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Abstract 

In this paper a stage structure prey-predator model with Hollimg type IV functional 

response is proposed and analyzed. The local stability analysis of the system is carried 

out. The occurrence of a simple Hopf bifurcation and local bifurcation are investigated. 

The global dynamics of the system is investigated with the help of the Lyapunov 

function. Finally, the analytical obtained results are supported with numerical simulation 

and the effects of parameters system are discussed. It is observed that, the system has 

either stable point or periodic dynamics.     
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المفترس ذي المراحل العمرية المركبةوالمتضمن دالة الاستجاب لهولنك -تحليل الاستقرارية لنظام الفريسة
 من النوع الرابع
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 خلاصةال
الم رييرذ  ا المرامييية العمرييية المركبيية مييت  داليية ا سيييرجابة –فييه اييدا البمييق رييم اقريييراا ورملييية   ييام ال ريسيية      

 اقش ا امكا ية مدوق كية ميت ر يرع اوبيب البسيي  . السلوك الدي اميكه الممله لل  ام درذ . لهول ك  ات ال وع الرابت
ل رياج  الرمليليية واخييرا ريم ريد يم ا, كما رم م اقشة السلوك اليدي اميكه الشيامة بمسيا دا دالية اليابيا وب, الممله والر رع

ليوم  بيات ال  يام يمرليك اميا  س ية اسيرسرار . ال ارجة باسرخدام المماكاا العددية كما رمت م اقشة رأثير معلميات ال  يام
 .او دي اميكية دورية
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1. Introduction. 
     Ecology relates to the study of living beings in 

relation to their living styles. Research in the area 

of the theoretical ecology was initiated by Lotka 

(1925) and by Volterra (1926). Since then many 

mathematicians and ecologists contributed to the 

growth of this area of knowledge. Consequently, 

several mathematical models deal with the 

dynamics of prey predator models involving 

different types of functional responses have been 

proposed and studied, see for example [1-7] and 

the references therein.  

On the other hand, recently some mathematical 

models of stage structured population growth have 

appeared in the literature, in which the populations 

consist of immature and mature individuals. This 

seems reasonable for a number of mammals while 

they proceed from birth to death. Several 

predator–prey models based on age-structure of 

prey-predator models with or without delay are 

developed and studied by many authors, see for 

example [8–15] and the references therein. 

Recently, Naji et al [16] has been proposed and 

analyzed a stage structure prey-predator model 

with Beddington-DeAngelis type of functional 

response.  

Keeping the above in view, in this paper a stage 

structure prey-predator model with Holling type-

IV functional response have been proposed and 

studied. 

2. The mathematical models. 
     In the following a Holling type IV prey-

predator model with stage structure in predator is 

proposed and analyzed. Consequently the predator 

population is divided into two groups immature 

and mature. Further, it is assumed that only the 

mature predator is capable to consume the prey 

according to Holling type IV functional response 

and reproductive, while the immature predator 

does not attack prey and has no reproductive 

ability. The dynamics of such prey-predator model 

can be represented mathematically by the 

following system of differential equations:  
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Here 21,, yyx  represent the densities of the prey, 

immature and mature predators at time t  

respectively. Note that all the parameters of 

system (1) are assumed to be positive constants 

and can be described as following: 

The parameter a  represents the intrinsic growth 

rate of the prey in the absence of predator, while 

the parameter b  is the strength of intra-specific 

competition among the prey species; the constants 

21,dd  are the death rates of immature predator and 

the mature predator respectively ; the parameter 

  can be interpreted as the half-saturation 

constant: the parameter  is a direct measure of 

the predator immunity from the prey;  is the 

maximum attack rate of the prey by a predator; e  

represents the conversion rate; and finally the 

constant D  denotes to the rate at which an 

immature predator becomes mature predator.  

Obviously, due to biological meaning of the 

variables 21  and , yyx , system (1) has the following 

domain }.0,0,0:),,{( 21
3

21
3  yyxyyx  

Further the interaction functions in the right hand 

side of system (1) are continuous and have 

continuous partial derivatives on the state 

space 3
 . 

Hence they are Liptshizain. Therefore for any 

given initial values belong to 3
 , system (1) has a 

unique solution. 

In addition to the above all the solutions of system 

(1) with non-negative initial value are uniformly 

bounded as shown in the following theorem. 

 

Theorem (1): All the solutions of system (1) 

which initiate in 3
  are uniformly bounded. 

