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Abstract            
        This paper is concerned with the study of the T-norms and the quantum logic 

functions on BL-algebra, respectively, along with their association with the classical 

probability space. The proposed constructions depend on demonstrating each type of 

the T-norms with respect to the basic probability of binary operation. On the other 

hand, we showed each quantum logic function with respect to some binary 

operations in probability space, such as intersection, union, and symmetric 

difference. Finally, we demonstrated the main results that explain the relationships 

among the T-norms and quantum logic functions. In order to show those relations 

and their related properties, different examples were built. 
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 ي المنطقي وعلاقاتهالاساسا ودوال المنطق الكمي عمى الفضاء الجبر دوال المترية الاحتماليةدراسة ال
 بالنسبة الى الهياكل الاحتمالية التقميدية

 

 2بيحوراء الجلا ،2عبدالله حبيب كريم ،1*احمد العادلي
 قدم الخياضيات، كلية التخبيو، جامعو الكهفو، الكهفو، العخاق1
 قدم الخياضيات، كلية التخبيو بنات، جامعة الكهفو، الكهفو ، العخاق2

 الخلاصة
دوال المنظق الكمي الاحتمالية او ما تدمى بالجوال المعيارية، و  المتخيةالجوال ىحا البحث ييتم بجراسة      

 البناءات المقتخحة تعتمج الاحتمالية التقليجية. وعلاقتيا بفضاء متعاقب،على الجبخ الأساسي المنظقي بذكل 
لبعض العمليات الثنائية على فضاء الاحتمالية بالندبة الجوال المتخية الاحتمالية ن أنهاع على اعيار كل نهع م

خخى وضحنا كل دالة منظق كمي بالندبة ليحه العمليات الثنائية على من جية أ الثنائية.الاساسية للعملية 
الجوال اعيخنا النتائج الخئيدية التي تبين العلاقات بين  أخيخا،والفخق.  الاتحاد، التقاطع،الفضاء الاحتمالي مثل 

نيت عجة امثلة بيا ب   المتعلقةإيضاح ىحه العلاقات وخهاصيا . لغخض الكميودوال المنظق الاحتمالية المتخية 
 مختلفة.

   

Introduction 

     Basic Logic (BL) was introduced by Hájek in 1990 to construct an algebra proof of the theory of 

basic logic's completeness which has been taken a place in the continuous t-norms and the fuzzy logic 

topic [1]. 
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BL-algebras are certain types of residual lattices [2] and they were examined in several papers by 

Turunen [3, 4, 5, 6]. Indeed, various kinds of algebras were examined among these algebras, for 

example, MV-algebras, G-algebras and BCK-algebras [1]. The structure (               ) of BL-

algebra is said to be an MV-algebra if the complement operation       is involutive, which means 

that     =    or equivalently (   )    (   )     for all         where         [1]. 

Also, a BL-algebra is called a G-algebra if         (i.e idempotent). A Boolean algebra is a BL-

algebra which is both an MV-algebra and a G-algebra [4]. 

     On other hand, triangular norms are the operations that looked to be suitable as well as possible to 

the notion of conjunction. When continuity is also required to be connectives, then the common part of 

all possible that have many-valued logics has been defined and called basic logic [7, 8]. 

     Triangular norms started by Menger's paper "Statistical metrics" [9]. The first idea was to study 

metric spaces where probability distributions rather than numbers are used to model the distance 

between elements of the space in question. Triangular norms are derived into the form in the path of 

generalization of the classical triangle inequality which is the interesting condition in "metric space".      

There are four types of T-norms , namely the drastic product, the minimum, the product, and the 

Lukasiewicz. 

     Thus, the top field where T-norms play a remarkable role was the theory of probabilistic metric 

spaces (or statistical metric spaces as called after 1964). Schweizer and Sklar [10] redefined and 

developed statistical metric spaces. 

     Triangular norms (for short T-norms) are an important system for version of the conjunction in 

fuzzy logics and for the intersection of fuzzy sets [1, 11]. It is important to know that the left 

continuity of the T-norm corresponds to BL-algebras, and for more interesting details, one can refer to 

previous articles [7, 12] which described the relationship between continuous T-norms and Boolean 

algebra. 

