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 الخلاصة
العديد من . ة المضادةدرسنا المفهومين المقاسات الجزئية النقية المضادة والمقاسات المنتظمفي هذا البحث      

 .النتائج المتعلقة بهاذين المفهومين قد أعطيت
 

 

Introduction 

        Throughout this paper, R will denote a 

commutative ring with identity and M be a left 

R-module. A submodule N of M is called pure if 

for any ideal I of R, I M  N = IN, [1]. An ideal 

I of R is called pure if for each  x  I, there 

exists  y in I, such that  x = xy [2]. Equivalently 

I is a pure ideal in R if I J = I  J  for each ideal 

J of R; that is I is a pure ideal of R if and only if 

I is a pure R-submodule of R. 

        It is known that a ring R is regular if every 

element in R is regular (in sense of Von 

Neumann). Equivalently R is regular if every 

ideal of R is pure. M is called a regular                

R-module if every submodule of M is pure [3]. 

Equivalently M is regular if 
R

R /(0 : x) is a regular  

 

 

 

 

ring [4]. 

     H.Ansari and F.Farshadifar in [5] introduced 

the concept of copure submodules, where a 

submodule N of M is called copure if 

M M
(N : I) N (0 : I)   for each ideal I of R. 

        Also they in [6], present the concept of 

fully copure modules, where M is called fuly 

copure if each submodule of M is copure we see 

it is more convientnt to use the name coregular 

module for fully copure module. 

        In this paper we continuo the studying of 

copure submodules and coregular modules. In 

S.1 of this paper, we give new results about 

copure submodules.  
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      Among other results, it is shown that every 

direct summand of a module is copure 

submodule (see Prop. 1.4). Also it is shown that 

(Prop. 1.5) Let 
n

i
i 1

M M


  , where Mi is R-

module, for each  i = 1, …,n. If Ni  Mi for each  

i = 1, …,n. Then 
n

i
i 1

N

  is copure in M if and 

only if Ni is copure in Mi, for each  i = 1, …,n. 

Moreover we study the hereditary property of 

copure submodules (see Th. 1.6). 

        Next we give a characterization of copure 

submodules in the class of completely 

distributive modules (see Th. 1.9).  

        In S.2, we study coregular modules. We 

give some relationships between coregular 

modules (rings) and regular modules (rings) (see 

Prop.2.7, 2.8, 2.9, 2.12, 2.13), Also, we study 

the hereditary property of the class of coregular 

modules (see Th.2.14). 

        Moreover we study the direct summand of 

coregular module (see Cor.2.6) and give certain 

conditions such that the direct sum of coregular 

modules is coregular (see Prop.2.15, Prop. 2.16). 

S.1 Copure Submodules 

        Following [5], a submodule N of an R-

module M is called copure if 
M M

(N : I) N (0 : I)   

for each ideal I of R. We present new properties 

of copure submodules. Furthermore these results 

will be needed in S.2. 

Proposition 1.1: 

        Let M and M be two R-modules. If                

f : M  M be an epimorphism and N is a 

copure submodule of M such that ker f  N. 

Then f (N) is a copure submodule in M. 

Proof:  Let I be an ideal of R. To prove 

M M
( (N) : I) (N) (0 : I)f f

 
  . Let m  

M
( (N) : I)f



. 

Hence I m  f (N). Since  f  is onto, m = f (m) 

for some  m  M, so that I f (m)  f (N); that is               

f (Im)  f (N). Hence for each  i  I, there exists  

n  N such that i m – n  ker f. It follows that 

Im  N; i.e.  m  
M

(N : I) . But N is copure in M, 

so that 
M M

(N : I) N (0 : I)   and hence m = n1 + x 

for some n1  N, x  
M

(0 : I) . It follows m=f (m) 

= f (n1) + f (x), f (n1)  f (N) and f (x)  
M

(0 : I)


. 

Thus m  f (N) + 
M

(0 : I)


. 

Hence 
M M

( (N) : I) (N) (0 : I)f f
 

  . 

The reverse inclusion is clear. Therefore 

M M
( (N) : I) (N) (0 : I)f f

 
  ; that is f (N) is 

copure. 

Corollary 1.2: [5, Th.2.9 (c)] 

        Let M be an R-module and let N and K be 

submodules of M with N  K. If K is copure in 

M, then K/N is copure in M/N. 

Proof:  It follows directly by Prop.1.1, by taking 

the natural projection : M  M/N. 

