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Abstract

In this paper a stage structure prey-predator model with Hollimg type IV functional
response is proposed and analyzed. The local stability analysis of the system is carried
out. The occurrence of a simple Hopf bifurcation and local bifurcation are investigated.
The global dynamics of the system is investigated with the help of the Lyapunov
function. Finally, the analytical obtained results are supported with numerical simulation
and the effects of parameters system are discussed. It is observed that, the system has
either stable point or periodic dynamics.
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Naji and Shalan

1. Introduction.

Ecology relates to the study of living beings in
relation to their living styles. Research in the area
of the theoretical ecology was initiated by Lotka
(1925) and by Volterra (1926). Since then many
mathematicians and ecologists contributed to the
growth of this area of knowledge. Consequently,
several mathematical models deal with the
dynamics of prey predator models involving
different types of functional responses have been
proposed and studied, see for example [1-7] and
the references therein.

On the other hand, recently some mathematical
models of stage structured population growth have
appeared in the literature, in which the populations
consist of immature and mature individuals. This
seems reasonable for a number of mammals while
they proceed from birth to death. Several
predator—prey models based on age-structure of
prey-predator models with or without delay are
developed and studied by many authors, see for
example [8-15] and the references therein.
Recently, Naji et al [16] has been proposed and
analyzed a stage structure prey-predator model
with Beddington-DeAngelis type of functional
response.

Keeping the above in view, in this paper a stage
structure prey-predator model with Holling type-
IV functional response have been proposed and
studied.

2. The mathematical models.

In the following a Holling type IV prey-
predator model with stage structure in predator is
proposed and analyzed. Consequently the predator
population is divided into two groups immature
and mature. Further, it is assumed that only the
mature predator is capable to consume the prey
according to Holling type IV functional response
and reproductive, while the immature predator
does not attack prey and has no reproductive
ability. The dynamics of such prey-predator model
can be represented mathematically by the
following system of differential equations:

dx oyyo
—=xla-bx——"— |= (X, Y1, ¥5)

dt [ x2+;o<+yﬂJ nhn

d ea
Ay + D)y + T2 £y (x,y1,Y,) (1)
dt XS+ X+yp

d

%:Dyl—dzyzzfa(x-yl,yz)
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Here x,y;,y, represent the densities of the prey,

immature and mature predators at time t
respectively. Note that all the parameters of
system (1) are assumed to be positive constants
and can be described as following:

The parameter a represents the intrinsic growth
rate of the prey in the absence of predator, while
the parameter b is the strength of intra-specific
competition among the prey species; the constants
d,,d, are the death rates of immature predator and
the mature predator respectively ; the parameter
B can be interpreted as the half-saturation
constant: the parameter yis a direct measure of
the predator immunity from the prey; «is the
maximum attack rate of the prey by a predator; e
represents the conversion rate; and finally the
constant D denotes to the rate at which an
immature predator becomes mature predator.
Obviously, due to biological meaning of the
variables x,y, and y,, system (1) has the following

domain  R3 ={(x,y;,y,) eR3:x>0,y; >0,y, >0}.
Further the interaction functions in the right hand

side of system (1) are continuous and have
continuous partial derivatives on the state

space ®3.
Hence they are Liptshizain. Therefore for any
given initial values belong to %2, system (1) has a

unique solution.

In addition to the above all the solutions of system
(1) with non-negative initial value are uniformly
bounded as shown in the following theorem.

Theorem (1): All the solutions of system (1)
which initiate in %2 are uniformly bounded.