     There are many quantum logic functions that were defined on quantum structure, for example, the 

quantum logic functions that were presented by Nánásiová in (2003). These maps, such as s-map and 

q-map, play a major role in this study and in the finding of the appropriate ways of association of T-

norms formulas and the quantum logic functions.  An essential notion that has a main part in our 

constructions is known as the state, the definition and properties of which are equivalent to those of 

the probability space.  

     Essentially, this study is organized as follows: section two deals with some basic concepts of T-

norms, BL-algebra, state, probability space, quantum logics functions, and their properties. Section 

three is devoted to demonstrate the most proposed notions of generalization of t-norms and T-conorms 

on BL-algebra, their relationship to probability space, and their relationship to quantum logic 

functions. Finally, some conclusions and future works are presented. 

2 Basic concepts 
      There are several basic concepts that need to be presented in this part. It involves definitions and 

properties that represent the foundations of our constructions on BL-algebra.  

We firstly start with basic T-norm definitions. 

Definition 2.1 [12]. A binary operation T on the unit interval ,   - such that   ,   -  ,   - is said 

to be a triangular norm (T-norm) where 1 is an identity element and T satisfies the following 

conditions for each      and     ,   -: 
1.  (    )   (   )   
2.  (   (     ))   ( (   )  )  
3.  (    )   (   )                 
4.  (   )     
Definition 2.2 [12]. A binary operation   on the unit interval ,   - such that    ,   -  ,   - is said 

to be a triangular conorm (T-conorm) where 0 is an identity element (i.e ). It is a function which has 

the same conditions (1-3) for all     and     ,   - and satisfies that   (   )    . 

Definition 2.3 [7, 9]. An algebra (               )  of type (2,2,2,2, O,  ) is said to be BL-algebra 

if the following conditions hold: 

1. (         ) is a bounded lattice; 

2. (     ) is a commutative monoid, such that    is  an associative and commutative binary 

operation, and I is a neutral element with respect to  ; 
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3.             ; 

 

4.       (   ); 
5. (   )  (   )     
For all      and       and consider         

It is essential to show some common properties of BL-algebra. In each BL-algebras, the following 

relations hold [1, 3]: 

1.   (   )     
2.                     
3.     ,(     )   -  ,(    )   -  
4.      ,      ,              
5.         
6.                                            
7.                           
8. (   )  (   )  (   )     
9.                   
10. (   )             
11.             , then      . 

Example 2.1 [24] Let   *        + such that    . Define on A the following operations 

explaining that A is a BL-algebra:              

    

 

 

  

   

 

  

 

 

 

                                                                           

 

 

              

 

Example 2.2. On BL-algebra    *                +  define         and   as the following implies 
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Definition 2.4. [13] Let   be a BL-algebra. Two elements          are said to be orthogonal and 

denoted by     , if         . 
Definition 2.5 [13]. Let   be a BL-algebra. A function      ,   - is said to be a state if the 

following conditions hold: 

1. ( )    

2. If      , then s(  ˅ λ ) = s( ) + s(λ). 

Some properties of state: 

1.  ( )   ; 

2.   (   )     ( ) for any      ; 
3. s(  ) = s(    ) for any       ; 

4. If      ,  ( )   s( ) =    (     ) which means that    (     )     (       ) , then 
 ( )   ( ). 
Example 2.3. If   *        + is a BL-algebra  Example 2.1, then according to the table below a 

function     ,   - is a state. 

 

 

 

Another definition that should be recalled is the definition of classical probability space. 

 

Definition 2.6 [14, 15]. Let (   ) be a measurable space. A map     ,   - is said to be a measure 

if the following conditions hold: 

(1)  ( )    for all    ; 

(2)  ( )   ; 

(3) If   ,   ,…     , then       =   for     then  

     η(    
   )   ∑    

 
    

A measure  is is said to be finite, if there is       such that  ( )   . 

Remark  2.1. It has been mentioned that probability space is homomorphism to BL-algebra [16]. This 

means taht the systems (           ) and   (           ) are homomorphism. Then    , 

                    
Definition 2.7 [14]. Let (     )be a probability space. The elements of σ-algebra   are said to be 

events, which are the set of outcomes of an experiment for which one can ask a probability. 

It is a well-known fact that for all      :  

   (    )   (     ). 

This property means that all events are simultaneously measurable in a probability space. In this case, 

we say that H and G are compatible. 