Proof: Let ))(),(),(( 21 tytytx be any solution of the 

system (1) with non negative initial condition 

),,( 02100 yyx . From the first equation of system (1) 

we have that 

 )( bxax
dt

dx
 .  

Then by solving this differential inequality we 

obtain that  
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value of t . Define the function    
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of )(tW  along the solution curve of the system (1) 
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  Again by solving the above linear differential 

inequality we get  
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 Which refer to uniformly bounded of them.        ■ 

 

3. Existence and local stability analysis of 

system (1). 
     In this section, the existence and local stability 

analysis of all possible non –negative equilibrium 

points of system (1) are investigated. There are 

three non-negative equilibrium points of system 

(1) the existence and the stability analysis for each 

of them are given below:  

 (1) The trivial equilibrium point )0,0,0(0 E  

always exists. 

 (2) It is well known that, the prey population 

grows to the carrying capacity 
b

a
 in the absence 

of predator, while the predator population dies in 

the absence of the prey, then the axial equilibrium 

point 







 0,0,1

b

a
E  always exists. 

(3) There is no equilibrium point in the 

planeyy 21  as the predator population dies in the 

absence of its prey. 

(4) The positive equilibrium point ),,( *
2

*
1

*
2 yyxE   

exists in the 3. Int  if there is a positive solution 

to the following set of algebraic equations:       
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     0),,( 221213  ydDyyyxf                          (2c) 

 

From (2a) we have 
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


xxbxa
y                              (3) 

Substituting in (2c) we get  
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
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

D
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)((
                         (4) 

Now by substituting in (2b) we obtain the 

following third order polynomial equation. 

      001
2

2
3

3  BxBxBxB                              (5) 

here 

     0)( 123  DdbdB  

     DbeDdddbaB   ))(( 2212  

      22211 )()( bDddeaDbaddB   

     0)( 120  DdadB   

Consequently, due to Descarte rule [17] Eq. (5) 

has a unique positive root, say
*x , provided that at 

least one of the following two conditions holds. 
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Therefore,

)(y  and   )(  ),,,( *
2

*
2

*
1

*
1

*
2

*
1

*
2 xyxyywhereyyxE 

,exists uniquely in 3
Int provided that condition 

(6) holds with 
b

a
x * . 

Now, in order to discuss the local dynamical 

behavior of system (1) near the above equilibrium 

points, the varitional matrix of system (1) at each 

of these points is computed and then the 

eigenvalues of the resulting varitional matrix are 

determined.  

Assume that ),( 2,1 yyxJ  denoted the varitional 

matrix at the point ),,( 21 yyx  which can be written 

as follows,  
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where  1,2,3i ; ),,(f  and  
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Accordingly, by substituting the equilibrium 

points 2,1,0, iEi  in (7) and then computing the 

eigenvalues, for 2,1,0),( iEJ i  respectively the 

following results are obtained.  

The varitional matrix of system (1) at 0E  is   
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00  ax , 0)( 10 1
 Ddy  and 

020 2
 dy . 

Here 210 ,yx,u , yu   represent the eigenvalues of 

the varitional matrix at 0E  which describes the 

dynamics in the .directionu   Thus 0E  is a saddle 

point with locally stable manifold in the 

planeyy 21  and with locally unstable manifold in 

the directionx . 

However the varitional matrix at the point 
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The eigenvalues of the )( 1EJ are given by 

          01  ax                                                (8) 
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Clearly 1E  is locally asymptotically stable 

provided that the following condition holds 
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where      
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However 1E  is a saddle point with locally stable 

manifold of dimension two and with locally 

unstable manifold of dimensions one if we 

reversed condition (11). Finally the varitional 

matrix at ),,( *
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2 yyxE   can be determined as 

follows. 
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With )( **

*
  xxR . Therefore the 

characteristic equation of ),,( *
2

*
1

* yyxJ  is  

032
2

1
3  AAA                  (12) 

where  

 3322111 aaaA      

32233322331122112 aaaaaaaaA       

  32211333223223113 aaaaaaaaA     

Consequently, it is easy to verify that 0iA  for 

3,1i  if the following conditions are satisfied:  
2*x                                                 (13) 

*21
* )( RdDdDxe                             (14) 
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Moreover, we have   
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Therefore, due to Routh-Hurwitz criterion, 2E  is 

locally asymptotically stable in the 3
Int  

provided that conditions (13), (14) and (16) hold.  

 

4. Global dynamical behavior of system (1). 

    In this section the global dynamics of system 

(1) near the equilibrium points 21  and EE are 

investigated with the help of Lyapunov function 

as shown below.  

