

New Characterization of Topological Transitivity

Hussein J. Abdul Hussein

Department of Mathematics and Computer Applications, College of Science , University of Al Muthanna, Al Muthanna , Iraq

Abstract

Let (X, f) be a dynamical system, (X, f) is said to be topological transitive if for every pair of non-empty open set U, V, there exists $n \ge 0$ such that $f^n(U) \cap V \ne \emptyset$. We introduce and investigate a new definition of topological transitive by using the nation N-open subset and we called N-transitive and prove the equivalent definitions of this new definition.

Keyword: Topological transitive ,N-open Subset

MSC:54H20

وصف جديد للانتقالية التبولوجية

حسين جابر عبد الحسين

قسم الرياضيات وتطبيقات الحاسوب،كلية العلوم، جامعة المثنى،المثنى،العراق.

الخلاصة

قدم البحث وصفاً جديدا للدوال الانتقالية وباستخدام مفهوم المجموعة (N-Open) وسمية هذا المفهوم N الانتقالية (N-transitive) ، وتم تقديم عدد من التعريفات المكافئة لهذا المفهوم الجديد .

1.Introduction

The concept of topological transitive goes back to G.D Birkhoff who introduced it in 1920, [1].

A topological transitive dynamical system has points which eventually move under from one arbitrarily small open set to any other. Consequently, such a dynamical system cannot be decomposed into two disjoint sets with nonempty interiors which do not interact under the transformation.

We will consider a discrete dynamical system (X, f) given by a metric space X and

continuous map $f: X \to X$. The trajectory of a point $x \in X$ being the sequence

 $x, f(x), f^2(x), f^3(x), ..., where f^n(x)$ is the nth iteration of f. The set of points of the trajectory of x under f is called the orbit of x, denoted by $O_f(x)$. A point $x \in X$ is called non-wandering if for every neighborhood U of x there is a positive integer n such that $f^n(U) \cap U \neq \emptyset$ [2]. The set of non-wandering points of f will be denoted by $\Omega(f)$.

Email:Hussein_almaaly77@yahoo.com

A dynamical system (X, f) is said to be topological transitive (hereafter briefly called transitivity), if for every pair of non-empty open set U, V, there exists $n \ge 0$ such that $f^n(U) \cap V \neq \emptyset$, [3].

Recently several researches were conducted to introduce weak forms of open set and obtain some characterization and preserving theorem of topological properties Al Omari A. and Noorani M. in [4] introduce new class of set called Nopen sets "A subset A of a space X is said to be an N-open if for every $x \in A$ there exists an open subset U_x in X contains x such that $U_x - A$ is a finite set". They prove that the family of all N-open establishes a topology. Moreover ,they obtain a characterization and preserving theorem of compact space. The objective of this paper is use the new class of N-open set to create an Ntransitive function and prove some equivalent definitions.

2. N-Open Set

In 2009 Al. Omari and Noorani[4], introduce the concept of "N-open Set" in a topological space, they prove that the family of all N-open sets establishes a topology. Moreover, they obtain a characterization and preserving theorems of compact spaces.

Definition2.1[4]:

A subset A of a space X is said to be an Nopen if for every $x \in A$ there exists an open subset U_x in X contains x such that $U_x - A$ is a finite set.

The complement of N-open set is said to be an N-closed set. Clearly every open set is N-open but the converse is not true. If X is a topological space then the family of all N-open subsets of X is a topological space, [4].

Theorem2.2[4]:

Let (X,T) be the topological space then the family of all N-open subset is a topological space.

The union of all N-open sets of X contained in a subset A is called the N-interior of A and denoted by $A^{\circ N}[5]$.

Proposition 2.3 [5]:

A subset *A* of a space *X* is N-open if and only if $A = A^{\circ N}$.

Clearly, the interior of A is a subset of $A^{\circ N}(A^{\circ} \subseteq A^{\circ N})$. The N-neighborhood of a point $x \in X$ is any N-open subset of X which contains x. Now we can introduce the following definition.

