

On δ -Small Projective Modules

Nuhad Salim Al-Mothafar* and Sahira M.Yassin

Department of Mathematics, College of ScienceUniversity of Baghdad, Baghdad, Iraq.

Abstract

Let R be a commutative ring with unity and let M be a non-zero unitary R —module. In this work we present a δ -small projective module concept as a generalization of small projective. Also we generalize some properties of small epimorphism to δ -small epimorphism. We also introduce the notation of δ -small hereditary modules and δ -small projective covers.

Keyword: projective modules, small projective modules, small epimorphism.

المقاسات الاسقاطية من النوع δ الصغيرة

نهاد سالم المظفر و ساهره محمود ياسين

قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق.

الخلاصة

لتكن R حلقة ابدالية ذات عنصر محايد وليكن M مقاسا احاديا غير صفري ايسرمعرفا على R. قدمنا في هذا البحث مفهوم المقاس الاسقاطي من النوع δ الصغير بصفته أعماما لمفهوم المقاس الاسقاطي الصغير. و عممنا بعض خصائص المقاسات الاسقاطية الشاملة الصغيرة إلى المقاسات الاسقاطية الشاملة الصغيرة من النوع δ . كذلك سنقدم مفاهيم المقاسات الوراثية الصغيرة من النوع δ ، الغطاءات الاسقاطية من النوع δ الصغيرز

1.Introduction

Let **R** be a commutative ring with identity and M is a non zero unite left **R**-module. **M** is called singular module if Z(M)=M where $Z(M) = \{x \in M: \operatorname{ann}(x) \subseteq_{\mathfrak{e}} R\}$, submodule X of an R- module M is called c-singuler $(X \subseteq_{C.S} M)$ if is M/X singular module [1]. A submodule N of an Rmodule M is called a small submodule of M, denoted by $N \ll M$, if $N + L \neq M$ for any proper submodule L of M [2]. In [3] Zhou introuced the definition of the concept of δ -small submodule that A submodule N of an R- module M is called a δ -small submodule of M (briefly $N \ll M$) if N + X = M for any proper submodule X of M with M/X singular, we have X = M.

An ideal I of a ring R is δ -small ideal if we consider R as R –module.

^{*}Email:nuhadmath@yahoo.com

In [4] A.K. Tiwary and K.N. Chauby introduse the concept of small projective modules that an Rmodules M is called small projective if for any epimorphism $g: B \to A$ whose kernel is small submodule of $B: g \circ Hom(M, B) = Hom(M, A)$.

In this paper we introduce the concept of δ -small projective modules as follows: An R-modules *M* is called δ -small projective if for any epimorphism $g: B \to A$ whose kernel is δ -small submodule of *B* $g \circ Hom(M, B) = Hom(M, A)$

In the following we give the properties of the c-singular submodules and the δ -small submodules.

Remarks1.1[3]

1- Let A be submodule of R-module M if $A \subseteq_{\epsilon} M$, then $A \subseteq_{CS} M$.

2- Let *M* and *N* be R-modules and $f: M \to N$ be an epimorphism if $A \subseteq_{CS} M$, then $f(A) \subseteq_{CS} N$.

3- Let *M* and *N* be **R**-modules and $f : M \to N$ be a homomorphism, if $B \subseteq_{CS} N$,

then $f^{-1}(B) \subseteq_{C,S} M$.

4- Let *A* and *B* be submodules of an R-module *M*, if $A \subseteq_{c,s} M$ and $B \subseteq_{c,s} M$, then $A \cap B \subseteq_{c,s} M$.

5- Every submodule of a singuler module is c-singuler .

Lemma 1.2 [3]: Let *M* be a module,

1) For submodules N, K, L of M with $K \subseteq N$, then a) $N <<_{\delta} M$ if and only if $K <<_{\delta} M$ and $N/K <<_{\delta} M/K$

b) $N + L \ll_{\delta} M$ if and only if $N \ll_{\delta} M$ and $L \ll_{\delta} M$.

2) If $K \ll_{\delta} M$ and $f : M \to N$ a homo then $f(K) \ll_{\delta} N$.

3) If $K_1 \subseteq M_1 \subseteq M$, $K_2 \subseteq M_2 \subseteq M$ and $M = M_1 \oplus M_2$ then $K_1 \oplus K_2 <<_{\delta} M_1 \oplus M_2$ if and only if $K_1 <<_{\delta} M$ and $K_2 <<_{\delta} M_2$.