In the following theorem the global stability 

condition of )0,0,ˆ(1 xE   with 
b

a
x ˆ  is established. 

 

Theorem (2): Suppose that the equilibrium point 
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the following condition holds.  
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Now if condition (17) holds then we get 0
dt
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hence V  is Lyapunov function. Therefore, 1E  is a 

globally asymptotically stable in the 3
Int .         ■ 

 

Theorem (3): Assume that  ),,( *
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Int  
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ln                      

ln

ln),,(

y

y
yyy

y

y
yyy

x

x
xxxyyxV

 

Obviously 
3

1 :V  such that 0)( 21 EV  and 

0),,( 211 yyxV  for all 3
21 ),y(x, y  and 

221 ),,( Eyyx  . Hence 1V  is a positive definite 

function. Now, since 
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dt

dy

y

yy

dt

dy

y

yy

dt

dx

x

xx

dt

dV 2

2

*
221

1

*
11

*
1
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


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



 
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
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

 














 


 

Then by substituting the values of 
dt

dy

dt

dy

dt

dx 21 ,,  

and then doing some mathematical manipulation 

we obtain that  

2*
22

2

2*
22

*
11

21

2*
11

1

1*
11

**

*1

*
2

*
22

*2**

*

*
21

)())((

)(
)(

))(()(
.

          

))(()()(
.

yy
y

d
yyyy

y

D

Ry

xe

yy
y

Dd
yyxxxx

RRy

ye

yyxx
R

xxxx
RR

y
b

dt

dV





























































 

From which we get 

       

22

22

22

2
2

33
3233

2
2

22

2
2

22
2112

2
1

11

2
3

33
3113

2
1

111

u
q

uuqu
q

u
q

uuqu
q

u
q

uuqu
q

dt

dV







So 

by using the conditions (18a)-(18c) we obtain that   

 

 
 23332222

1

2

2221112
1

2

3331112
11

                 

q

uquq

uquq

uqu
dt

dV







 

Therefore, we have 01 
dt

dV
, under the condition 

(18a) –(18c) and hence 1V  is a Lyapunov function. 

Therefore, 2E  is a globally asymptotically stable 

in the 3
Int .                                                   ■ 

 

 

5. The Bifurcation of system (1). 
       In this section the occurrence of a simple 

Hopf bifurcation and local bifurcation (such as 

saddle node, pitck fork and a transcritical 

bifurcation) near the equilibrium points of system 

(1) are investigated. In the following theorem, we 

shall establish the condition, at which a simple 

Hopf bifurcation occurs in the 3. Int  for the 

system (1).  

 

Theorem (4): Assume that the positive 

equilibrium point ),,( *
2

*
1

*
2 yyxE   of system (1) 

exists and let that condition (13) along with the 

following condition   

2
*

**
2 )2(

R

xy
b

 
                                  (19) 

is satisfied then system (1) has a simple Hopf 

bifurcation at the point 



























 





2
*

**
2

*

*

21
2

1
*

)(

)(
2

R

xy
P

R

Dx

PPPPP
ee



 

where 

 0
)2(

P  , 0)(
2
*

**
2

*
*

121 



R

xyx
bxDddP



0)( 212  dDdP ,        *2*
* xxR  

 

Proof: According to the Liu (1994) [18], a simple 

Hopf-bifurcation occurs if and only if 

0
de

d
 and  0)(e ,  0)(A  ,  0)( 

*

**3*1 



ee

eeA  

where *e  is a critical value of the key parameter 

and iA  for 3,1i  and   are given in equations 

(12) and (15) respectively. Now since, for   
2

2
*

**
2

*
*

1

)2(
)(











 


R

xyx
bxDd


 











 


2
*

**
2

*
*2

1

)2(
)(             

R

xyx
bxDd



 

.
)(

)(

))(()(
)2(

2

   

)2(
 

)2(

3
*

**
2

*22

*

*

21

21212
*

**
2

*
*

2
*

**
2

*
*2

22

2

2
*

**
2

*
*

2

R

Dxyxe
D

R
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dDd

dDddDd
R

xyx
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R

xyx
bxdd

R

xyx
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


























 












 












 








 

and then we have 
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 

.
)(

 )()(            

)2(
)(           

)2(
)(

3
*

**
2

*22

*

*

2121

2
*

**
2

*
*2

21

2

2
*

**
2

*
*

21

2

R

Dxyxe

R

Dxe
dDdDdd

R

xyx
bxDdd

R

xyx
bxDdd



























 












