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Abstract

In this paper, a mathematical model consisting of harmful phytoplankton and two
competing zooplankton is proposed and studied. The existence of all possible
equilibrium points is carried out. The dynamical behaviors of the model system around
biologically feasible equilibrium points are studied. Suitable Lyapunov functions are
used to construct the basins of attractions of those points. Conditions for which the
proposed model persists are established. The occurrence of local bifurcation and a Hopf
bifurcation are investigated. Finally, to confirm our obtained analytical results and
specify the vital parameters, numerical simulations are used for a hypothetical set of
parameter values.
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1. Introduction:

Termination of planktonic blooms is of great
importance to human health, ecosystem,
environment, tourism and fisheries. Toxic
substances released by plankton play an important
role in this context. The effect of toxin-producing
plankton (TPP) on zooplankton is observed from
the field-collected samples and mathematical
modeling. Information from both the studies led

us to suggest that TPP may terminate the
planktonic blooms by decreasing the grazing
pressure of zooplankton and thus acts as a
biological control [1].

The role of toxin producing phytoplankton (TPP)
in food web can not be ignored. Reduction of
grazing pressure of zooplankton due to release of
toxic chemical by phytoplankton plays an
important role in the species interaction [2]. TPP
act as a strong mediator of zooplankton feeding
rate, as shown in both field and laboratory-based
studies, see [3,4]. Chattopadhyay et al. [1]
observed the effect of TPP on zooplankton
population and suggested a suitable control
mechanism with the help of mathematical
modeling and  experimental  observation.
Chattopadhyay and Sarkar 2003 [5], have been
investigated the effect of existence of TPP in a
food chain system on their dynamical behavior.
Their result suggested that chaotic behavior less
likely occurs in a real food chain dynamics. Later
on, a number of studies have been conducted to
investigate the effects of TPP species on the
overall dynamics of phytoplankton and
zooplankton, see [6,7,8] and the references
therein. Recently, Tanmay Chowdhury et al [9],
proposed and studied a mathematical model
consisting of non-toxic phytoplankton (NTP) -
toxic phytoplankton (TPP) — zooplankton with
constant and variable zooplankton migration.
They concluded that the migratory grazing of
zooplankton has a significant role in determining
the dynamic stability and oscillation of
phytoplankton zooplankton systems. In this
paper however, the effect of toxin producing
phytoplankton on the dynamics of two competing
zooplankton is considered. It is assumed that the
distribution of toxic substance follows either
Holling type-I form or Holling type-11 form.
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2. Mathematical model formulation:-

Consider the simple phytoplankton-zooplankton
system with Holling type-Il functional response
which can be written as:

Pz
% = rp(l_ﬂ) _ mPZy

T K) ™ 7P )
0z, _mpz,

aT ~ yep M4

Here P(T) and Z,(T) represent the densities of

phytoplankton and zooplankton at time T
respectively. While the parameters r, K ,m,y,m;

and g, are assumed to be positive parameters and

can be described as follows: r represents the
intrinsic growth rate of phytoplankton; K is the
carrying capacity; m represents the maximum
attack rate of zooplankton to the phytoplankton
P; y is the half- saturation constant; m,

represents the zooplankton conversion rate from
phytoplankton P ; 4 is the natural death rate of

zooplankton.

Assume that, the phytoplankton P produces a
toxin, as a defensive strategy against the predation
from zooplankton, which effect negatively on the
growth of the zooplankton. Therefore, the above
system can be reformulated as:

aP _ mPZ

d_"l:" - rp(l_%) - ;/+F’1 (2)
dz PZ

d—Tl = n;,l+p1 -mZ, -6, f(P)Z,

Here ¢, >0 represents the liberation rate of toxic
substance by the harmful phytoplankton P ; while
f(P) represents the distribution of toxic
substance which is assumed to be follows either
Holling type-l form (called case 1) or Holling
type-11 form (called case 2) that means:

aP for casel
f(P) = 3
(P)=1 ap for case 2 )
7,+P

Here a>0 and a >0 represent the maximum
zooplankton ingestion rates for the toxic substance
produced by phytoplankton P, while », >0 is the
half- saturation constant of the zooplankton z, by
the toxic substance.

Now, if we imposed the following additional
assumptions on system (2):

1- There exists another zooplankton, denoted by
Z,(T).