Definition 2.4:

A subset A is said to be N-nowhere dense if the closure has empty N-interior.

The function $f: X \to Y$ is said to be continuous function if $f^{-1}(A)$ is an open set in X for every open set A in Y. This definition is equivalent to the following definition see[4], a function $f: X \to Y$ is said to be N-continuous if $f^{-1}(A)$ is an N- open set in X for every open set A in Y, if $f^{-1}(A)$ and A is N-open then f is said to be N*- continuous, [5], clearly every continuous is an N-continuous function, but the converse is not true in general, and every N*continuous function is an N-continuous , but the converse is not true in general, for more details see [5].

The following proposition gives the condition on a continuous function which implies N^* -continuous

Proposition 2.5 [5]:

If $f: X \to Y$ be continuous injective , then $f^{-1}(A)$ is N-open whenever A is an N-open subset of Y.

A subset A of topological space X is said to be dense set (or everywhere dense) in X, if the closure of A is equal to $X(\overline{A} = X)$ [6]. Equivalently, A is dense if and only if Aintersects every non-empty open set in X. Now ,we can prove the relation between dense set and N-open set in a topological space.

Theorem 2.6:

let *X* be a topological space and $A \subset X$ then *A* is dense in *X* if and only if $A \cap U \neq \emptyset$ for every non-empty N-open set *U*.

Proof:

let A be a dense subset of X, then for every non-empty open set $V \subset X$, $A \cap V \neq \emptyset$. Let U be N-open subset in X, suppose $A \cap U = \emptyset$.

 $\forall x \in U$, implies $x \notin A$, but U is N-open then there exist N_x is open set in X such that $x \in N_x$, and $N_x - U$ is finite. $N_x \cap A = \emptyset$ this is a contradiction, $A \cap U \neq \emptyset$

Conversely, suppose $A \cap U \neq \emptyset$ for every nonempty N-open set of X, we shall show that A is dense if not suppose $p \in X$ and $p \notin \overline{A}$, so $p \in X - \overline{A}$.

$$X - \overline{A} \cap A = \emptyset$$

which is a contradiction to that fact $X - \overline{A}$ is open set in X, so $X - \overline{A}$ is N-open set in X. Hence $p \in \overline{A}$, therefore $X \subseteq \overline{A} \subseteq X$ then, $\overline{A} = X(A \text{ is dense}). \square$

3. N-Transitive Map

In this section we introduce the following new notion

Definition 3.1.

let X be a compact metric space and $f: X \to X$ a continuous map. The map f is said to be N-transitive if for all non empty N-open sets U, V there exists $n \ge 0$ such that $f^n(U) \cap V \neq \emptyset$. Clearly every transitive map is N-transitive but the converse is not true. The following results gives an equivalent condition for N-transitivity.

Theorem 3.2:

Let (X, f) be a dynamical system , then fis topologically N- transitive if and only if for every non-empty N-open set U in $X, \bigcup_{n=0}^{\infty} f^n(U)$ is dense in X. **Proof :** Assume $\bigcup_{n=0}^{\infty} f^n(U)$ is not dense .Then

there exists a non-empty N-open set V such

 $\bigcup_{n=0}^{\infty} f^{n}(U) \bigcap V = \phi \quad \text{.This implies}$ $\bigcap V = \phi \quad \text{for all } n \in \mathbb{N} \text{. This is a}$ that

contradiction to the N-transitivity of f. Hence $\bigcup f^n(U)$ is dense in X.

Now, let U and V be two non-empty N-opens sets in $X . \bigcup_{n=0}^{\infty} f^n(U)$ is dense in X so, by Theorem 2.6, we have $\bigcup_{n=0}^{\infty} f^n(U) \bigcap V \neq \phi$. This implies there exists $m \in \mathbb{N}$ such that $f^{m}(U) \cap V \neq \phi$, hence f is N-transitive. \Box

Now, if (X, f) is dynamical system and f is N*-continuous then the following condition are equivalent.

Theorem3.3:

let (X, f) be a dynamical system and f is N^{*}continuous then the following are equivalent: (i) *f* is N-transitive.

