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Abstract

In this paper we study the concepts of copure submodules and coregular
modules. Many results related with these concepts are obtained.
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Introduction

Throughout this paper, R will denote a
commutative ring with identity and M be a left
R-module. A submodule N of M is called pure if
for any ideal | of R, I M n N = IN, [1]. An ideal
| of R is called pure if for each x e I, there
exists yin I, such that x = xy [2]. Equivalently
lisapureideal inRif 1J=1nJ for each ideal
Jof R; that is | is a pure ideal of R if and only if
I is a pure R-submodule of R.

It is known that a ring R is regular if every
element in R is regular (in sense of Von
Neumann). Equivalently R is regular if every
ideal of R is pure. M is called a regular
R-module if every submodule of M is pure [3].
Equivalently M is regular if R /(0 : x) is a regular

R
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ring [4].

H.Ansari and F.Farshadifar in [5] introduced
the concept of copure submodules, where a
submodule N of M is called copure if
(NI\:/II) = N+(Ol\:/l I) for each ideal I of R.

Also they in [6], present the concept of
fully copure modules, where M is called fuly
copure if each submodule of M is copure we see
it is more convientnt to use the name coregular
module for fully copure module.

In this paper we continuo the studying of
copure submodules and coregular modules. In
S.1 of this paper, we give new results about
copure submodules.
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Among other results, it is shown that every
direct summand of a module is copure
submodule (see Prop. 1.4). Also it is shown that
(Prop. 1.5) Let M :_n@lMi, where M; is R-

i
module, for each i=1, ...,n. If N; < M; for each
i=1, ...,n. Then _(-nDlNi is copure in M if and
iz
only if N; is copure in M;, for each i=1, ....n.
Moreover we study the hereditary property of
copure submodules (see Th. 1.6).

Next we give a characterization of copure
submodules in the class of completely
distributive modules (see Th. 1.9).

In S.2, we study coregular modules. We
give some relationships between coregular
modules (rings) and regular modules (rings) (see
Prop.2.7, 2.8, 2.9, 2.12, 2.13), Also, we study
the hereditary property of the class of coregular
modules (see Th.2.14).

Moreover we study the direct summand of
coregular module (see Cor.2.6) and give certain
conditions such that the direct sum of coregular
modules is coregular (see Prop.2.15, Prop. 2.16).
S.1 Copure Submodules

Following [5], a submodule N of an R-
module M is called copure if (NI\:/II) = N+(O,\:/| )

for each ideal | of R. We present new properties
of copure submodules. Furthermore these results
will be needed in S.2.
Proposition 1.1:

Let M and M’ be two R-modules. If
f: M —— M’ be an epimorphism and N is a
copure submodule of M such that ker f < N.
Then f (N) is a copure submodule in M'.
Proof: Let | be an ideal of R. To prove

(F(N) s D=F (N)+(0: 1) Letm” & (f (N) : 1)

Hence I m’ < f (N). Since f is onto, m" = f (m)
for some m e M, so that I f (m) < f (N); that is
f (Im) < f (N). Hence for each i e I, there exists
n e N such that i m —n e ker f. It follows that
Imc N;ie. me (N:I). But Niscopurein M,

so that (Nl\:/ll) = |\|+(0M'\;/I I) and hence m = n; + x
forsomen; e N, x e (0'\;/I ). It follows m'=f (m)
=f(n) +f(x), f(n) ef(N)and f(x) € (0: 1).
Thusm" e f(N) + (OI\;I’I). "

Hence (f (N)Q'I)gf (N)+(0,\j,,|)'
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The reverse inclusion is clear. Therefore
(f (N),\j,,'):f(N)J“(O,\;I,'); that is f (N) is
copure.

Corollary 1.2: [5, Th.2.9 (c)]

Let M be an R-module and let N and K be
submodules of M with N < K. If K is copure in
M, then K/N is copure in M/N.