2- The second zooplankton z, consumes the food
from phytoplankton according to Holling type-II
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with maximum attack rate n>0 and half-
saturation constant y;, >0, while n, >0 represents
the conversion rate of food from P to the Zz,.
Further the second zooplankton is decay
exponentially in case of absence of phytoplankton
with natural death rate g, >0. Finally it is
assumed that there is inter-specific competition
between the first zooplankton and second
zooplankton with competition rates « >0 and
S >0 respectively.

3- The phytoplankton P produces a toxic
substance that effects on the second zooplankton
Z, too with the same function f(P) that given in

equation (3) but different liberation rate 6, >0.

Therefore, the above two species system (2) can
be extension to three species system and
reformulated as:

P _ p mPZ nPZ

aT = r‘P(l— K _}’Tpl_ 9’1‘*"g

dz Pz

d_le ”;1+p1 —-alZ, -2, -6, f(P)Z, (4)
dz Pz

= nyl1+,:2 —PLZ, -2, -0,1(P)Z,

Note that system (4) has 15 parameters for case 1
and 16 parameters for case 2 which make the
analysis difficult. Therefore, to reduce the number
of parameters and then simplifying our system the
following dimensionless variables are used

mz, nz,

- P, M ="z
t=rT,x=,,z; =72 and z, =%

Therefore, substituting these new variables in
system (4) and then simplifying the resulting
terms. We obtain the following dimensionless
system:

dx _ vy X
L =x1-x) X

Xz,
@, +X

dt =X9:(X,24,2,)

dy _ 93Xy

@ +x

—W,2,25 —w52; —wg T (X)74

=2,0,(%,21,2;)

dz
o —WgZ12y) —wgZ, — o f(X)2;

_ 59X

dt Wy +X
=12,03(%21,2;)
)
where:
w1 x  forcasel
f(x)= 6
) X forcase 2 ©)
@ 1+X
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i _7 71 my K
with o =F, =g, 3=, ;=%
_t _ 6 _n _ A _ M
ws =, wg=—, w;=, @g='", ©5="%,

wm:@_rz’ o =ak, 511:%-
represent the dimensionless parameters.

Clearly, system (5) contains 11 parameters in
case 1 and 12 parameters for case 2 which may
make the analysis of system (5) easier. The initial

condition for system (5) may be taken as any point
in the region R®={(x,7,2,):x>0,7 >0,z, >0}.
Obviously, the interaction functions in the right
hand side of system (5) are continuously
differentiable functions on R3, hence they are
Lipschitizian. Therefore the solution of system (5)
exists and is unique. Further, all the solutions of
system (5) with non-negative initial condition are
uniformly bounded as shown in the following
theorem.

Theorem 1. All the solutions of the system (5),

which initiate in R?; are uniformly bounded.
Proof. Let(x(t),z(t),z,(t)) be any solution of the

system (5). Since

dx

m <X(1—X)
Thus by solving the differential inequality:

lim._,,, Supx(t) <1= x(t) <LVt >0
Now, consider the function:

W, (X, 21, 2,) = @30, X+ @721 + @32,
Then the time derivative of W,(t)along the
solution of the system (5) is:

dw,

dt

where D = min{l,ax,a }, D, = 2ax0; .
By comparing the above differential inequality
with the associated linear differential equation, we
obtain:

+DW, <D,

D
0<wg31§afe—Dh+wme—Dt
Where W, (0) =W,, and hence we get:
D
0<W,; Ssl, as t—oow

Hence, all the solutions of system (5) are
uniformly bounded, and then the proof is
complete. [
According to the above theorem system (5) is
dissipative system.
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3. Existence of equilibrium points and stability
analysis.

The system (5) have at most five non-negative
equilibrium points, two of them
namely /,=(0,00), F,=(10,0) always exist.
While the existence of other equilibrium points
are shown in the following:

The second zooplankton free equilibrium
point F,, =(%,2,,0) exists in Int.R? of xz, —plane,
where

4 =(1-%)(er +X) (7)
while % in case 1, represents the positive root to
the following equation:

e X2 +e,Xx+e;=0 (8)
where e; = w5 >0 and
e, = ws — sy + Wz, . SO by using Descartes rule

of signs, Eq. (8) has either no positive root and
hence there is no equilibrium point or two positive

roots given by:
e el —dee;