 










 



























 


2
*

**
2

*

*

21
2

1

)(
)(    

2

R

xy
P

R

Dx
ePPPPP



Clearly 0)( *  e . Now we have  




























 
 )()((

)2(
)( 212

*

**
2

*
*

*1 dDd
R

xyx
bxeA



Obviously 0)( *1 eA  under the condition (19) also 

we have   

   
 )(

)(
            

)(
)(

2

2

2

**
2

2
*
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2

2
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2
1
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3
*
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2
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2
*

*

1*3

xyPR

xyRPPPPPP
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R

Dxyxe
P

R

Dxe
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




























 

Clearly, 0)( *3 eA  under the conditions (13) and 

(19).  Further more,   

0
)(

)(

2
*

**
2

*

*

2
*
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2

*

*

2

*

2














 
















 




 R

xy
P

R

Dx

de

d

R

xy
P

R

Dx

de

d

ee





 

Thus, a simple Hopf-bifurcation occurs in system 

(1) at *ee  .                                                           ■ 

 

Theorem (5): Assume that the parameter   

passes through the value 
xDe

RDdd

ˆ

ˆ)( 12*





 ,   then 

system (1) near the equilibrium point 1E  has: 

1. No saddle-node bifurcation. 

2. Atranscritical bifurcation but no Pitck-fork 

bifurcation can occur provided that the following 

condition holds: 
2x̂                                                  (20) 

3. A Pitch-fork bifurcation otherwise. 

where   xxR ˆˆˆ 2 , 
b

a
x ˆ  and   

  xxR 2  

Proof: According to the varitional matrix of 

system (1) at 1E  , it is easy to verify that 

),( *
1 EJ  has the following eigenvalues: 

 

0ˆ

0(ˆ

0ˆ

3

2133222

111













Dddaa

aa

  

Now, let  TV 321
ˆ,ˆ,ˆˆ   be the eigenvector 

corresponding to the 0ˆ
3   for the ),( *

1 EJ  thus 

VVEJ ˆˆˆ),( 3
*

1   and then  



















































0

0

0

ˆ

ˆ

ˆ

ˆˆ0

ˆˆ0

ˆ0ˆ

3

2

1

3332

2322

1311






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From which we get that  
T

b

b

b

b
V











 
 33

22

23
3

11

13 ˆ,ˆ
ˆ

ˆ
,ˆ

ˆ

ˆ
ˆ  , 

where 3̂  represents any non zero real number. 

Now, let  Thhh 321
ˆ,ˆ,ˆˆ  represents the eigenvector 

corresponding to the eigenvalue 0ˆ
3   

for ),( *
1 EJ T , so we obtain that 

T

hh
b

b











 
 33

22

32 ˆ,ˆ
ˆ

ˆ
,0ˆ , Where 3ĥ  is any non zero 

real number. Now since               

        
T

R

xye

R

xy
xF

F













0,,),( 22 




  

where TfffF ),,( 321 and 1,2,3i  ;  if  

represent the right hand side of system (1). Then 

we get  

 TEF 0,0,0),( *
1     

Therefore , 

          00,0,0ˆ,3ˆ
ˆ

ˆ
,0),(ˆ 3

22

32*
1

T 










 


T
hh

b

b
EF   

Thus the system (1) at 1E  does not experience any 

saddle-node bifurcation in view of Sotomayor 

theorem [19]. 

Also since 

 



Naji and Shalan                                                       Iraqi Journal of Science. Vol 54.No 3.2013.Pp 801-812 

 

 808 

 

0ˆˆ
ˆ

ˆ

ˆ

ˆ

0

ˆ
ˆ

ˆ

ˆ
ˆ

ˆ

ˆ,ˆ
ˆ

ˆ
,0ˆ),(ˆ

33

22

32

3

3

33

22

32*
1








































 


h
R

xe

b

b

R

xe
R

x

hh
b

b
VEDFT












 

Where 
*

1,

*
1 ),(),(


 






Ex

xF
x

EDF  and 

 Tyyxx 21,, Moreover 

 

3
2

33
1

222

31

)2

312

31132

2
1

3

22

332*
1

2

ˆˆ
ˆ)(

)ˆ(ˆ2

0

ˆˆ
ˆ

ˆ(ˆˆ
ˆ

)ˆ2(

ˆˆ
ˆˆ

)ˆ2(ˆˆ
ˆ

)ˆ2(ˆ2

.