Proof: It follows directly by Prop.1.1, by taking
the natural projection t: M—— M/N.
Proposition 1.3:

Let N; € N, ¢ ... be an ascending chain of

copure submodules of an R-module M. Then

0
U N, is copure submodule in M.
i=1

Proof: Itis easy, so it is omitted.
Proposition 1.4:

Every direct summand of an R-module M
is copure.
Proof: Let N be a direct summand of M. Then
M =N @ K for some K < M. Let | be an ideal of
R, and let m € (N’\;A|). Hence | m < N. But m

e M,som=n+kforsomen e N, k € K, then

I(m + k) < N. It follows that Ik = N and so

Il ke N~ K=(0). Hence k € (0:1) and
M

m=n+ke N+ (0:1). Thus (N: )cN+(0: 1)
M M M

and the reverse
(N“:AI):N+(O,\:AI)-

inclusion is clear, so

Proposition 1.5:
Let M be a direct sum of R-modules My,
My, ..., M. If, Nj< M; foreach i=1, ..., n.

Then N :él)Ni is a copure submodule in M if
i=1

and only if N; is copure in M;, for each i= 1,...,n.
Proof: ifn=2

= Let p1:M1 ® M— My, p2M1<‘BM2—)M2
be projections. Then ker p1 = (0) @ N, < N,
2 =N; @ (0)cN. Hence by Prop. 1.1, p1(N)=N;
and p, (N) = N, are copure in M;, M,
respectively.

< To prove N is copure, it is enough to show
that (N : I)=N+(0: I). But it is easy to see that

M M

(N:1)=(N, : )®(N, : I). On the other hand
M M, M,

(N :D=N+O0: 1), (N, : D=N,+(0 : 1),
M, M M, M,

since N; and N, are copure in M; and M,
respectively. Thus
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(N D=(Ny+(0 2 D)BN, +(0 : 1)

=(NJ®N,)+((0,: D+(0,: 1))

2

=(N;®N,)+(0: 1)

Thus N is copure in M.

A similar proof for n > 2.

Recall that an R-module M is called a
multiplication module if for any N <M, N = IM
for some ideal | of R.

Equivalently, M is multiplication if for any
N <M, N =(N:M)M [5].
Theorem 1.6:

Let M be a faithful finitely generated
multiplication R-module, let N < M. Then N is
copure in M if and only if (N: M) is a copure

R

ideal of R. (where (N : M) is a copure ideal if it
R

is a copure R-submodule of R).
Proof:
(=) LetJ be an ideal of R. So we must prove

((NEM)EJ):(NQMH(OQJ)'
Leta e ((N:M):J). Hence aJM c N, so that
R R
aM < (N:J). But N is copure in M, hence
M
aMc N+ (0:)). Since M is a multiplication
M

R-module, we have:

aMg(NF:aM)M+((OF:{J)F:{M)M
=[N M)+ (0 9): M)IM '
But M is faithful finitely generated

multiplication, so (a)c (NQM)JF((OQJ)QM)

(see [6,Th.3.1]). Beside this, it is easy to see that
1) M) =(0:J) therefore : 1)
((0:9):M)=(0:) ac(N:M)+(0:))
hence ‘M) : : :J).  Thus
(N:M) )= (N:2M)+(0:J)
(N : M) is acopure ideal of R.
R

(<) Let | be an ideal of R. To prove
(N“:lll):N+(o'\;/||). Since (N};M) IS a copure

ideal of R.
We have ((N:M):D)c(N:M)+(0:1) and

hence
(N:M): DM c(N:MM+(0: )M
R R R R

=N+(0:1), since M is multiplication.
R

However we can show that
(N&I)g((NEM)EI)M'TO see this:
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let : ‘D , so that
XE(NMI)Q((NMI)éM)M

xziaiMi for some n e Z,, aiE((Nl\:III)F:QM),
i=1
m; € M. Hence aM c (N : T), and so aIM = N
M
foreach 1=1, ..., n, thus ae((N:M):I).
R R

This implies  xe((N:M): DM, that is
R R

It follows that

(N:Dc((N:M):DM.
(N:T)cN+(0:1). Thus N is copure in M.
M M

Corollary 1.7:

Let M be a faithful finitely generated
multiplication R-module, let N < M. Then the
following statements are equivalent:

(1) N isacopure submodule in M.
2 (NéM) is a copure ideal of R.