3 T-norms and Quantum Logic Functions on BL-algebra 
        This part is devoted to demonstrate the constructions of T-norms and quantum logic functions on 

BL-algebras, respectively, and to show their relationships to probability space. We firstly begin with 

the definition of T-norm on BL-algebra. 

                 

              

              

                    

              

                  

                 

                 

                 

              

                      

              

                   

              

. O       
s(.) 0 0.1 0.9 1 
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Definition 3.1. Let   be a BL-algebra. A bivariate T-norm on BL-algebra, briefly s-T-norm, is a 

function         ,   - that fulfills the following conditions: 

1. For each         ,     (   ) =     (   ) = 0; 

2. For each              (   ) =     (   ); 

3. For each                (    )       (    ), if         ; 

4.    (   ) and    (   ) are states. 

    Indeed, the generalization within this definition and its properties represent the essential brick that 

many of the properties and concepts are relevant to. The above definition can be modified to have a 

one more important property which is related to the notion of state. 

Example 3.1. From Example 2.1, A is BL-algebra, then the following table satisfies s-T-norm 

conditions such that     (   ) = min(s( ), s( )) where s is a state. 

 

   (.,.)         

   0  0   0   0 

   0 0.3 0.3 0.3 

   0 0.3 0.5 0.5 

   0 0.3 0.5  1 
 

Definition 3.2. Let   be a BL-algebra. A bivariate T-norm on BL-algebra, briefly s-T-norm, is a 

function    
      ,   - that fulfills the following conditions: 

1. For each            
  (   ) =    

 (   ) = 1; 

2. For each           
 (   ) =    

  (   ); 

3. For each            
  (    )      

  (    ), if         ; 

4.    
  (   ) and    

 (   ) are states. 

Example 3.2 From example (2.1), A is a BL-algebra, if     
 (   ) = max(s( ),  ( )), where   is a 

state, so that    
  satisfies s -T-conorm. 

Solution 

1. Let          ,    
 (   ) =     ( ( ), s( ))       

 (   )  
2. Let          ,    

 (   ) =     (  ( ), s( )) =      (  ( ),s( )) =   
 (   ) 

3. If         such that     , then    
  (    )     ( ( )  ( ))      ( ( )  ( ))     

  (    ), 

since s is a monotone; 

4.    
  (   ) and    

 (   ) are states. 

For    
  (   ) we have:  

i)    
 (   ) =     ( ( ),s( )) = 0 

ii)   
 (   ) =     ( ( ),s( )) = 1 

iii) If        then     
 (     ) =    

 (   ) +    
 (   ) 

    
 (   ) =     ( ( ),s( )) =  ( ) 

     
 (   ) =     ( ( ),s( )) =  ( ) 

   
 (     ) =    ( (   )  ( ))     ( ( )  ( ))     ( ( )  ( )) 

  s( )   s( ) =    
 (   ) +      

 (   ). 

Similarly, we can obtain     
 (   )  

Therefore    
 (   ) =     ( ( ), s( )) is an s-T-conorm. 

Remark 3.1. Note that the s-T norm and s-T-conorm cannot fulfill the associative condition of 

classical T-norms because of the difference between the domains and the range of these new functions. 

Indeed, we can leave this as an open problem to our next study. Nevertheless, it is interesting to focus 

on other properties of these constructions because they are rich and yield many modified 

constructions. 

        Now, turn to the notions of quantum logic functions and their structures on BL-algebra. Indeed, 

these functions and their concepts were previously discussed in detail [17, 18] and constructed on 

an orthomodular lattice. According to the notions demonstrated in the literatures above, the 

system of the orthomodular lattice and its related properties are a homomorphism to BL-

algebra. In fact, this would help to reconstruct the quantum logic functions such as s-map, j-

map, and d-map on BL-algebra. 
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Definition 3.3. Let   be a BL-algebra. A map          ,   - is called a bivariate s-map if the 

following conditions hold. 

(S1)  (   )   ; 

(S2) For every      , if      then  (   )  0; 

(S3) If       then for any    , 

i.  (     )   (   )   (   ); 
ii.  (     )   (   )    (   )  

Example 3.3. Let    *                + be a BL-algebra Example 2.2. Then the table below shows 

that p is a bivariate s-map. 