Proof: Let (x(t), y,(t), y,(t)) be any solution of the
system (1) with non negative initial condition
(Xo: Yoy Yoo) - From the first equation of system (1)

we have that

dx

— < x(a—hx).

ot x(a—bx)
Then by solving this differential inequality we
obtain that

Xy

x(t) <
ae " +bx, — xobe ™

Thus x(t)<M where M:max{%,xo} for all

value of t. Define the function
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W (t) = x(t) +% AQ) +% Yy, (t) . So the time derivative

of W(t) along the solution curve of the system (1)
can be written as:

aw _dx 1dy 1dy,

dt dt edt e dt

dw 1 1
—<(a+)x—d(x+=y; +—
at ( ) ( eyl eyz)
dw

—+dW <(a+1).M
dt

Again by solving the above linear differential
inequality we get

w() < B M w (et - BHDM o
Consequently, for t -0 we have
W(t) < @

Hence all solutions of system (1) enter to the
region

Q= {(x(), Y1), yo(1)) e R x(t) <M
and W (t) < @}

Which refer to uniformly bounded of them. [

3. Existence and local stability analysis of
system (1).

In this section, the existence and local stability
analysis of all possible non —negative equilibrium
points of system (1) are investigated. There are
three non-negative equilibrium points of system
(1) the existence and the stability analysis for each
of them are given below:

(1) The trivial equilibrium point E,=(0,0,0)
always exists.
(2) It is well known that, the prey population

grows to the carrying capacity % in the absence

of predator, while the predator population dies in
the absence of the prey, then the axial equilibrium

pointE, = (%,0,0] always exists.

(3) There is no equilibrium point in the
y,Y, — plane as the predator population dies in the
absence of its prey.

(4) The positive equilibrium point E, =(x",y;,Y5)
exists in the Ints®® if there is a positive solution
to the following set of algebraic equations:
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f(X,¥1,Y,) _ apy,

X a—bx—m :0 (28.)
fo(X, ¥1,Y2)=—(d; + D)y,
. 2eocyxy2 o (2b)
(X° +x+2B)
f3(X, ¥1,¥2)=Dy; —d,y, =0 (2c)
From (2a) we have
2
y, = (a—bx)(X* + X+ y5) (3)
ay
Substituting in (2c) we get
—b 2
o OI2[(&1 X)(0>;/D+7X+7ﬂJ %)

Now by substituting in (2b) we obtain the
following third order polynomial equation.

Byx® +B,x? +B;x+By =0
here
B; =bd,(d; +D) >0
B, = (—a+by)(d,d, + Dd,) —beayD
B, =ddyy(—a+bp) + yaD(ea —d,) +bDd 8
B, =—ad,yf(d; + D) <0
Consequently, due to Descarte rule [17] Eq. (5)

()

*
has a unique positive root, say X , provided that at
least one of the following two conditions holds.
d,7(d, + D) >%d2(d1 +D)+eaqD
(6)
gdzyﬂ(dl +D)+eayD <d,y(d; + D)

Therefore,
E, = (X", y1,y2) where y; =y (x) and y; =y,(x)
.exists uniquely in Int%? provided that condition

(6) holds with x" <% .

Now, in order to discuss the local dynamical
behavior of system (1) near the above equilibrium
points, the varitional matrix of system (1) at each
of these points is computed and then the
eigenvalues of the resulting varitional matrix are
determined.

Assume that J(x,y,y,) denoted the varitional

matrix at the point (x,y;,y,) which can be written
as follows,



Naji and Shalan

a9 a9 a9
X—=+0 X— X—o
OX 1 oy,
of of of
J(X, 1, Y2) = a—j gz 6y_2
1 2
oy My
OX &7 oY,

.. (7
where g :M and f,(x,y;,Y,);i=1,2,3

are given in system (1) with

Ay, aWa@x+y) A _,
ox (X% +x+1B)? 1
o9 _ ey oy _eapy,(B-x’)
Ny (X% +px+p) X (X +px+ )
%:—(d1+D), izze& ,%: ,
oy, N2 (X +px+yp) X
Hp H g,

o1 >

Accordingly, by substituting the equilibrium

points E;,i=0.2 in (7) and then computing the
eigenvalues, for J(E;),i=012 respectively the
following results are obtained.

The varitional matrix of system (1) at E, is

a 0 0
o 0  -d,

Therefore, the eiganvalues of J(E,) are given by
dox =a>0, Aoy, =—(d; +D) <0 and

Aoy, ==, <0.