Proposition 1.3: 

        Let N1  N2  … be an ascending chain of 

copure submodules of an R-module M. Then 

i
i 1

N



  is copure submodule in M. 

Proof:  It is easy, so it is omitted. 

Proposition 1.4: 

        Every direct summand of an R-module M 

is copure. 

Proof:  Let N be a direct summand of M. Then 

M = N  K for some K  M. Let I be an ideal of 

R, and let  m  
M

(N : I) . Hence I m  N. But m 

 M, so m = n + k for some n  N, k  K, then 

I(m + k)  N. It follows that Ik  N and so              

I k  N  K = (0). Hence k  
M

(0 : I)  and              

m = n +k N + 
M

(0 : I) . Thus 
M M

(N : I) N (0 : I)   

and the reverse inclusion is clear, so 

M M
(N : I) N (0 : I)  . 

Proposition 1.5: 

        Let M be a direct sum of R-modules M1, 

M2, …, Mn. If, Ni  Mi for each  i = 1, …, n. 

Then 
n

i
i 1

N N


   is a copure submodule in M if 

and only if Ni is copure in Mi, for each i= 1,…,n. 

Proof:  if n = 2 

  Let 1:M1  M2 M1, 2:M1M2M2 

be projections. Then ker 1 = (0)  N2  N,              

2 = N1  (0)N. Hence by Prop. 1.1, 1(N)=N1  

and  2 (N) = N2  are copure in M1, M2 

respectively. 

  To prove N is copure, it is enough to show 

that 
M M

(N : I) N (0 : I)  . But it is easy to see that 

1 2

1 2
M M M

(N : I) (N : I) (N : I)  . On the other hand 

1 1 2 2

1 1 2 2
M M M M

(N : I) N (0 : I) , (N : I) N (0 : I)    , 

since N1 and N2 are copure in M1 and M2 

respectively. Thus  
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1 2

1 2

1 2
M M M

1 2
M M

1 2
M

(N : I) (N (0 : I) ) (N (0 : I) )

(N N ) ((0 : I) (0 : I) )

(N N ) (0 : I)

   

   

  

.  

Thus N is copure in M. 

        A similar proof for n > 2. 

        Recall that an R-module M is called a 

multiplication module if for any N  M, N = IM 

for some ideal I of R. 

Equivalently, M is multiplication if for any           

N  M, N = (N:M)M [5]. 

Theorem 1.6: 

        Let M be a faithful finitely generated 

multiplication R-module, let N  M. Then N is 

copure in M if and only if 
R

(N : M)  is a copure 

ideal of R. (where 
R

(N : M)  is a copure ideal if it 

is a copure R-submodule of R). 

Proof:   

()  Let J be an ideal of R. So we must prove 

R R R R
((N : M) : J) (N : M) (0 : J)  .  

Let a 
R R

((N : M) : J) . Hence  aJM  N, so that 

aM  
M

(N : J) . But N is copure in M, hence            

a M  N + 
M

(0 : J) . Since M is a multiplication 

R-module, we have: 

R R R

R R

M (N : M)M ((0 : J) : M)M

[(N : M) ((0 : J) : M)]M

a  

 
. 

But M is faithful finitely generated 

multiplication, so 
R M R

( ) (N : M) ((0 : J) : M)a    

(see [6,Th.3.1]). Beside this, it is easy to see that 

M R R
((0 : J) : M) (0 : J)  therefore 

R R
(N : M) (0 : J)a  ; 

hence 
R R R R

((N : M) : J) (N : M) (0 : J)  . Thus 

R
(N : M)  is a copure ideal of R. 

() Let I be an ideal of R. To prove 

M M
(N : I) N (0 : I)  . Since 

R
(N : M)  is a copure 

ideal of R. 

We have 
R R R R

((N : M) : I) (N : M) (0 : I)   and 

hence  

R R R R
((N : M) : I)M (N : M)M (0 : I)M   

                
R

N (0 : I)  , since M is multiplication. 

However we can show that  

M R R
(N : I) ((N : M) : I)M . To see this: 

let 
M M R

x (N : ) ((N : ) : M)M    , so that 

n

i i
i 1

x Ma


   for some  n  Z+, 
i

M R
((N : ) : )a    , 

mi  M. Hence 
i

M
(N : )a  , and so aiIM  N 

for each  i = 1, …, n, thus 
i

R R
((N : ) : )a    .  