4)Let A < B < M, If $A <<_{\delta} M$ and B is a direct summand, then $A <<_{\delta} B$.

2. δ-Small epimorphism.

An epimorphism $g: M \to N$ is said to be small, if **Ker(g)** is small in *M*, where *M* and *N* are any R-modules [5].

In this section we give the definition of δ -small epimorphism and some related concept.

Definetion 2.1

Let M and N be modules. An epimorphism $g: M \to N$ is said to be δ -small, if Ker(g) is δ -small in M.

Example 2.2

Consider \mathbb{Z}_2 and \mathbb{Z}_4 as Z-modules. Define g: $\mathbb{Z}_4 \rightarrow \mathbb{Z}_2$ by

 $g(\overline{1}) = g(\overline{3}) = \overline{1}$, $g(\overline{0}) = g(\overline{2}) = \overline{0}$, clearly Ker $(g) = \{\overline{0}, \overline{2}\} <<_{\delta} Z_4$. Thus g is δ -small epimorphism.

The following proposition is needed later.

Proposition 2.3

Let M, N and L be modules. If $f: M \to N$ and $g: N \to L$ are two epimorphisms. Then $g \circ f$ is δ -small if and only if f and g are δ -small.

Proof: Let $g \circ f$ is δ -small epimorphism and suppose that Ker (f) + K = M, where K is csingular submodules of M. We claim that Ker $(g \circ f) + K = M$. Ker $(g \circ f) + K \subseteq M$, we have to show only $M \subseteq$ Ker $(g \circ f) + K$, let $m \in M, f(m) \in N$ and $g(f(m)) \in L$, but Ker (f) + K = M, then m = a + w; $a \in$ Ker $(f), w \in K$, then f(m) = f(w), hence g(f(m)) = g(f(w)) and M = Ker $(g \circ f) + K$. But Ker $(g \circ f) <<_{\delta} M$. therefore, M = K. Thus

But Ker ($g \circ f$) $<<_{\delta} M$. therefore, M = K. Thus f is δ -small epimorphisim. To show that g is δ -small epimorphisim.

Let Ker(g) + A = N; A is c-singular submodules of N, then $f^{1}(A)$ is c-singular submodules of M, $f^{1}(A) = B$, then A = f(B), $g(A) = L, g(f(B)) = L = (g \circ f)(M)$.

Similarly we get $M = Ker(g \circ f) + B$, then M = Band hence A = f(M) = N. Thus g is δ -small epimorphisim. So that both f and g are δ -small epimorphisims.

For the converse, if f and g are δ -small epimorphisims, suppose that

Ker $(g \circ f) + K = M$; K is c-singular submodules of M, g(f(K)) = g(f(M)), then f(M) = f(K) + Ker(g), but Ker (g) $\ll_{\delta} f(M) = N$ and f(K) is c-singular submodules of N, hence f(K) = f(M) = N, then M = Ker(f) + K, since $Ker(f) \ll_{\delta} M$ and K is c-singular submodules of N, then M = K. Thus $g \circ f$ is δ -small epimorphism.

Proposition 2.4

Consider the following commutative diagram of modules A_1, B_1, C_1 and A_2, B_2, C_2

$$\begin{array}{cccc} 0 \rightarrow A_1 \xrightarrow{\mathbf{f_1}} B_1 \xrightarrow{\mathbf{g_1}} C_1 \rightarrow 0 \\ \alpha \downarrow & \beta \downarrow & \downarrow \gamma \\ 0 \rightarrow A_2 \xrightarrow{\mathbf{f_2}} & B_2 \xrightarrow{\mathbf{g_2}} C_2 \rightarrow 0 \end{array}$$

With both rows are exact and α is an epimorphism, if g_1 is a δ -small epimorphism, then so is g_2

proof :Let Ker $(g_2) + K = B_2$, where K is csingular submodules of B_2 , since the sequence is exact, then $f_2(A) + K = B_2$, but α is an epimorphism and $f_2 \alpha$ $(A) + K = B_2$, then β $f_1(A)+K= B_2$, but $Im(f_1) = Ker(g_2)$, so $\beta(Ker(g_1)) + K = B_2$, since $Ker(g_1) <<_{\delta} B_1$, then $\beta(Ker(g_1)) <<_{\delta} B_2$, but $\beta(Ker(g_1)) + K = B_2$, then $K = B_2$. Thus g_2 is δ -small epimorphism.