& =wsmy1 >0,

X3, Xy = %6, Ty (9a)
Clearly %, and %, are positive provided that:

e, <0= w5 + vwywy; < g (9b)

e? > deje, (9¢)

and then, by substituting %;,i=12 in Eq. (7),
there exist two second zooplankton free
equilibrium points in the IntR? of xz, —plane
namely F,, and F,, ,provided that

X <lfori=12. (10)
Now for case 2, x in Eq. (7) represents a positive
root to the following equation:

e,x° +esx+e; =0

where e, = w; — w5 — @y, €5 =—W W5y, <0
and 5 = w309y, — Wy W5 — 50, — @@ . SO by using
Descartes rule of signs, Eq. (11) has a positive
root given by:

(11)

R= g V8t (122)
provided that the following condition holds:
e, > 0= g > w5 + 0 (12b)

Therefore, by substituting % in Eq. (7), system (5)
has a unique second zooplankton free equilibrium
point in the Int.R? of xz, — plane denoted by Fyo, s

provided that

x<1 (13)
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The first zooplankton free equilibrium point
Fy, =(X,0,7,) existsin Int.r? of xz, - plane
Z, = (1-X)(@, +X) (14)
while X in casel, represents the positive root to
the following equation:
e, X% +egX+ey =0 (15)
here e; =ww, >0, and
8 = Wy — @, + W,y oy, . SO by using Descartes rule

of signs, Eq. (15) has either no positive root and
hence there is no equilibrium point or two positive

roots given by:
+ &2 —4eqeq

Xy, Xy = %_ T (16a)
Clearly X, and X, are positive provided that

g3 <0 = wy + Wm0, < @y (16hb)

eZ > de,e, (16¢)

and then, by substituting X;, i=12 in Eq. (14),
there exist two first zooplankton free equilibrium
points in the IntR? of xz, —plane namely F,,

and F, ., provided that
X; <1lfori=12.

(17)
Now for case2, X in Eq. (14) represents the

positive root to the following equation:

eoX° +€ X +€,=0 (18)
where e, =, —wy—a@,, €,=-wwyw, <0
and e,y = ;0 — W0y — Wy, — 8 @o@y. SO by

using Descartes rule of signs, Eq. (18) has a
positive root given by:

2
T _ 8 en—4eern
X =—2t4 Y=o —97c

5 5 (19a)

10 €10

provided that the following condition holds:
€0>0= ay > wy + 0 (19Db)

Therefore, by substituting X in Eqg. (14), system
(5) has a unique first zooplankton free equilibrium
point in the Int.R? of xz, — plane denoted by Fy, s

provided that
X <1 (20)
Finally the coexistence equilibrium point
Frz, = (X,27,2,7) exists in IntR?, for case 1,

where
2

*

Z, =

*
—| — wg X
w4(w1+><)[ 6711

*
+ (@3 — 05 — Wy w01 1)X —‘010)5]

... (219)
and
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2

*

*
= [_ W11 X

g (@, +X")
+(07 — g — 00 10011)X" —a)za)g]
... (21b)
Clearly z,” is positive under the following two
conditions:

W3 > Wy + W W01

(22a)

(@3- — @@ )X > o5 + s X (22b)
and z,~ is positive under the following two
conditions:
@y > Wy + 0,001 (233)
(@7 — @ — @101 1) X" > W0 + D101 X
.. (23b)

However x* represents the positive root of the
following equation:

X3 +5,X% +55X+5, =0
where:
5
Sy = 0y05(1- 0~ ) + (0,01 + Og05)
83 = 0y[ag(r + @ (1- 1)) + 0y - 0y + 0,004
+ 0y — 0+ oy
4 = 0y00, (0 + ) + Gy > 0
So by using Descartes rule of signs, Eq. (24)

has a unique positive root say x* provided that at
least one of the following two conditions hold:

s, <0 (25a)
(25b)

(24)

= _0)4(08 <0

S3>0
On the other hand, in case 2, where

2, =——L —[(03 -5 —ala)s)x*z
(@ +X")(@1+X7)
+ (w3011 — 0,05 — w501y
—a,0,06)X" —0)10)50_)11]
... (26a)
and
2y :+[(w7 — 0y —3‘15010))(*2
(@ +X ) (@1+X")

(011 — Wy 09 — Wy
—ala’za’10)X*—a’2a’9511]
... (26Db)
Again, it is clear that z,” is positive under the
conditions:

3 > s + AWy (27a)
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W30y > W5 + W5y + By g (27b)
%2 —
(03 —w5 —a106)X" + (w301 — w5