This implies 
R R

x ((N : ) : )    , that is 

M R
(N : ) ((N : M) : )M   . It follows that 

M M
(N : ) N (0 : )    . Thus N is copure in M. 

 

Corollary 1.7:  
        Let M be a faithful finitely generated 

multiplication R-module, let N  M. Then the 

following statements are equivalent: 

(1) N is a copure submodule in M. 

(2) 
R

(N : M)  is a copure ideal of R. 

(3) N = IM for some copur ideal in R. 

Proof:  (1)  (2) (follows by Th. 1.6). 

(2)  (3) is clear. 

(3)  (2) if N = IM and I is a copure ideal of R. 

Since M is multiplication, 
R

N (N : )    and by 

[7,Th.3.1]. 
R

(N : )   . Thus 
R

(N : )  is a 

copure in R. 

 

Proposition 1.8: 

        Let M be a multiplication R-module with 

R
ann  is a pure ideal in R. If N is a 

multiplication copure submodule of M, then N is 

a pure submodule of M. 

Proof:  It is clear that 
M R

M (N : (N : ))   and 

since N is copure in M, 
M R

M N (0 : (N : ))   . 

Hence 

R M R
(N : M)M (N : M)N (N : )(0 : (N : ))    . It 

follows that 
R R

(N : )M (N : )N    and hence                      

N = (N:M)N, since M is multiplication. Then by 

[8, Th.1.1 (1)(2)], N is pure. 

        Recall that an R-module M is called 

completely distributive if for each L, K(  ), 

submodules of M (L K ) L K 
 
     , [7]. 

     The last result in this section is the following: 

 

Proposition 1.9: 

        Let M be a completely distributive R-

module and let N  M. Then N is copure M if 
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and only if 
M M

(N : I) N (0 : I)   for each principal 

ideal I of R. 

Proof:   It is clear. 

 Let I  R. Then 
i

i
I

I R
a

a


  . If m  
M

(N : I) , 

then Im  N; hence (ai)m N for each ai  I. 

Then   m  
i

M
(N : ( ))a  for each ai  I and so by 

hypothesis, m  N + 
i

M
(0 : ( ))a  for each ai  I. 

This implies m  
i

i
I M
(N (0 : ( )))

a
a


  . But M is 

completely distributive, so m  N + 
i

M
(0 : ( ))a . 

But 
i

i
IM M

(0 : I) (0 : ( ))
a

a


  . Thus m  N + 
M

(0 : I) . 

Therefore N is copure in M. 

 

S.2 Coregular Modules 

        In this section we study the concept of 

coregular modules (which is appeared in [5], 

under the name fully copure modules). Ansari 

and Farshadifar, in [7] gave relations between 

this concept and idempotent (coidempotent) 

modules.  

        However we give some basic results about 

this concept, also we give some relationships 

between coregular modules (rings) and regular 

modules (rings) and other related modules. 

Beside these we study the direct summand of 

coregular module and the direct sum of 

coregular modules. 

 

Definition 2.1: 

        An R-module M is called coregular if every 

submodule of M is copure. 

A ring R is coregular if every ideal of R is 

copure. 

 

Remarks and Examples 2.2: 

(1) By using Prop.1.4, it is clear that every 

semisimple module is coregular. For 

example the Z-module Z6 is coregular. 

(2) By using [3, Th.2.12(a)], a module M over a 

P.I.R  R is coregular iff R is regular. 

In particular, each of the Z-module Z, Q, Z4, 

p
Z 

 is not coregular (also not regular). 

(3) It is well-known that every vector space 

over a field F is regular, so it is coregular. 

Proposition 2.3: 

        Let M be a coregular module and let           

N  M. Then M/N is a coregular module. 

Proof:  It follows directly by Cor.1.2. 

 

Corollary 2.4: 

        If M, M are isomorphic R-modules, then 

M is coregular if and only if M is coregular. 

Proof:  Since M  M, there exists f :M  M 

an isomorphism. If M is coregular. Let W  M 

then W = f f 
– 1

(W), but f 
– 1

(W) is copure 

submodule in M, hence by prop. 1.1, W is 

coprime in M.  

Similarly if M is coregular module then M is 

coregular module. 

 

Corollary 2.5: 

        Let f : M  M be an epimorphism. If M 

is regular, then M is coregular. 

Proof: By 1
st
 fundamental theorem, M/kerf M. 

But M/ker f is coregular by Prop.2.3. Hence M 

is coregular by Cor.2.4. 