(3) N = 1M for some copur ideal in R.

Proof: (1) < (2) (follows by Th. 1.6).

(2) = (3) is clear.

(3) = (@) if N=IMand I is a copure ideal of R.
Since M is multiplication, N :(NEM)M and by

[7,Th3.1]. 1=(N:M). Thus (N:M) is a
R R

copure in R.

Proposition 1.8:
Let M be a multiplication R-module with
annM is a pure ideal in R. If N is a
R

multiplication copure submodule of M, then N is

a pure submodule of M.

Proof: It is clear that M=(N :(N:M)) and
M R

since N is copure in M, M=N+(0:(N:M)).
M R

Hence

(N:M)M:(N:M)N+(NF:{M)(O|\:A(NF:{M)). It

follows that (N:M)M=(N:M)N and hence
R R

N = (N:M)N, since M is multiplication. Then by
[8, Th.1.1 (1)<(2)], N is pure.

Recall that an R-module M is called
completely distributive if for each L, Ky(A € A),
submodules of M FA(L+ K,)= |_+pA K, [7].

The last result in this section is the following:

Proposition 1.9:
Let M be a completely distributive R-

module and let N < M. Then N is copure M if
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and only if (N : 1)=N+(0 : I) for each principal
M M

ideal | of R.
Proof: = Itisclear.
< Letl <R Then |=yRa.lfme (N:1I),
gel M
then Im < N; hence (a)m <N for each a; € I.
Then m e (N:(a)) foreach a e I and so by
M

hypothesis, m € N + (0:(a)) for each a € I.
M

This implies m e A(N+(0:(@))- But M is

ael M
completely distributive, som € N + N (0: (a))-
M
But 0:1)=n(0:(a)).- Thusme N+ (0:1).
M ael M M
Therefore N is copure in M.

S.2 Coregular Modules

In this section we study the concept of
coregular modules (which is appeared in [5],
under the name fully copure modules). Ansari
and Farshadifar, in [7] gave relations between
this concept and idempotent (coidempotent)
modules.

However we give some basic results about
this concept, also we give some relationships
between coregular modules (rings) and regular
modules (rings) and other related modules.
Beside these we study the direct summand of
coregular module and the direct sum of
coregular modules.

Definition 2.1:

An R-module M is called coregular if every
submodule of M is copure.
A ring R is coregular if every ideal of R is
copure.

Remarks and Examples 2.2:

(1) By using Prop.1.4, it is clear that every
semisimple module is coregular. For
example the Z-module Z is coregular.

(2) By using [3, Th.2.12(a)], a module M over a
P.I.LR R s coregular iff R is regular.

In particular, each of the Z-module Z, Q, Z,,
pr is not coregular (also not regular).

(3) It is well-known that every vector space
over a field F is regular, so it is coregular.
Proposition 2.3:
Let M be a coregular module and let
N < M. Then M/N is a coregular module.
Proof: It follows directly by Cor.1.2.

839
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Corollary 2.4:

If M, M’ are isomorphic R-modules, then
M is coregular if and only if M’ is coregular.
Proof: Since M = M’, there exists f :M —— M’
an isomorphism. If M is coregular. Let W < M’
then W = f f ~ Y(W), but f =~ (W) is copure
submodule in M, hence by prop. 1.1, W is
coprime in M'.
Similarly if M’ is coregular module then M is
coregular module.

Corollary 2.5:

Let f: M—— M’ be an epimorphism. If M
is regular, then M’ is coregular.
Proof: By 1% fundamental theorem, M/kerf =M’,
But M/ker f is coregular by Prop.2.3. Hence M’
is coregular by Cor.2.4.