Here A,,,u=x,y;,y, represent the eigenvalues of
the varitional matrix at E, which describes the
dynamics in the u—direction. Thus E, is a saddle
point with locally stable manifold in the
y,Y, — plane and with locally unstable manifold in
the x —direction .

However the varitional matrix at the point

E, = (%,0,0J can be written as:
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_a 0 —ayab
(@%+ aby;bzyﬁ)
eaya
J(E))=| 0 —-(d;+D
(&) (¢ +D) (a? +aby +b%yB)

The eigenvalues of the J(E,) are given by

Ay =-a<0 (8)

Ay, + A4y, =—(dy +d, +D) <0 9
_ 3 eayabD 1

ﬂlylﬂiyz dZ(dl+ D) (az +ab}/+b2}/ﬂ) ( 0)

Clearly E, is locally asymptotically stable
provided that the following condition holds

d,(d, + D) > e"‘gDX

(11)

where
R=%2+Kk+)8.
However E, is a saddle point with locally stable

manifold of dimension two and with locally
unstable manifold of dimensions one if we
reversed condition (11). Finally the varitional

matrix at E,=(x",y;,Y,) can be determined as
follows.

by 4 X yz(’ix g ZoK
R& R«
. eays(f—x" eaX
J(X Y, Ys) = %g) —(d;+D) Capx
Re R«
0 D ~d,
= ()33
With R =(x"+x +y8). Therefore the
characteristic equation of J(x",y;,y,) is
B+A2+AL+A=0 (12)

where

A =—(811+85; +a35)

Ay = 841855 + 811833 + 8833 — 8383,

A = 831(8p3832 — 852833) — 13821832
Consequently, it is easy to verify that A >0 for
i =1,3 if the following conditions are satisfied:

o > X*2
eayx D < (d; + D)d,R.

(13)
(14)
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Moreover, we have
=—ay,85p (841 +85p) —11833(ay1 +233)
—28,5857833 — (8, + 333)[322333
_a23a32]+a13a21a32
.. (15)
Then A >0 if the following condition holds
* *2
apy, (X +7)  ea’y’y,D0B-x")

b>
R2 R3

.. (16)
Therefore, due to Routh-Hurwitz criterion, E, is
locally asymptotically stable in the Int%3
provided that conditions (13), (14) and (16) hold.

4. Global dynamical behavior of system (1).

In this section the global dynamics of system
(1) near the equilibrium points E, and E,are
investigated with the help of Lyapunov function
as shown below.

In the following theorem the global stability

condition of E; = (%,0,0) with X :% is established.

Theorem (2): Suppose that the equilibrium point
E, = (%,0,0) is locally asymptotically stable and let
the following condition holds.
D), 2y
De B

Then it is a globally asymptotically stable point.
Proof: Consider the following function about
(%,0,0)

(17)

Lo X
V(X Y1, ¥2) :Q[X_X_X|n§j+czy1+ca)’2

Where c;,c, andc; are positive constants to be
determined. Obviously V:%%® % such that
V(E;))=0 and V(x,y;,y,)>0 for all (x,y;,y,) e R>.
and (x,y;,Y,)#E;. Hence V is a positive definite
function.

d_V:C1 X—X d_X+C dy, C3dy2
dt X ) dt dt dt
= —eb(x-%)? - 222 (¢, —ec,)
R
Ciox
~(ead, ~ 5y, (e, (dy + D)~ csD)ys
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a

Where R=%%+)k+)8 and f(:B, then by
1 (D+dy) .
Choosing ¢; =1 ,c, == ,c;=—— give that
g¢ 2= Ca De g
dv (D+dy) . aR
— =—C,b(x— d, ——=
dt 1b(x - X)? ( De R Y2

Now if condition (17) holds then we get%—\:<0,

hence V is Lyapunov function. Therefore, E, is a

globally asymptotically stable in the Int®? . [
Theorem (3): Assume that E, =(x",y;,y,) exists
and is locally asymptotically stable in the Int®?3
then E, is a globally asymptotically stable

provided that the following conditions are
satisfied.