3. δ-Small projective modules

In this section, we give the definition of a δ -small projective modules as a generalization to a small projective modules.

Definetion 3.1

An R-mdule M is called δ - small projective if for each δ -small epimorphism $g: A \to B$, where A, Bare any R-mdules and for each homomorphisim $f: M \to B$, there exist a homomorphisim $h: M \to A$ such that $g \circ h = f$, i.e the following diagram is commute.

If A is the module in obave definition, then the following remarks are clear.

Remarks 3.2

- 1. Every small projective is δ-small projective.
- 2. if *A* is an indecomposable and *M* is δ -small projective R- module, then *M* is small projective.
- If A is torsion and M is δ-small projective over commutative integral domain R, then M is small projective.
- **4.** If *A* is uniform and *M* is δ-small projective R- module, then *M* is small projective.
- 5. If A is singular and M is δ -small projective R- module, then M is small projective.

Proposition 3.3

The following are equivalent for an R-module M.

- 1. **M** is δ -small projective R- module.
- For each δ-small epimorphisg: N → K, the homomorphisim Hom(I,g): Hom(M,N) → Hom(M,K) is an epimorphism
- 3. For any δ -small epimorphism $g: B \to A$ $g \circ Hom(M, B) = Hom(M, A).$

Proof:

1→2

Let $g: N \to K$ be a δ -small epimorphism and $f \in Hom(M, K)$. Since *M* is δ - small projective, then there exist a homomorphism $h: M \to N$ such that $g \circ h = f$,

Thus $Hom(l,g) \circ h = f$, then $h \in Hom(M,N)$, therefore, Hom(l,g) is an epimorphism.

 $N \rightarrow K \rightarrow 0$

2→**3**

Let $g: B \to A$ be a δ -small epimorphism. By (2) $Hom(I,g): Hom(M,N) \to Hom(M,K)$ is an epimorphism. Now, to show that $g \circ Hom(M,B) = Hom(M,A)$. Let $f \in Hom(M,A)$, so there exist $f_1 \in Hom(M,B)$ such that $Hom(I,g) \circ f_1 = f$, i.e $g \circ f_1 = f$. Thus $f \in g \circ Hom(M,B)$, so $Hom(M,A) \subseteq g \circ Hom(M,B)$, clearly $g \circ Hom(M,B) \subseteq Hom(M,A)$. Thus $g \circ Hom(M,B) = Hom(M,A)$.

3→1

Consider the following diagram

$$\begin{array}{c} \mathsf{M} \\ \mathsf{h} \not, \mathsf{f} \downarrow \\ \mathsf{B} \stackrel{\texttt{L}}{\to} \mathsf{A} \to 0 ; Ker(g) \ll_{\delta} B \end{array}$$

Where A, B are any R-modules, and f is any homomorphism, since

 $g \circ Hom(M,B) = Hom(M,A)$ and $f \in Hom(M,A)$, so there exist $h \in Hom(M,B)$ such that $g \circ h = f$. Thus M is δ -small projective.

Remark 3.4

Every δ -small epimorphism $N \to M \to 0$, where M is δ -small projective, splits and consequently an isomorphisim.

Proof:

Let $g: N \to M$ be a δ -small epimorphism, where $Ker(g) \ll_{\delta} N$, since M is δ -small projective, then there exist $h: M \to N$ such that $g \circ h = I$, hence h is one to one and g is onto and $N = Ker(g) \oplus K$, for each co-singular submodules K of M.

Proposition 3.5

 $\bigoplus_{\alpha \in I} M_{\alpha}$ is δ -small projective if and only if M_{α} is δ -small projective for each $\alpha \in I$.

Proof:

Suppose that $\bigoplus_{\alpha \in I} M_{\alpha}$ is δ -small projective and let $\alpha \in I$.