 

Corollary 2.6: 

        A direct summand of coregular module M 

is coregular. 

Proof:  Let N be a direct summand of M. Then 

M = N  K for some K  N. Hence M/K  N. 

But M/K is coregular by Prop.2.3. Hence N is 

coregular by Cor.2.4. 

 

Proposition 2.7: 

        Every coregular ring R is regular. 

Proof:  Let  a  be any element of R. Then (a) is 

copure in R, hence 
R R

(( ) : I) ( ) (0 : I)a a   for each 

ideal I of R. It follows that 

R R
(( ) : ( )) ( ) (0 : ( ))a a a a   and hence 

R
R ( ) (0 : ( ))a a  . This implies 1 = ra + b  for 

some r  R and b  
R

(0 : ( ))a , and so a = ra
2
+ ab. 

But ab = 0. Hence a = ra
2
. Thus R is regular. 

     We claim that regular ring may not be 

coregular, but we have no example to ensure 

this. However we have the following: 

 

Proposition 2.8: 

    Every Noetherian regular ring is coregular. 

Proof:  Since R is Noetherian, every ideal I of R 

is finitely generated and since R is regular, I is a 

direct summand of R. Hence by Prop. 1.4, I is 

copure. Thus R is coregular. 

     It is well-known that an ideal I of a ring R is 

an annihilator ideal if I = 
R R

ann ann  , i.e. 

R R
(0 : (0 : I))  . 
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Proposition 2.9: 

        Let R be a ring with every ideal is an 

annihilator ideal. Then R is coregular if and only 

if R is regular. 

Proof:   It follows by Prop.2.7. 

 Let I be an ideal of R. Then for any ideal J of 

R, it is easy to check that 

R R R R
( : J) ann(ann : J)    

         
R R

ann(ann J)    (since every ideal of R 

is pure) 

         
R R R

ann ann ann J       (since every ideal of 

R is an annihilator ideal) 

         
R

(0 : I)    

Thus 
R R

( : J) I (0 : J)   , so that I is copure in 

R. Hence R is coregular. 

 

Proposition 2.10: 

        Every module M over coregular ring R is 

regular. 

Proof:  Since R is coregular, then by Prop.2.7, R 

is regular, hence R/ 
R

ann(x)  is a regular ring for 

each  x  M, that is M is regular. 

 

     Now, we will prove that in the class of 

completely distributive modules (rings) the two 

concepts regular and coregular modules (rings) 

are equivalent. 

        First we prove the following lemma: 

 

Lemma 2.11: 

        Let R be a ring. Then R is regular if and 

only if for each ideal J of R, 

R R
(J : ( )) J (0 : ( ))b b   for any b  R. 

Proof:   Let  a  
R

(J : ( ))b . Then a (b)  J. 

Since R is regular (b) is a direct summand of R 

and so R= (b)  K for some K  R. It follows 

that 1 = rb + k for some r  R, k  K, and so                        

a = rab + ak. But ab  J  and  (ak) bK(b)= 0; 

that ak  
R

(0 : )b . Then a  J + 
R

(0 : )b ; that 

R R
(J : ( )) J (0 : )b b   and reverse inclusion is 

clear. Hence we get the result. 

 By hypothesis, for any a  R, 

R R
(( ) : ( )) ( ) + (0 : ( ))a a a a . 

Hence R = (a) + (0:(a)) and this implies R is 

regular. 

 

Corollary 2.12: 

        Let R be a completely distributive ring. 

Then R is regular if and only if R is coregular. 

Proof:   It follows by Prop.2.7. 

 By Lemma 2.11 and Prop.1.9, the result 

follows. 

 

Proposition 2.13: 

        Let M be a completely distributive R-

module. Then M is coregular if M is regular. 

Proof:  Let N  M. To prove N is copure, it is 

enough to show that 
M M

(N : ( )) N + (0 : ( ))a a  

for each  a  R (by Prop.1.9). Let 

m
M

(N : ( ))a . Then  a m  N  and  so that                  

a m  (a)M  N. But N is pure in M, so that 

(a)M N=(a)N. Thus a m  (a)N  and               

a m = a n  for some  n  N. Hence a (m –n) = 0; 

that is m – n  
M

(0 : ( ))a . It follows that                 

m = n + (m – n)  
M

N + (0 : ( ))a . Thus N is 

copure. 

 

Theorem 2.14: 

        Let M be a faithful finitely generated 

multiplication R-module. For the following 

statements: 

(1) M is a coregular R-module. 