Q122 < 011022 (182)
Q123 < 011033 (18b)
Q232 < 022033 (18c)
Where
d, +D
Oy =|b— @z (7+X+X)} %2—[ : J'
0o [ %2 J = a2 =x<) (lj
Y2 YRR R
_ecm( D
Ooz=|—(5 t—
2 | iR yz}
With  R=x%+x+8 and R*=x*2+}0<*+}/ﬂ-
Proof:

Consider the following positive definite function
about E, =(x",y;,Y,)

Vi(X, Y1, Vo) = (x X —X In—]
X

+(y1—yf—yflnii]
Y1
+(y2—y3—y§lny—3]
Yo

— R such that V,(E,)=0 and
Vi(x,y;,Y,)>0 for all  (xy,y,)eR® and
(%, y;,Y,)#E,. Hence V, is a positive definite
function. Now, since

Obviously v, : %3
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My (X=X =y |
dt X dt y; ) dt

Then by substituting the values of —

Yo— Yo yz dYZ
Y, dt

dx dY1 dY2
dt’dt’dt

and then doing some mathematical manipulation
we obtain that

v [y, _w vy
m [b - (7+X+X)](X X)? R(X XYz~ ¥2)

(RIS

Y1RR« 1

[Wyz(ﬂ xx)J(x XYYy - vi) -

e * « d «
+[“’“+ ](yl—yl)(yz—yz)—z(yz—yz)2
7] Y

2

From which we get
v, _¢q Q33
d_tl ;1 Uf + Oy 43U —Tus

U1 2 Q22,2
5 Up +QgupUp — 5 — Uz So

Ooo 2 U332
Y u; +Q33U2U3——2 u;

by using the conditions (18a)-(18c) we obtain that

dVl [\/qul \/gu3]

_E[\/Eul_ Q22U2]
—%[\/@Uz‘\/@%]z

Therefore, we have &% <0, under the condition

(18a) —(18c) and hence V; is a Lyapunov function.
Therefore, E, is a globally asymptotically stable

in the IntR3. m

5. The Bifurcation of system (1).

In this section the occurrence of a simple
Hopf bifurcation and local bifurcation (such as
saddle node, pitck fork and a transcritical
bifurcation) near the equilibrium points of system
(1) are investigated. In the following theorem, we
shall establish the condition, at which a simple

Hopf bifurcation occurs in the Int®® for the
system (1).

Theorem (4): Assume that the positive
equilibrium point E, =(x",y;,y,) of system (1)
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exists and let that condition (13) along with the
following condition

b>a7y2(2x +7) (19)

2

o

is satisfied then system (1) has a simple Hopf
bifurcation at the point

P(R’ — PP +P,)

oD,  aW;(B=x")
R« R?

0’7X Y2 (2X +7)
R*

e =8

where

P=(d,+d,+D)>0, P, =—bx" +
P, =(d, + D)d, >0, R*:x*2+7x*+7ﬂ

Proof: According to the Liu (1994) [18], a simple

Hopf-bifurcation occurs if and only if
Ae)>0, Az(es)>0 ,A(ex)=0 andz—i #0

where e. is a critical value of the key parameter
and A, for i=13 and A are given in equations
(12) and (15) respectively. Now since, for

* * * 2
o« 2X +
A:(d1+D){—bx L EE I T yzéz 7)}

€3

2

*

_(dl+D)2|:_bX*+a7/X y2(2X +7):|

* * * 2
+{—bx*+w1 d, —dzz{—bxu

*

—2|:—bx*+w1(dl+mdz +((d; +D) +d,)