Consider the following diagram

Where $Kerg \ll_{\delta} A$ and $g: A \to B$ is any epimorphism, $f: M_{\alpha} \to B$ is any homomorphism, $P_{\alpha}: \bigoplus_{\alpha \in I} M_{\alpha} \to M_{\alpha}$ projection is the homomorphism and $J_{\alpha}: M_{\alpha} \to \bigoplus_{\alpha \in I} M_{\alpha}$ the injection is homomorphism, since $\bigoplus_{\alpha \in I} M_{\alpha}$ is δ -small projective, there exist a homomorphism $h: \oplus_{\alpha \in I} M_{\alpha} \to A$ such that $g \circ h = f \circ P_{\alpha}$. Define $h_{\alpha}: M_{\alpha} \to A$ by $h_{\alpha} = h \circ J_{\alpha}$ Now, $g \circ h_{\alpha} = g \circ h \circ h_{\alpha} = f \circ P_{\alpha} \circ J_{\alpha} = f \circ I = f$.He nce M_{α} is δ -small projective.

Conversely, Suppose that M_{α} is δ -small projective for each $\alpha \in I$, and Consider the following diagram

Where $g: A \to B$ is δ -small epimorphism, $f: \bigoplus_{\alpha \in I} M_{\alpha} \to B$ is any homomorphism, and $J_{\alpha}: M_{\alpha} \to \bigoplus_{\alpha \in I} M_{\alpha}$ is the injection homomorphism. Since M_{α} is δ -small projective for each $\alpha \in I$, \exists a homomorphim $\gamma_{\alpha}: M \to P$ such that $g \circ \gamma_{\alpha} = f \circ J_{\alpha}$ for each $\alpha \in I$. Define $\gamma: \bigoplus_{\alpha \in I} M_{\alpha} \to A$ by $\gamma \circ J_{\alpha} = \gamma_{\alpha}$ for each $\alpha \in I$. It remain to show that $g \circ \gamma = f$. Now, $f \circ J_{\alpha} = g \circ \gamma_{\alpha}$ and since $\gamma_{\alpha} = \gamma \circ J_{\alpha}$. It follows that $f \circ J_{\alpha} = g \circ \gamma \circ J_{\alpha}$. Thus by[2, p.82] $f = g \circ \gamma$ i.e., $\bigoplus_{\alpha \in I} M_{\alpha}$ is δ -small projective.

Proposition 3.6

Let M be an R-module and $A \leq M$, then for each summand B of M, such that

 $A \cap B \ll_{\delta} M$ and A + B δ -small projective module, we have $A \cap B = \{0\}$. Proof:

Consider the following natural epimorphisms $\pi_1: A \to \frac{A}{A \cap B}$; $\pi_2: A + B \to \frac{A+B}{B}$

By the second isomorphism theorem $\frac{A}{A \cap B} \cong \frac{A+B}{B}$, since **B** is a of *M*, summand $M = B \oplus K$; $K \leq M$, by modular law $M \cap (A + B) = (B \oplus K) \cap (A + B),$ then $(A + B) = B \oplus [K \cap (A + B)]$, so B is a summand of A + B and $K \cap (A + B)$ is a summand of A + B, by (3.5) $K \cap (A + B)$ is δ -small projective and hence $\frac{A+B}{B}$ is δ -small projective and is $\frac{A}{A \cap B}$, since $A \cap B \ll_{\delta} M$, so then $A \cap B \ll_{\delta} A$, so the epimorphism $\pi_1: A \to \frac{A}{A \cap B} \to 0$ is δ -small epimorphism, since $\frac{A}{A \cap B}$ is δ -small projective, then by Rem(3.4) π_1 splits and consequently isomorphism, so $Ker\pi_1 = A \cap B$ is a direct summand of A, but $A \cap B \ll_{\delta} A$, hence $A \cap B = \{0\}$.

Definetion 3.7[3]

A pair (P,f) is called a projective δ - cover of *M*, if *P* is projective and an epimorphism $f: P \to M$; Kerf $\ll_{\delta} P$.

Now, we have the following propotion

Proposition 3.8

A δ -small projective which has a projective δ cover is projective.