(ii) For every non-empty N-open set U in $X, \bigcup f^{-n}(U)$ is dense in X.

(iii) If $E \subset X$ is N-closed and $f(E) \subset E$ then E = X or E is N-nowhere dense.

(iv) If $U \subset X$ is N-open and $f^{-1}(U) \subset U$ then $U = \phi$ or U is dense in X

Proof:

(i) \Rightarrow (ii) Since f is N*-continuous and the family of N-open set is topological space ,thus $\widetilde{\bigcup} f^{-n}(U)$ is N-open and since f is Ntransitive, it has to meet every N-open set in Xand hence is dense. (ii) \Rightarrow (i) Let U, V be N-open and non-empty sets in X. Then $\bigcup_{n=0}^{\infty} f^{-n}(U)$ is dense in X. As a result $U \bigcap \bigcup_{n=0}^{\infty} f^{-n}(V) \neq \phi$. This implies $\exists m \in \mathbb{N}$ such that $U \bigcap f^{-m}(V) \neq \phi$. We further have $f^{m}(U\bigcap f^{-m}(V)) = f^{m}(U)\bigcap V \neq \phi$. Hence f is N-transitive. (i) \Rightarrow (iii) f is N-transitive, $E \subset X$ is Nclosed and $f(E) \subset E$. Assume that $E \neq X$

and E has a non-empty N-interior. Define $U = X \setminus E$.Clearly U is N-open, since E is N-closed. Let $V \subset E$ be N-open since E has a non-empty N-interior .We have $f^n(V) \subset E$ since *E* is invariant. Then $f^n(V) \bigcap U = \phi$ for all $n \in \mathbb{N}$. This is a contradiction to Ntransitivity. Hence E = X or E is N-nowhere dense.

(iii) \Rightarrow (i) Let U be non-empty N-open set in X. Suppose f is not N-transitive ,then

from(ii) of this theorem ,
$$\bigcup_{n=0}^{\infty} f^{-n}(U)$$
 is not

dense ,but $\bigcup_{n=0}^{\infty} f^{-n}(U)$ is N-open . Define $E = X \setminus \bigcup_{n=0}^{\infty} f^{-n}(U)$.Clearly E is N-closed

and $E \neq X$. Claim $f(E) \subset E$.

Suppose f(E) is not a subset of E. This implies $f(E) \bigcap_{n=0} \int_{0}^{\infty} f^{-n}(U) \neq \phi$. This further

implies

$$f^{-1}\left[f(E)\bigcap_{n=0}^{\infty}f^{-n}(U)\right] = E\bigcap_{n=0}^{\infty}f^{-n}(U) \neq \phi$$

. This is contradiction to the definition of E, thus $f(E) \subset E$.

Since $\bigcup_{n=0}^{\infty} f^{-n}(U)$ is not dense, there exists a non-empty N-open set V in X such that $\bigcup_{n=0}^{\infty} f^{-n}(U) \bigcap_{n=0}^{\infty} V = \phi$. This implies $V \subset E$, this

is contradiction to the fact that E is N-nowhere dense . Hence f is N-transitive .

(i) \Rightarrow (iv) f is N-transitive, $U \subset X$ is N-open and $f^{-1}(U) \subset U$.Assume that $U \neq \phi$ and U is not dense in X. Then there exists a nonempty N-open set V in X such that $U \bigcap V = \phi$. Further $f^{-n}(U) \bigcap V = \phi$ for all $n \in \mathbb{N}$. This implies $U \bigcap f^n(V) = \phi$ for all $n \in \mathbb{N}$, a contradiction to N-transitivity of f. Hence $U = \phi$ or U is dense in X.

(iv) \Rightarrow (i) Suppose f is not N-transitive, for a non -empty N-open set U in X, let $W = \bigcup_{n=0}^{\infty} f^{-n}(U)$ is non-empty ,N-open and not dense. Clearly $f^{-1}(W) \subset W$, this contradiction since $W \neq \phi$ is dense. This proves that f is N-transitive. \Box

We can introduce the new definition of nonwandering point.