*

* *  *x *2
ea D]_eazyzx y5(8-x")D

[(dﬁD)dz - R

*

and then we have
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*  x * 2 A a
* 2 Wh r R:AZ X X = — n
A:(d1+d2+D)[—bx L O 1) y2(2X ”)] ere XIS b and
. R=x%+x+8
. * * 2 * . - .-y -
—((d1+d2+D)2 b+ Y2(2x +7) Proof: According to.th('e varitional matrix of
R2 system (1) at E, , it is easy to verify that
eax’D J(E;, ") has the following eigenvalues:
_eazyzx*y;(}/ﬂ_x*z)D i2:a22+a33:—((d1+d2+D)<0
RS ' 43=0

2 Now, let V:[él,éz,ég]T be the eigenvector
aﬂR*D[P+aW§(7RI32—X* )J] corresponding to the 4, =0 for the J(E;,e”) thus
* J(Ey,&" W =4V and then
e by 0 by 6| [0
A1<e*>=—H—bx*+WJ+<—(dl+D)+(—d2)} 0 bz b0 |=|0

=P(P?2-PP +P,)—¢

€3

Clearly A(e.)=0. Now we have

0 by by (6] |0
Obviously A (e.) >0 under the condition (19) also From which we get that
we have

\i :|:

eayx D ey’ X"y (8- x")D
As(e*)=P1[ = —sz+ v

&3

~ ~ T
b1 o, —byg o, 93} ,
bll b22

, , . ., 1 Where 4, represents any non zero real number.
__pp, o PIRE=PRP, Tz + s - <)

- (PR*2 ans B —x" ))

" Now, let \?:[ﬁl,ﬁz,ﬁJ represents the eigenvector
corresponding to  the eigenvalue i, =0
Clearly, As(e.)>0 under the conditions (13) and  forJT(E;,«”), so we obtain that

(19). Further more, 6 T
* * *2 7 “Y2p N i
dA o D[ o o (B - X )J Y {0, ;. hg, hg } , Where h,; is any non zero
- L 2
de Re Rx real number. Now since
* * *2 T
9Al - _ax Dl e, (B=X )| g a_F:Fa(x,a ){ﬂ,eﬂyo}
delo.,, R« R? oa R R
Thus, a simple Hopf-bifurcation occurs in system  Where F=(f,f,f)" and fi ;i=123
(1) at e=e.. [ represent the right hand side of system (1). Then
we get
Theorem (5): Assume that the parameter o F,(E.a")=[000]
« 2 Therefore ,
passes through the value « =M, then eretore .
o oD YTIF, (Ena)]=| 02223k, [0.00] =0
system (1) near the equilibrium point E, has: attl by Ll
1. No saddle-node bifurcation. Thus the system (1) at E, does not experience any

2. Atranscritical bifurcation but no Pitck-fork
bifurcation can occur provided that the following
condition holds:

1B = R (20)
3. A Pitch-fork bifurcation otherwise.

saddle-node bifurcation in view of Sotomayor
theorem [19].
Also since

807



Naji and Shalan

§)

%)
w

Hs,ﬁs

>

D
%0

l332

22

)|
w

\'d DFa(El,a*)\i]{o,

o

Y & .
252 EX 5 Ry 20

b22

Where  DF,(E,,a") = % F,(x,a) and

163]
jéﬁ(“”@f”)_%jé@
R R
- T
j9193+e“7 (7§ 6,6,

0

X=E1,a=a*
x =[x y1,y, ] Moreover
B b32h3

22

?T[DZF(El,a*)(\i,\i)]{o,

~

0

_obé? _[ Ray —af/);(2x+y)

|

eapR —eayx(25+7)

{

Where DZF(El,O!*) =DJ (X’a)|x:E1,a

2Dea 2y 2 /(B -%%)
a(d, + D)R®

Aogn

]H

33

ey Clearly,

\'d |_D2F(El,a*)(\7,\;)J¢O provided that condition
(20) holds, and then by Sotomoyor theorem [19],
the system (1) possesses a transcritical bifurcation
but not pitck fork bifurcation near E, where
a=a . However , violate condition (20) gives
that Y7 [DZF(El,a*)(\i,\i)Jzo, and hence further
computation shows

15+

S
5
3 Initial point Stable point
[ (0.85,0.75,0.65) (0.38,0.08,0.44)
[
205 Initial point
= (0.65,0.55,0.45)
Initial point
0 (0.45,0.35,0.25)

15
0.4

05

0.2

Immature Predator Prey
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4De’a3y3%?