Corollary 2.6:

A direct summand of coregular module M
is coregular.
Proof: Let N be a direct summand of M. Then
M =N @ K for some K < N. Hence M/K = N.
But M/K is coregular by Prop.2.3. Hence N is
coregular by Cor.2.4.

Proposition 2.7:

Every coregular ring R is regular.
Proof: Let a be any element of R. Then (a) is
copure in R, hence ((a)él) :(a)+(oF;{ I) for each

that
hence

follows
and

ideal I of R

(@) : (@) = (@) +(0: (@)

R=(a)+(0:(a)). This implies 1 =ra + b for
R

It

somer e Randb e (0:(a)), and so a = ra*+ ab.
R

But ab = 0. Hence a = ra”. Thus R is regular.

We claim that regular ring may not be
coregular, but we have no example to ensure
this. However we have the following:

Proposition 2.8:

Every Noetherian regular ring is coregular.
Proof: Since R is Noetherian, every ideal | of R
is finitely generated and since R is regular, I is a
direct summand of R. Hence by Prop. 1.4, | is
copure. Thus R is coregular.

It is well-known that an ideal | of aring R is
an annihilator ideal if | = annanni, i.e.

R R

I:(OF:{(OF:{I)).
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Proposition 2.9:

Let R be a ring with every ideal is an
annihilator ideal. Then R is coregular if and only
if R is regular.

Proof: = It follows by Prop.2.7.
< Let | be an ideal of R. Then for any ideal J of
R, it is easy to check that

(I:J)=ann(annl:J)
R R R R
:agn(aQnImJ) (since every ideal of R

is pure)
=annannl+annJ (since every ideal of
R R R

R is an annihilator ideal)
=1+(0:1)
R

Thus (IF:{J): I+(0F:QJ), so that | is copure in

R. Hence R is coregular.

Proposition 2.10:
Every module M over coregular ring R is
regular.
Proof: Since R is coregular, then by Prop.2.7, R
is regular, hence R/ ann(x) is a regular ring for
R

each x € M, that is M is regular.

Now, we will prove that in the class of
completely distributive modules (rings) the two
concepts regular and coregular modules (rings)
are equivalent.

First we prove the following lemma:

Lemma 2.11:
Let R be a ring. Then R is regular if and
only if for each ideal J of R,

(JF:e(b)):J+(0F:{(b)) forany b € R.
Proof: = Let a e (J F:{(b)). Then a (b) < J.

Since R is regular (b) is a direct summand of R
and so R= (b) @ K for some K < R. It follows
that 1 =rb + k for somer € R, k € K, and so
a=rab+ak.Butab € J and (ak) beKn(b)=0;
that ak e (OF:eb). Thena e J + (OF:{b); that

(JF:e(b)) gJ+(0F:{b) and reverse inclusion is

clear. Hence we get the result.
< By hypothesis, for

(@;(@) =@+ 0; ().

Hence R = (a) + (0:(a)) and this implies R is
regular.

any a e R,
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Corollary 2.12:

Let R be a completely distributive ring.
Then R is regular if and only if R is coregular.
Proof: = It follows by Prop.2.7.
< By Lemma 2.11 and Prop.1.9, the result
follows.

Proposition 2.13:

Let M be a completely distributive R-
module. Then M is coregular if M is regular.
Proof: Let N < M. To prove N is copure, it is

enough to show that (N '\:A(a)) =N+ (O'\:/I(a))

for each a € R (by Prop.l.9). Let
me(N :(a)). Then am e N and so that
M

am e (a)M n N. But N is pure in M, so that
(@M ~N=(@N. Thus a m € (aN and
am=an forsome n e N. Hence a (m-n)=0;
that is m — n e (Ol\:/l(a)). It follows that

m=n+(m-n) e N+(O|\:/I(a)). Thus N is

copure.