_ . _
— W50y — O W)X > Wy D5y

... (27¢)

and z," is positive under the conditions:
W7 > g +3 Mg (28a)
7011 > W0y + Dy@y; + Ay (28b)

2 _
(w7 — g —ayw1)X" + (@701, — w0
— Wyy; — Ay W1)X" > Wy Wy,
... (28¢c)

While x* represents the positive root of the
following equation:

X +0pX° +G3x% + QX +05 =0
here:
Oy = —wy005 <0
O = 451, - 0, - @)
O3 = a’4a’8[a’1(1— @, = ;) + 0, (1- 1) + 0_’11]
— (@7 — g — 3010) — W53 — 05 — 3y)
Qs = 0)40)8[0)1((02 + o) + w0 (1- (01)]‘ 0 (@701 — W00
= 0y — 30,04 ) — W (W31 — W5 — W5y, — 3y )
s = 0y 1[0,004 (010 + ) + Y0505
So by using Descartes rule of signs, Eq. (29) has a

unique positive root say x* provided that one set
of the following sets of conditions hold:

(29)

g, <0,qg,>0 (30a)
d, <0,03<0,0, <0 (30b)
q,>0,03>0,q, >0 (30c)

In the following, the local dynamical behavior of
the system (5) around each of the above
equilibrium points is discussed. First the Jacobian
matrix of system (5) at each of these points is
determined and then the eigenvalues for the
resulting matrix are computed and then the
obtained results are summarized in the following:
The Jacobian matrix of system (5) at the
equilibrium point F,=(0,0,0) can be written
asJo =J(Fy) =[cjjlassi, =123, where ¢ =1,
Cpp=—ws, C33=-wg and zero otherwise. Then
the eigenvalues of J, are:

Therefore, the equilibrium point F, is a saddle
point.
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The Jacobian matrix of system (5) at the
equilibrium point F,=(1,0,0) can be written as
Iy =3(F) =[djjlss:1, J=123, where d,; =-1,

d12=a;—il, dlszﬁy d22=%_ws—wef(1):
3= %—wg —wy, f (1) and zero otherwise.

Hence, the eigenvalues of J, are:

A =-1<0, Ap = =21 — 05— we T (1)
3 :%_wg —w, F ()

where f() is obtained from Eg. (6) by

substituting x=1. Clearly, F, is locally

asymptotically stable in the R® if the following
two conditions are satisfied

and
w‘:il <y +ayyf Q) (31b)

However, F, is a saddle point in the Rf if at least
one of the following two conditions are satisfied:
3 (31c)

T > W5+ W fQ

and
(31d)

Before we go further to analyze the dynamical
behavior of system (5) in the neighborhood of the
second zooplankton free equilibrium point, recall
that the system have either two equilibrium points
Fyz,and F,, or there is no equilibrium point in

X111
casel.While, it has a unique equilibrium point
Fy, in case 2. Since all these equilibrium points,

whenever they exist have the same locally

stability conditions which depend on the form of
equilibrium points, therefore we assume here F,,
represent any one of them that belongs to
xz, —plane.

So, the Jacobian matrix of system (5) at the
second zooplankton free equilibrium point
Fe, =(%2,,0) in xz; —plane, can be written in the

form: J,, =3(Fy,)=[fjlss:i j =123, where

ol ~ @9 + @1 f@

=% -1+ = ——
fi1= X( 1+ (wﬁx)z] T2 =5% fia= P

A (22N o N
for= 21( (o) - f (X)) ) fos =—w,7y,
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and Zero

oS N ~
1R P8l1 (g -~y f(X)

otherwise. Therefore, the eigenvalues of J,, are

)

f33 =

given by:

" ;
h2 = 2( L o

. \2 s
+\/>22(—1+(%j@2) —4%((;3)2 —a)Gf’(f()j
2
and
3=(Zj}~<—a’821—w9—0)10f(§<)
where f(X) is obtained from Eqg. (6) by

substituting x=x and
/(0 =& £ (X)) ez (32)
Consequently, F,, is locally asymptotically stable

in the R® if the following conditions are satisfied:

5, < (o, + %)? (33a)
@3 > 0 F'(R)(e0) + X)° (33b)
and
a)7XA < wgly + oy + oy f (X) (33c)
@, + X

Obviously, conditions (33a) and (33b) guarantee
the local stability of F,, in the IntR? of the

xz, — plane. However, F,, will be unstable point in

the Rf if we reversed any one of the above
conditions.