= = T~ _([3%*
a(d; + D)?R® ([

+ (282~ i B)shy %0
Therefore system (1) possesses a Pitch-fork
bifurcation near E, where a=a".

\'d [D3F(E1,a*)(\i,\7,\i)]:

6. Numerical analysis.
In this section the global dynamics of system
(1) is studied numerically. The system (1) is
solved numerically for different sets of parameters
and for different sets of initial condition, and then
the attracting sets and their time series are drown
as shown below. Now, for the following set of
hypothetical parameters
a=025b=02 a=1, y=0.75 g=2, (21)
d, =0.01, D=0.25 e=0.35 d,=0.05
The attracting sets along with their time series
of system (1) are drown in Figure (1). Note that
from now onward, in the time series figures, we
will use the following representation: blue color
represents the trajectory of the prey, green color
represents the trajectory of immature predator and
the red color represents the trajectory of the

mature predator.
(b)

12

Populations

1.2

Populations
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()
12 T

0.8F

Populations

N\ A~
A

0

0 0.5 1 15 2

Time X105
Figure 1- (a) The solution of system (1)

approaches asymptotically to the
positive equilibrium point starting
from different initial values for the
data given by Eg. (21). (b) Time
series of the attractor in (a) starting at
(0.85, 0.75, 0.65). (c) Time series of
the attractor in (a) starting at (0.65,
0.55, 0.45). (d) Time series of the
attractor in (a) starting at (0.45, 0.35,
0.25).

Clearly, as shown in Figure. (1), the system (1)
has a globally stable positive equilibrium point

E, =(0.38,0.08,0.44) in the Int%3, hence all the

species coexists and the system persists. However,
for the parameters values given by Eq. (21) with
the intrinsic growth rate a=0.5, system (1)

approaches to the periodic dynamics in the Int.R2,
see the following figure.

@

N

Initial point
(0.85,0.75,0.65)

Mature Predator
[iN

Initial point
(0.85,0.75,0.65) >

o

Immature Predator
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809

Populations

Populations
-
2

-
T

05

/ / /
/ \ - /

0 % %
0 25

Time

x10*

Figure 2- (a) Globally asymptotically stable limit
cycle of system (1) starting from
different initial values for the data given
by Eg. (21) with a=05. (b) Time
series of the attractor in (a) starting at
(0.85, 0.75, 0.65). (c) Time series of the
attractor in (a) starting at (1.25, 0.25,
0.75).

Finally, it is observed that, for the parameters
values given by Eqg. (21) with the intrinsic growth
rate in the ranges a<0.09 and a>0.78, system
(1) approaches asymptotically to stable point
E =(2,00), as shown in the following figure.

Further analysis shows that, for the parameter
0.09<a<0.27 with the rest of parameters as
given in Eq. (21), system (1) has a globally
asymptotically stable positive point, while for
0.27<a<0.78 the system (1) approaches to
periodic dynamic.
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6
5 ‘(__?_?—k
4
0
=
S
E3
=}
Q.
&
2 L
1
| T~
~— T
0
0 2 4 6 8

Time
Figure 3-The trajectory of system (1) approaches
asymptotically to  stable  point
E, =(500) for a=1 with the rest of
parameter as in Eq. (21).

Now, the effect of varying the maximum attack
rate (the parameter « ) on the dynamical behavior
of system (1) that represented by parameter values
given in Eq. (21) is studied. It is observed that,
decreasing the parameter «a<0.7  causes
extinction in predator species and the system
approaches to the axial equilibrium point
E,=(.250,0) that means a transcritical
bifurcation is occurred, while as the parameter «
increases passing through «=1.15 the system
transfers from stability at positive equilibrium
point to the periodic dynamics in Int®? indicating
to the occurrence of hopf bifurcation as shown in
Figure. (4).
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Figure 4-The trajectories of system (1) as a
function of time at the data in Eq. (21).
@) Stable positive point
E, =(0.330.080.41) for a=11. (b)
small periodic attractor for «=1.16. (C)
Periodic attractor for ¢ =1.2.