ˆ,
ˆ

ˆˆ
,0)ˆ,ˆ)(,(ˆ

h
RDda

xxDe

R

xe

R

xxeRe

RR

xx

R

xxR
b

h
b

hb
VVEFDT








































































 




















 














 


 

     Where *
1,

*
1

2 ),(),(






Ex

xDJEFD . Clearly, 

  0)ˆ,ˆ)(,(ˆ *
1

2  VVEFDT   provided that condition 

(20) holds, and then by Sotomoyor theorem [19], 

the system (1) possesses a transcritical bifurcation 

but not pitck fork bifurcation near 1E  where 

*  . However , violate condition (20) gives 

that   0)ˆ,ˆ)(,(ˆ *
1

2  VVEFDT  , and hence further 

computation shows  
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Therefore system (1) possesses a Pitch-fork 

bifurcation near 1E  where *  .                       ■ 

 

6. Numerical analysis. 

      In this section the global dynamics of system 

(1) is studied numerically. The system (1) is 

solved numerically for different sets of parameters 

and for different sets of initial condition, and then 

the attracting sets and their time series are drown 

as shown below. Now, for the following set of 

hypothetical parameters 

        
0.05    0.35,e   0.25,D 0.01,d

 2,  0.75,   1,   0.2,b  ,25.0

21 



d

a 
  (21) 

     The attracting sets along with their time series 

of system (1) are drown in Figure (1). Note that 

from now onward, in the time series figures, we 

will use the following representation: blue color 

represents the trajectory of the prey, green color 

represents the trajectory of immature predator and 

the red color represents the trajectory of the 

mature predator. 
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Figure 1- (a)  The solution of system (1) 

approaches asymptotically to the 

positive equilibrium point starting 

from different initial values for the 

data given by Eq. (21). (b) Time 

series of the attractor in (a) starting at 

(0.85, 0.75, 0.65). (c) Time series of 

the attractor in (a) starting at (0.65, 

0.55, 0.45). (d) Time series of the 

attractor in (a) starting at (0.45, 0.35, 

0.25). 

 

     Clearly, as shown in Figure. (1), the system (1) 

has a globally stable positive equilibrium point 

)44.0,08.0,38.0(2 E  in the 3. Int , hence all the 

species coexists and the system persists. However, 

for the parameters values given by Eq. (21) with 

the intrinsic growth rate 5.0a , system (1) 

approaches to the periodic dynamics in the 3. Int , 

see the following figure. 
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Figure 2- (a) Globally asymptotically stable limit 

cycle of system (1) starting from 

different initial values for the data given 

by Eq. (21) with 5.0a . (b) Time 

series of the attractor in (a) starting at 

(0.85, 0.75, 0.65). (c) Time series of the 

attractor in (a) starting at (1.25, 0.25, 

0.75). 

 

     Finally, it is observed that, for the parameters 

values given by Eq. (21) with the intrinsic growth 

rate in the ranges 09.0a  and  78.0a , system 

(1) approaches asymptotically to stable point 

)0,0,(1 b
aE  , as shown in the following figure. 

Further analysis shows that, for the parameter 

27.009.0  a  with the rest of parameters as 

given in Eq. (21), system (1) has a globally 

asymptotically stable positive point, while for 

78.027.0  a  the system (1) approaches to 

periodic dynamic. 
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Figure 3-The trajectory of system (1) approaches 

asymptotically to stable point 

 0,0,51 E  for 1a  with the rest of 

parameter as in Eq. (21). 

 

     Now, the effect of varying the maximum attack 

rate (the parameter  ) on the dynamical behavior 

of system (1) that represented by parameter values 

given in Eq. (21) is studied. It is observed that, 

decreasing the parameter 7.0  causes 

extinction in predator species and the system 

approaches to the axial equilibrium point 

)0,0,25.1(1 E  that means a transcritical 

bifurcation is occurred, while as the parameter   

increases passing through 15.1  the system 

transfers from stability at positive equilibrium 

point to the periodic dynamics in 3
Int  indicating 

to the occurrence of hopf bifurcation as shown in 

Figure. (4). 

0 2 4 6 8 10

x 10
5

0

0.4

0.8

1.2
(a)

Time

P
o

p
u

la
ti

o
n

s

  

0 2 4 6 8 10

x 10
5

0

0.4

0.8

1.2
(b)

Time

P
o

p
u

la
ti

o
n

s

 

0 2 4 6 8 10

x 10
5

0

0.4

0.8

1.2
(c)

Time

P
o

p
u

la
ti

o
n

s

 
Figure 4-The trajectories of system (1) as a 

function of time at the data in Eq. (21). 