 

 

 

 

 

 

 

 

Definition 3.4. Let   be a BL-algebra. A join map (for short j-map) is a map         
 ,   -  such that the following conditions hold: 
(q1)   (   )         (   )   ; 

(q2) For each      , if     then  (   )   (   )   (   ) ; 
(q3) If       then for each    , 

 (     )   (   )   (   )   (   )  
 (     )   (   )   (   )   (   )   
Example 3.4. Let   *                + be a BL-algebra Example 2.2. Then the table below shows 

that q is a bivariate j-map. 

 

 

 

 

 

 

 

 

 

Definition 3.5. Let   be a BL-algebra. A difference map (d-map) is a map           ,   -  such 

that the following conditions hold: 

(d1)  (   )   (   )      for all      (   )   ; 

(d2)  (   )   (   )   (   ) whenever      ; 
(d3) If      and      , 

 (     )   (   )   (   )   (   )  
 (     )   (   )    (   )   (   )   
 

Example 3.5. Let   *                + be a BL-algebra Example 2.2. Then the table below shows 

that   is a bivariate d-map. 

 (   )                 
      0 0.48 0.52 0.86 0.14    1 

  0.48    0    1 0.13 0.87 0.52 

    0.52    1    0 0.87 0.13 0.48 

  0.86 0.3  0.7    0    1 0.14 

    0.14 0.7  0.3    1    0 0.86 

       1 0.52 0.48 0.14 0.86   0 

 

 (   )                 
    0   0   0   0   0   0 

    0 0.3   0 0.2 0.1 0.3 

      0   0 0.7 0.3 0.4 0.7 

    0 0.12 0.38 0.5   0 0.5 

      0 0.18 0.32   0 0.5 0.5 

    0 0.3 0.7 0.5 0.5   1 

 (   )                 

     0 0.7 0.3 0.67 0.33    1 

  0.7 0.7   1 0.9 0.8    1 

    0.3    1 0.3 0.77 0.53    1 

  0.67 0.88 0.79 0.67     1    1 

    0.33 0.82 0.51     1 0.33    1 

      1     1     1     1    1    1 
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     Now, it is convenient to build the constructions that connect     and    
   to BL-algebra functions 

(s-map and j-map) through probability space. Note that each element a belongs to   is equivalent to 

each event that belong to  . 

 

Theorem 3.1. Let      be an s-T-norm on a BL-algebra    with a probability space (     ). Then:  

   (   )   (    ) 

 

Proof  

 The proof should show that the relation above satisfies the conditions of     function. 

1.    (   )   (    )   ( )   ;  
2.    (   )   (   )   (   )     (   )  (  is commutative); 

3. Let    . Then    (   )   (   ), and    (   )   (   ), but 

  (   )   (   ), (   is a monotone). Therefore,    (   )     (   ); 
4. To prove that    (   ) and    (   )  are states, we need to prove the following. 

For    (   )  we have: 

i)     (   )   (   )   ; 

ii)    (   )   (   ))   ( )   ; 

iii) Let       such that         then    (     )      (   )      (   ) 
        (     )=  ((   )   )=  (   )     (   )=     (   )+    (    ) 

Hence,    (   ) is a state 

Similarly,    (   ) is a state too. 

Therefore,    (   )   (   ) is an s-T-norm. 

Theorem 3.2. Let    
  be an s-T-conorm on a BL-algebra   with a probability space (     ). Then 

   
 (   )    (     )  

 

Proof  

The proof should show that the relation above satisfies the conditions of     function. 

1.    
  (H,  ) = P(H   ) = P( ) = 1;  

2.    
  (   )     (     )     (     )       

 (   )  (  is commutative); 

3. Let     . Then     
 (   )    (     ) and    

 (   )    (     )   but 

 (     )    (     ) (   is a monotone). Therefore,    
 (H,G)      

 (H,C); 

4. To prove that    
 (   ) and    

 (   ) are states, we need to prove the following. 

For    
  (   ) we have: 

i)      
  (   ) = P(   ) = 0; 

ii)    
 (   ) = P(   )) = P( ) = 1; 

iii) Let H,G    such that H G=    then    
 (H G,  )=    

 (H ,  )+    
 (G,  ) 

        
 (H G,  )=P((H G)  )=P(H   )+P(G   )=    

 (H, )+    
 (G,  ) 

Hence,    
 (   ) is a state 

Similarly,    
 (   ) is a state too. 

Therefore,    
 (   )   (   )  is an s-T-conorm. 

