =0, for all x € [0,1] thus g,
has no periodic point of period 2" . hence if
pu=infA  then u =0, g, has a periodic point
of period 2™ , for all n =0 . Suppose g has a
periodic point different form 2% | then by [6], if
4 is sufficiently close to u then g, has a periodic
point of period 2™ , but this is a contradiction.
Then g3 has no periodic point other than 27,
Clearly g, is such that each of [, and L, has

more than one point. m

Example: We will give an example satisfy
theorem 4.1 and 4.3 : Let g be the map from
[0,5] into itself defined by
glx) = ';xﬂ —Exz + 2x + 1, g is a himodal map
and hig) = 0,g;(x) = Ax , for all 1 €[01]
and x € [0,5] then the map g; is of class C* for
each 4. In such away we obtain another simple
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example of transitive bimodal smooth map zero
or positive topological entropy.
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