Similarly, it is assumed that, F,, represent any
one of the first zooplankton free of the equilibrium
points those may belong to xz, — plane. Hence the
Jacobian matrix of system (5) at the first
zooplankton free equilibrium point F,, =(X,0,7,)
in xz, —plane, can be written in the form:

J)(Zz = J(FXZZ):[hij]3X3; i, J :1,2,3, Where
> Z - -
= X(_“ mf;fj o Me=any Me=onn
hy, :%—wﬁz — w5 —wg T (X)
=~ @, @ )y~
hs; = 22(—2 - >~ f (X)j,
(0, +X)
hy, =—wgz, and zero otherwise. Hence, the

eigenvalues of F,, are given by:
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;{13:%(_14_ 22~2Ji Al:_all
’ (22 +) Ay = —8y8y) — 8y383y — By 383,
2 _
~2f 7 a5 we s A = agp(ay1873— 813871) — 831315893
\/X ( 1+ (wi)z) 4 @y +X ((wﬁi)z @of (X)) and
2 A=A A, —Ag =ap;(ag 8y +a31853)
and - +8y3(a1183; +3581)
7, = w3+xi — 0,7, — 5 — g T (X) So, by substituting the value of a;,and then
“? simplifying the resulting terms we obtain:

where f(X) is obtained from Eqg. (6) by "
__XB
substituting x=x and A= BB, (38a)
P = % f (X)| X=X (34) Ay = X;Zz;BZZz* [50450883 —@3B,B, _a)48155]
Consequently, F,, is locally asymptotically t

... (38h)
. 3 . . .. .o ) .
staplg in the R} if the following conditions are Ae_ ;:2 [ﬁ BB, @7, Bs}
satisfied: m2 L5
Z, < (o, + X)? (35a) - ;;é [# B3Bs _a)821*84:|
~ ~ 1 P2 2
w07 > o f'(X)(@, + X)? (35b) ... (380)
and _ Therefore, in the following theorem, the local
@sX_ < w37, + o5 + g f (X) (35¢) stability conditions for the positive equilibrium
@+ X point Fy,, inthe Int.r3 are established.

Obviously, conditions (35a) and (35b) guarantee
the local stability of F, in the IntR? of the

xz, —plane. While, F,, is unstable point in the

Theorem 2. Assume that F,,, exists in the

Int.rR3 and the following conditions are satisfied;

R if we reversed any one of the above

.\ 2,"B," +2,'B,° < B’B,’ (392)
conditions.
Finally, the Jacobian matrix of the system (5) at «
Y, e BEoaeh M ystem (9) 0 () <2 (39b)

the positive equilibrium point F,,, =(x",2,2,’) @By 0B
- 3 - .
inthe Int.R3 can be written as: B 0 (,Bs — B,By) > B, B (390)

g, =I(Faz) =lay L1 i=123  (36)  4ng

— *BB — d _ 4 “BsB g7, B,B,*

Where all = ﬁ y a12 —_éi < 0 f a13 —_é_z < O, BS > max'{azzziszt , 82)1(*843 2 } (39d)
ay, :%’ 8y, =0, ayy=-w,z" <0, ag = ZZB*ES , Then it is locally asymptotically stable.
ag, =—wyz, <0; a33=0 with Proof. According to the Routh-Hawirtiz criterion
By =y +X" >0,B, =, + X' >0, the characteristic equation (37) has roots with

s o e a negative real parts if and only if A >0, A;>0
By=—B"B,"+2, B, +2, B, and A>0. Note that, it is easy to verify that,
B, = wyw; — B /(X)) and condition (39a) guarantees that B; <0 and hence
By = 0,0, — 0B, T (). A >0; while conditions (39b) ensure that B, <0
Accordingly the characteristic equation of J,,, and B; >0, hence A; will be positive provided
can be written as: thatd_tc.ondltlog; (3393%—(390)_thhold. dl?tqrther, Sgée

Bt AR+ A+ A =0 37) conditions  (39a)-(39b) with condition (39d)

guarantee that A>0. Hence, all the roots

here (eigenvalues) of the J,,, have negative real parts.