On the other hand, s-map, j-map, and d-map can be modified in terms of probability space as follow: 

 

 

Theorem 3.3. Let   be an s-map on a BL-algebra with a probability space (     ).Then   

 (   )   (   )  
   

Proof 

It has to be shown that the conditions of the s-map are satisfied within the above relation. 

That is: 

1.  (   )   (   )   ; 

2. For every       , if H   G = , then  (   )   (   )   ( )     (   )  
3. If H     G =  , and     . Then 

     (     )   ((   )   )   ((   )  (   )) 

                          ((   )   (   )   (   )   (   )  



Al-Adlee et al.                                               Iraqi Journal of Science, 2020, Vol. 61, No. 3, pp: 591-599 

 

598 

Similarly,  (     )   (   )   (   )  
Theorem 3.4. Let   be an j-map on a BL-algebra with a probability space (     ). 

Then   (   )   (   )  
 

Proof 
   Again, it is essential to show that the conditions of the j-map hold: 
1.   (   )   (   )   ( )            (   )   (   )   ( )   ; 

2. For every      , if H   G = , then  (   )   (   )   (   )   (   )  
3.  Let      , such that      . Then for each       

     (     )   ((   )   )   ((   )  (   )) 

 (   )   (   )   ((   )  (   ))   (   )   (   )   ((   )   ) 

   (   )   (   )   (   ) 
but            
Hence,  (     )   (   )   (   )   (   ) 
therefore,  (     )   (   )   (   )   (   )  
Similarly,  (     )   (   )   (   )   (   )  

Also, the relationship between the d-map and the the probability space of difference could be shown as 

follows: 

Theorem 3.5. Let d be a d-map on a BL-algebra with a probability space (     ). Then     

 (   )   (    )  
Proof 

 It is essential to show that the conditions of the d-map hold: 

1.  (    )   ( ∆  )   (     (   )= ( )     where for each     ,  (   )  
  (    )     
2. Let       , such that      .  (   )   (   )   ,(    )  (    )] 
   ,((    )    )  ((    )     )]  
   ,((     )  (   ))  ((     )  (    ))]  
   ,(  (   ))  ((     )   )], but       (   )  

Thus  

  ,   )  (   ) -   ,(   )    -   ,(   )   -   (   )   ( )   ( ) 
   (   )   (   )   (   )   (   )  
3. Let      , such that         . Then for each     , 

     (     )   ((   )  )   ((     )  (     )) 

   (      )   (      )   ((     )  (     )) 
   (     )   (     )   ((   )   ) 
   (     )   (     )   (     ) 
   (    )   (    )   (    ). 

Similarly,   (     )   (  (   ))   (   )   (   )   (   )  
This completes the proof. 

In fact, the theorems above directly lead us to the following results.  
Corollary 3.1. If     be an s-T-norm, and   be an s-map on a BL-algebra  , respectively, 

then each s-map   is    . 
Proof 
 It is easy to see that the proof directly follows from Theorem (3.1) and Theorem (3.3). Then th  

proof is complete. 

Corollary 3.2. If    
  be an s-T-conorm, and   be a j-map on a BL-algebra  , respectively, then each 

j-map   is    
   

Proof 

From Theorem 3.2 and Theorem 3.4, the prove is complete. 

Remark 3.2. According to the notions above (Corollary 3.1, and Corollary 3.2), it is important to 

know that each s-map and j-map are s-T-norms s-T-conorms, respectively. But the converse is not true 

and each type of s-T-norm is not need to fulfill the conditions of quantum logic functions (s-map, 

j-map). 
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4 Conclusions 

     There are several properties that can be summarized in the following sentences. First of all, 

it is clear that T-norms, and the quantum logic functions on BL-algebra, have much 

complicated structures than the classical ones because of the nature of BL-algebra. As a type 

of a generalization of T-norm and T-conorm, we showed several different properties that 

associate different situations of T-norm and quantum logic functions to the classical 

probability space. Also, it is essential to refer to the role of the state in our constructions and 

how it is useful in each case of generalization. Moreover, the proofs of many properties and 

facts associated with the calculations that have been obtained in the tables show different 

properties of each map on BL-algebra. Indeed, there are some open problems that we are 

working on, such as generalizing these concepts in the case of conditional events or 

independent events. Finally, it is good to investigate the associative conditions of T-norms 

and T-conorms on BL-algebra. 
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