The effects of varying the predator immunity
against the defensive of the prey (the parameter
y ) on the dynamics of system (1) that represented
by parameter values given in Eq. (21) is studied. It
is observed that, decreasing the parameter y <0.3
causes extinction in predator species and the
system approaches to the axial equilibrium point
E,=(@.250,0) that means a transcritical
bifurcation is occurred. Otherwise the system (1)
still approaches to the positive equilibrium point.
Similar observation as that happened in the
parameter » is obtained as varying the grown up
rate of the predator that is meansD, in fact the
bifurcation occurred at D <0.02.

On contrast to the effect of the above two
parameters y and D, it is observed that,

increasing the natural death rate of immature
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predator or that of mature predator (d, or d,)
causes extinction in predator species and then the
solution of system (1) will approaches to axial
equilibrium point E; =(1.25,0,0) .

Now the effects of changing the half saturation
constant (the parameter B) on the dynamics of
system (1) is also studied and the following result
is obtained. Decreasing the value of the parameter
B <1.83 has destabilizing effects on the dynamics
of system (1), in fact the system approaches to
periodic dynamics in the Int®® instead of
approaching to the positive equilibrium point
indicating to occurrence of a Hopf bifurcation as
shown in Fig. (5). Otherwise the system still
coexists at the positive equilibrium point. On
contrast the effect of the parameter g, it is
observed that, increasing the conversion rate (the
parameter e) has destabilizing effects on the
dynamics of system (1) due to transfer of the
dynamics of the system to periodic dynamics in
the Int®? at the value e=0.5, which means the

occurrence of a Hopf bifurcation.
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Figure 5-The trajectories of system (1) as a

function of time at the data in Eq.
(21). (@) Periodic attractor for
S =175. (b) Small periodic attractor
for p=1.8. (c) Stable positive point
E, =(0.37,0.08,0.44) for 5 =1.95.

Time

7. Discussion and conclusion:

In this chapter, a mathematical model

consisting of a stage structure prey-predator model
with Holling type IV functional response has been
proposed and analyzed analytically as well as
numerically. The local as well as global stability
of the proposed system has been studied. The
Hopf-bifurcation and the local bifurcation those
may occur in system (1) are investigated.
The effect of varying each parameter on the
dynamical behavior of system (1) is studied
numerically at a set of hypothetical selected data
and then the trajectories of the system are
drowned. According to these figures the following
conclusions are obtained.

1. The intrinsic growth rate of system (1)
plays a vital role on the persistence of the
system. In fact, for the small values and
large values of the parameter a the
predator facing extinction. However for
suitable choice of this parameter, the
system (1) still persists and has either
stable point or else periodic dynamics.
Although, increasing the maximum attack
rate of mature predator to prey keeps the
system persists, it works as a destabilizing
parameter on the system (1) due to the
transferring of the system dynamics from
stable point to periodic dynamics. In fact,
this parameter has a transcritical
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3. Keeping the predator

bifurcation and Hopf bifurcation at two
different values.

immunity rate
against the defensive of the prey and the
grown up rate of the predator suitably
large will cause the persistence of the
system (1) at the positive equilibrium
point.

4. On contrast to the parameters in (21),

keeping the natural death rates of the
immature and mature predator suitably
small will cause the persistence of the
system (1) at the positive equilibrium
point.

5. Although, the half saturation constant of

the predator and the conversion rate of the
predator represent the Hopf bifurcation
parameters of the system (1), they have
no effect on the persistence of the system.
In fact, decreasing the parameter $<1.83
or increasing the parameter e>0.5 cause
destabilizing of the system due to
transferring from stability at positive
equilibrium point to periodic dynamics.
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