Definition3.4:

A point $x \in X$ is called N- non-wandering if for every N-neighborhood N(x) of x there is a positive integer n such that $f^n(N(x)) \cap N(x) \neq \emptyset$. The set of all N-nonwandering points of f will be denoted by $\Omega_{\rm N}(f)$.

Topological transitivity and existence of a dense orbit are two equivalent definition for some space but is not true generally, [7, 3]. In the following we will make a connection between the set of N-non wandering points, N-transitive and a dense orbit.

Proposition3.5:

Let $f: X \to X$ be a continuous map on compact metric space , f is N-transitive if and only if $\Omega_N(f) = X$, and f has a dense orbit.

Proof:

Suppose f is N- transitive, clearly has a dense

orbit, i.e., there exits $x \in X$, such that $O_f(x)$ is dense in X, if $\Omega_N(f) \neq X$ then there exist a non-empty N-open subset U such that $\{f^n(U) \mid n > 0\}$ are pairwise disjoint set. Since $O_f(x_{-})$ is dense orbit, for some $n_{\circ} \geq 0, f^{n_{\circ}}(x_{\circ}) \in U$ $f^{n+n}(x_{\circ}) \in f^{n}(U), n \geq 0$, which contradiction with $f^{n}(U)$ is pairwise disjoint set. Therefore $\Omega_N(f) = X$. Now, suppose f has a dense orbit and $\Omega_N(f) = X$, let U, V be two non-empty N-open subset of X. let $x \in X$ have a dense orbit, thus the orbit of x will enter both U and V. Let mand nbe the least integers such that $f^m(x) \in U$ and $f^n(x) \in V$.

Assume m < n and set k = n - m. Then obviously $f^k(U) \cap V \neq \emptyset$. Let $f: A \to A$ and $g: B \to B$ be two maps f, g are said to be topologically conjugate, if there exists a homeomorphism $h: A \to B$ such that hof = goh, [2]. Mapping which are conjugate are completely equivalent in terms of their dynamics .Now we can prove the following lemma:

Lemma 3.6:

let f, g be two conjugate function, then if f is N-transitive the g is N-transitive also. Proof: let $U \otimes V$ be two N-open subset of B, since h is continuous and one to one, then h is N*-continuous (Theorem3.3), Thus $h^{-1}(U)$ and $h^{-1}(V)$ are N-open in A. Since f is N-transitive then there exists k > 0 such that $f^k(h^{-1}(U)) \cap h^{-1}(V) \neq \emptyset$, i.e., $hof^k(h^{-1}(U)) \cap V \neq \emptyset$

 $g^k oh(h^{-1}(U)) \cap V \neq \emptyset$

 $g^k(U) \cap V \neq \emptyset$. Thus g is N-transitive function.

References

- **1.**V.Kannan, Nagar,**2003**, "Topological transitivity for discrete dynamical systems"Applicable mathematics in the golden age,Narosa,pp.410-453.
- **2.**L.S.Block and W.A.Coppel,**1991**, "Dynamical in one Dimension" Lecture Notes in Mathematics, Volume 1513,springer-Verlag, Berlin.
- **3.**S.Kolyada and L. Snoha,**1997**, "Some aspects of topological transitive –A survey"Grazer Math. Ber.,334,pp.3-35.
- **4.**Al.Omari. A and Noorani. S. Md. ,**2009**," New characterization of compact spaces" proceeding of the 5th Asian Mathematical conference , Malaysia, pp.53-60.
- **5.**Majhool,Fatima and Hamza, Sattar,**2011**, "On N-proper Action" M.Sc. thesis , Al Qadisiyah University.
- **6.**Modak, Shyamapada,**2011** "Remarks on dense set" International Math. Forum,Vol.6, No.44, pp. 2153-2158.
- **7.**N.Degirmenci and S. Kocak ,**2003**,"Existence of a dense orbit and topological transitivity when are they equivalent." Acta. Math. Hungar.Vol.99,No.3,pp.185-187.