Theorem 2.14:

Let M be a faithful finitely generated
multiplication R-module. For the following
statements:

(1) M isa coregular R-module.

(2) Risacoregular ring.

(3) Misaregular ring.

(4) Risaregular ring.

1) < 2 = (3) < (4). Furthermore the
statements (1) to (4) are equivalent if every ideal
of R is an annihilator ideal.

Proof: (1) = (2), Let | be an ideal of R. Hence
N = IM is a copure submodule of M and by

Th.1.6, (N : M) is a copure ideal of R. But N =
R

IM = (N:M)M, so that by [7, Th.3.1],
R

| = (N:M), thus 1 is copure.

(2) = (1) Let N < M. Since R is coregular,
(N:M) is a copure ideal of R. Hence by Th.1.6,
N is copure. Thus M is coregular.

(2) = (3) It follows by Prop. 2.10.

(3) = (4) Since M is finitely generated and
regular, then R/ann M R is regular by
[9, Th.1.10].

(4) = (3) ltisclear.

Furthermore (2) < (4) if every ideal is an
annihilator ideal by Prop.2.9.

~
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Recall that an R-module M is called
strongly comultiplication if for every submodule
N of M, there exists an ideal | of R such that

N :(Ol\:AI) and for each ideal J of R,
J:ap{n(oh:AJ) (i.e. J:(OE(O&J))’ [5].

Proposition 2.15:

Let M be a strongly comultiplication R-
module. For the following statements:
(1) M is a coregular R-module.
(2) Risaregular ring.
(3) M isaregular R-module.
Then (1)< (2)= @B) and 3) = (2) ifMis
finitely generated faithful R-module.
Proof: (1) = (2) Let I <R. Since M is strongly
comultiplication R-module, I=ann(0 : I). But

M is coregular, so (0 I) is copure in M.
Hence

by [5, Th.2.13 (2)], ann(0 : I)is a pure ideal
of R = M

R. Thus | is pure and R is a regular ring.

(2) = (1) Let N <M. Then ann N is an ideal of
R, so it is pure, since R is reg&lar. Hence by [10,
Th.2.13 (1)] N is a copure submodule of M.
Thus M is coregular.

(2) = (3) Iltisclear.

Now, if M is finitely generated. To prove
@=>@:

Since M is finitely generated regular R-module,
then R/agn M (which is isomorphic to R) is

regular, by [11, Th.1.10].
Next we turn our attention to direct sum of
coregular modules.

Proposition 2.16:
Let M = M; @ M, where M; and M, are R-
modules. If M is coregular; then M; and M, are

coregular and the converse is true if
annM, +annM, =R.

R R

Proof: Let oMy @ M, —> My,
oM @ M, —> My, p and p are

epimorphism. Hence by Cor.2.5, M; and M, are
coregular.
For the converse. Let N M. Since

annM; +annM, =R, then by the proof of
R R

<

Prop.4.2 in [5], N = N; & N, for some N; < My,
N, < M,. But M; and M, are coregular, so N;
copure in My, N, copure in M, and hence by
Prop.1.5, N is copure in M. Thus M is is
coregular.
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To give our next result, we need to recall
that:
A submodule N of an R-module is fully
invariant if for each f € End(M), f (N) < N.

Lemma 2.17:

Let M=@® M., with M; < M, foreachi e |
and let N be aﬁlfully invariant submodule of M.
Then N=®(NnM,), [5].

iel

Theorem 2,18:

Let M = ®M, with M; <M, foreach i=1, n.
If M is coregular, then M is coregular for each i
=1, , n. The converse is true if each submodule
of M is fully invariant.

Proof: If M is coregular, then M; is coregular
foreachi=1, ..., n by Cor.2.6.

The cgnverse, let N < M. Hence by Iemma
217, N=®(NnM,). But for each i = 1,
M; is coregular hence N N M; is copure in M
for each i =1, ..., n. Then by Prop.1.5, N is
copure in M. Thus M is coregular.
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