(2) R is a coregular ring. 

(3) M is a regular ring. 

(4) R is a regular ring. 

(1)  (2)  (3)  (4). Furthermore the 

statements (1) to (4) are equivalent if every ideal 

of R is an annihilator ideal. 

Proof:  (1)  (2), Let I be an ideal of R. Hence 

N = IM is a copure submodule of M and by 

Th.1.6, 
R

(N : M)  is a copure ideal of R. But N = 

IM = 
R

(N : M)M , so that by [7, Th.3.1],                      

I = (N:M), thus I is copure. 

(2)  (1) Let N  M. Since R is coregular, 

(N:M) is a copure ideal of R. Hence by Th.1.6, 

N is copure. Thus M is coregular. 

(2)  (3) It follows by Prop. 2.10. 

(3)  (4) Since M is finitely generated and 

regular, then R/ann M  R is regular by                        

[9, Th.1.10]. 

(4)  (3)  It is clear. 

Furthermore (2)  (4) if every ideal is an 

annihilator ideal by Prop.2.9. 
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       Recall that an R-module M is called 

strongly comultiplication if for every submodule 

N of M, there exists an ideal I of R such that 

M
N (0 : )   and for each ideal J of R, 

R M
J ann(0 : J)  (i.e. 

R M
J (0 : (0 : J)) , [5]. 

Proposition 2.15: 

        Let M be a strongly comultiplication R-

module. For the following statements: 

(1) M is a coregular R-module. 

(2) R is a regular ring. 

(3) M is a regular R-module.  

Then  (1)  (2)  (3)  and  (3)  (2)  if M is 

finitely generated faithful R-module. 
Proof:  (1)  (2) Let I  R. Since M is strongly 
comultiplication R-module, 

R M
ann(0 : )   . But 

 
 M is coregular, so 

M
(0 : )  is copure in M. 

Hence 
 
 by [5, Th.2.13 (2)],  

R M
ann(0 : ) is a pure ideal 

of  
 
R. Thus I is pure and R is a regular ring. 
(2)  (1) Let N  M. Then 

R
ann N  is an ideal of 

R, so it is pure, since R is regular. Hence by [10, 
Th.2.13 (1)] N is a copure submodule of M. 
Thus M is coregular. 
(2)  (3)  It is clear. 
Now, if M is finitely generated. To prove             
(3)  (2): 
Since M is finitely generated regular R-module, 
then 

R
R / ann M  (which is isomorphic to R) is  

 
regular, by [11, Th.1.10]. 
     Next we turn our attention to direct sum of 

coregular modules. 

 

Proposition 2.16: 

        Let M = M1  M2 where M1 and M2 are R-

modules. If M is coregular; then M1 and M2 are 

coregular and the converse is true if 

1 2
R R

ann M ann M R  . 

Proof:  Let 1:M1  M2  M1,                     

2:M1  M2  M2, 1 and 2 are 

epimorphism. Hence by Cor.2.5, M1 and M2 are 

coregular. 

        For the converse. Let N  M. Since 

1 2
R R

ann M ann M R  , then by the proof of 

Prop.4.2 in [5], N = N1  N2  for some N1  M1, 

N2  M2. But M1 and M2 are coregular, so N1 

copure in M1, N2 copure in M2 and hence by 

Prop.1.5, N is copure in M. Thus M is is 

coregular. 

 

     To give our next result, we need to recall 

that: 

        A submodule N of an R-module is fully 

invariant if for each  f  End(M), f (N)  N. 

 

Lemma 2.17: 
        Let 

i
i

M M


  , with Mi  M, for each i  I 
and let N be a fully invariant submodule of M. 
Then 

i
i

N (N M )


   , [5]. 
 
Theorem 2.18: 
   Let 

n

i
i 1

M M


   with Mi  M, for each   i = 1,  n. 
If M is coregular, then Mi is coregular, for each i 
= 1,  , n. The converse is true if each submodule 
of M is fully invariant. 
Proof:  If M is coregular, then Mi is coregular 
for each i = 1, …, n by Cor.2.6. 
        The converse, let N  M. Hence by lemma 
2.17, 

n

i
i 1

N (N M )


   . But for each i = 1, …, n, 
Mi is coregular, hence N  Mi is copure in Mi 
for each i = 1, …, n. Then by Prop.1.5, N is 
copure in M. Thus M is coregular. 
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