(a) Stable positive point 

)41.0,08.0,33.0(2 E  for 1.1 . (b) 

small periodic attractor for 16.1 . (c) 

Periodic attractor for 2.1 . 

 

     The effects of varying the predator immunity 

against the defensive of the prey (the parameter 

 ) on the dynamics of system (1) that represented 

by parameter values given in Eq. (21) is studied. It 

is observed that, decreasing the parameter 3.0  

causes extinction in predator species and the 

system approaches to the axial equilibrium point 

)0,0,25.1(1 E  that means a transcritical 

bifurcation is occurred. Otherwise the system (1) 

still approaches to the positive equilibrium point. 

Similar observation as that happened in the 

parameter   is obtained as varying the grown up 

rate of the predator that is means D , in fact the 

bifurcation occurred at 02.0D . 

On contrast to the effect of the above two 

parameters    and D , it is observed that, 

increasing the natural death rate of immature 



Naji and Shalan                                                       Iraqi Journal of Science. Vol 54.No 3.2013.Pp 801-812 

 

 811 

predator or that of  mature predator ( 1d  or 2d ) 

causes extinction in predator species and then the 

solution of system (1) will approaches to axial 

equilibrium point )0,0,25.1(1 E . 

Now the effects of changing the half saturation 

constant (the parameter  ) on the dynamics of 

system (1) is also studied and the following result 

is obtained. Decreasing the value of the parameter 

83.1  has destabilizing effects on the dynamics 

of system (1), in fact the system approaches to 

periodic dynamics in the 3
Int  instead of 

approaching to the positive equilibrium point 

indicating to occurrence of a Hopf bifurcation as 

shown in Fig. (5). Otherwise the system still 

coexists at the positive equilibrium point. On 

contrast the effect of the parameter  , it is 

observed that, increasing the conversion rate (the 

parameter e ) has destabilizing effects on the 

dynamics of system (1) due to transfer of the 

dynamics of the system to periodic dynamics in 

the 3
Int  at the value 5.0e , which means the 

occurrence of a Hopf bifurcation. 
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Figure 5-The trajectories of system (1) as a 

function of time at the data in Eq. 

(21). (a) Periodic attractor for 

75.1 . (b) Small periodic attractor 

for 8.1 . (c) Stable positive point 

)44.0,08.0,37.0(2 E  for 95.1 . 

 

7. Discussion and conclusion: 
      In this chapter, a mathematical model 

consisting of a stage structure prey-predator model 

with Holling type IV functional response has been 

proposed and analyzed analytically as well as 

numerically. The local as well as global stability 

of the proposed system has been studied. The 

Hopf-bifurcation and the local bifurcation those 

may occur in system (1) are investigated.  

The effect of varying each parameter on the 

dynamical behavior of system (1) is studied 

numerically at a set of hypothetical selected data 

and then the trajectories of the system are 

drowned. According to these figures the following 

conclusions are obtained. 

1. The intrinsic growth rate of system (1) 

plays a vital role on the persistence of the 

system. In fact, for the small values and 

large values of the parameter a  the 

predator facing extinction. However for 

suitable choice of this parameter, the 

system (1) still persists and has either 

stable point or else periodic dynamics. 

2. Although, increasing the maximum attack 

rate of mature predator to prey keeps the 

system persists, it works as a destabilizing 

parameter on the system (1) due to the 

transferring of the system dynamics from 

stable point to periodic dynamics. In fact, 

this parameter has a transcritical 
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bifurcation and Hopf bifurcation at two 

different values.  

3. Keeping the predator immunity rate 

against the defensive of the prey and the 

grown up rate of the predator suitably 

large will cause the persistence of the 

system (1) at the positive equilibrium 

point. 

4. On contrast to the parameters in (21), 

keeping the natural death rates of the 

immature and mature predator suitably 

small will cause the persistence of the 

system (1) at the positive equilibrium 

point. 

5. Although, the half saturation constant of 

the predator and the conversion rate of the 

predator represent the Hopf bifurcation 

parameters of the system (1), they have 

no effect on the persistence of the system. 

In fact, decreasing the parameter 83.1  

or increasing the parameter 5.0e  cause 

destabilizing of the system due to 

transferring from stability at positive 

equilibrium point to periodic dynamics.  
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