Proof:

Let *M* be a δ -small projective R-module, let (P, f) be a projective δ - cover for M. Consider the following diagram

$$\begin{array}{c} & M \\ h_{L} & \downarrow \\ P & \rightarrow M \\ h_{2} & \downarrow \\ h_{2} & \downarrow \\ H & \rightarrow B \rightarrow 0 \end{array}$$

Where $g: A \to B$ is an epimorphism, $f: P \to M$ is δ-small epimorphism,

 $f_1: M \to B$ is any homomorphim and $I: M \to M$ is the identity. Since M is δ -small projective, then \exists a homomorphim $h_1: M \to P$ such that $f \circ h_1 = I$. But P is projective, so \exists a homomorphim $h_2: P \to A$ such that $g \circ h_2 = f_1 \circ f$. Define $h: M \to A$ by $h = h_2 \circ h_1$, then

 $g \circ h = g \circ h_2 \circ h_1 = f_1 \circ f \circ h_1 = f_1 \circ l = f_1.$ Thus M is projective.

Proposition 3.9

If M_1 is projective and M_2 is δ -small projective R-modules, then $M_1 \otimes M_2$ is δ -small projective R-module.

Proof:

Let $f: A \to B$ is δ -small epimorphism. Then: $Hom(I, f): Hom(M_2, A) \rightarrow Hom(M_2, B)$ is an epimorphism by (3.3). Now, since M_1 is projective we have: $Hom(I, Hom(I, f)): Hom(M_1, Hom(M_2, A)) \rightarrow$ $Hom(M_1, Hom(M_2, B))$ is an epimorphism, then $Hom(M_1 \otimes M_2, A) \rightarrow Hom(M_1 \otimes M_2, B)$ is again an epimorphism [5]. Also by (3.3) $M_1 \otimes M_2$ is δ small projective R-module.

4. δ -cosemisimple Rings

Let M be an R-module It is known that the Jacobson radical M, denote Rad(M) is the sum of all small submodules of M [2]. Zhou introduced the definition of $\delta(M)$ as а generalization of Rad(M) [3].

Definition 4.1 [3]

Let ρ be the class of all singular simple modules. For an R-module M. $\delta(M) = \bigcap \{ N \subseteq M : M/N \in \rho \}$ Is the reject M of ρ .

Lemma 4.2 [3] Let M be an R-module $\partial(M) = \sum \{L \subseteq M : L \text{ is } \delta \text{ - small submodule} \}$ A ring R is called cosemisimple if Rad(M) = 0, for each R-module M [4]. Now, we introduce the following:

Definetion 4.3

A ring R is called δ -cosemisimple if $\delta(M) = 0$, for each R-module M.

Proposition 4.3

The following are equivalent for an R-module M. 1) **R** is δ -cosemisimple ring.

2) Every module over **R** is δ -small projective. Proof:

1)→**2**)

Let *M* be an R- module, *R* is δ -cosemisimple ring. Consider the following diagram

$$\begin{array}{c} \mathbf{M} \\ \mathbf{h} & \stackrel{\prime}{,} f_{\downarrow} \\ \psi \\ \mathbf{A} \xrightarrow{\mathbf{g}} \mathbf{B} \rightarrow 0 \end{array}$$

Where **A**, **B** are any R-modules,

Ker(*g*) $\ll_{\delta} A$ and *g* is any epimorphism, since *R* is δ -cosemisimple, then $\delta(A) = 0$, then *Ker*(*g*) = 0, hence *g* is isomorphism. Let $h = g^{-1} \circ f$, then $(g \circ g^{-1}) \circ f = f$. Thus *M* is δ - small projective. 2) \rightarrow 1) Let *M* be any *R*- module, let $x \in \delta(M)$, then $Rx \ll_{\delta} M$, therefor the naturale epimorphism $\pi: M \rightarrow \frac{M}{Rx}$ splits by Rem(3.4), since $\frac{M}{Rx}$ is δ small projective, then $M = Rx \oplus K$, where *K* any submodule of M

, hence Rx=0, which implies that x = 0, so that $\delta(M) = 0$. Thus R is δ -cosemisimple.

References

- 1. Coodearl, K.R. 1976. Ring theory. Pure and Applied Math., No. 33 Madrid-Dekker.
- 2. Kasch, F. 1982. Modules and Rings. Academic Press Ins, London .
- **3.** Zhou, Y. **2000**. Generalizations of perfect , Semiperfect and Semireguler Rings. Algebra Coll., 7(3), pp: 305-318.
- 4. Tiwary , A.K. and Chaubey ,K.N. 1985. Small Projective Module. Indian J. Pure Appl., 16(2), pp:133-138.
- 5. Anderson , F.W and Fuller, K.R. **1992**. Rings and Catigories of Modules, Springer-Verlage, New York.