781
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Therefore F,, , is locally asymptotically stable in

the Int.r3 and hence the proof is complete. [

Now, before go further to study the global
dynamical behavior of system (5) in the Int.R§F,
we will discuss the dynamical behavior of system
(5) in the interior of the boundary planes as shown
in the following theorems.

Theorem 3. System (5) has no periodic dynamics

in the Int.R?> of xz; —and xz, —planes provided
that

(40)
(41)

7, < (o, +X)?
z, < (@, +X)*
respectively.
Proof. The proof follows directly by using
Bendixson-Dulic criterion with Dulic functions
1/xz, and 1/xz, respectively. [

Keeping the above in view, Since all the
solutions of the system (5) are bounded and F,;

and F,, (for case 2) are the unique positive

equilibrium points in Int.R?of the xz, — and xz, —
planes respectively, hence by using the Poincare-
Bendixson theorem F,, and F, are globally

asymptotically stable in the Int.R? of xz, —plane
and xz, — plane respectively.

4. Global stability of the system.
In this section the global stability of the

equilibrium points F,,F, ,F,, and F,, in R’
are investigated as shown in the following

theorems.
Theorem 4. Assume that the equilibrium point

F, is locally asymptotically stable in the R®, and
let the following conditions:
1

Dy (42a)
w3 W
%51 (42b)
w; Oy

hold, then F, is globally asymptotically stable in

the R®.
Proof. Consider the following positive definite
function:

Uy (X, 24, 2,) = 6 (X —1—InX)+C,pz; +C32,

782
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Clearly U,:R® >R, and is a C! positive definite
function, where ¢;,(i=123) are nonnegative

constants to be determined. Now, since the
derivative of U, along the trajectory of system (5)

can be written as:

—2 < (x-1)* ~(c; ~cp03)

@) + X
Xz c
2 —| Coo5 — ! Z;
G
—| C3t0g — Z2_(‘32604 +C3‘08)2122
@, + X

So, by choosing the nonnegative constants as

(e, —cs07)

c,=1,¢, =a)i and c, :a)i gives:
3 7
%S_(X_l)z_(&_i] X
w3 W

t
wg 1 Wy
w; @, o

Therefore, %<0 under conditions (42a) and

Wg
+—|z;2,
2

(42b), and hence U, is strictly Lyapunov function.
Therefore, F, is globally asymptotically stable in

the R3. »

Now, since system (5) in case 1, may have
either two equilibrium points or no equilibrium

points in the Int.R® of the xz; — and xz, — planes
respectively. Therefore, in the following two
theorems we will study the global dynamics of
system (5) in these planes for case 2 only.
Theorem 5. Assume that the second zooplankton
free  equilibrium  point F, is locally
asymptotically stable in R. Then the basin of
attraction of F,, is given by:
B(Fy,) = {(x, 2,,2,) e R2 x> %,z > 2,2, > 0}

provided that:

2 <o +X) (43a)

@3 (@1 + (@, + X) > 0501, (2 + X) (43b)
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Proof. Follows directly by using the candidate
Lyapunov function

X
|

1
Theorem 6. Assume that the first zooplankton
free  equilibrium  point F, is locally

I 2}
+c, zl—zl—zllnz— +C32,

asymptotically stable in R. Then the basin of
attraction of F,, is given by:

B(Fy,) = {(x,zl,zz) eR¥:x>X%X,2,20,2, > 7,

provided that:
7, < w,(w, +X) (44a)
@7 (@11 +1)(@ +X) > 8010011 (@, +X) (44b)
Proof. Follows directly by using the candidate
Lyapunov function

~ ~, X
Us(x, zl,zz):cl[x—x—x In:)+czz1
X

~ =~ I
+C4q zz—zz—zzlnz—
2

Theorem 7. Assume that the coexistence
equilibrium point F,, , is locally asymptotically
stable in Int.R?. Then the basin of attraction of
Fu,z, 1S given by:
B(Exy,) = {(x, 2,2,):x>Xx"2,>2",2, > 22*}
provided that:
@y (@) +X")2," + (0 +X)2,"

<y, (o) + X" )@, +X)

... (45a)
w3 > wpy (o +X7) (45b)
w; > ooy (0, +X7) (45¢)

Proof. Follows directly by using the candidate
Lyapunov function

* * X
U, (x, zl,zz):cl[x—x - X In—*J

X
z
1] .
-
7

* *I 22
Zy

* *
+c{z1 -2, -7, In
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5. Persistence Analysis.

In this section, the persistence of system (5) is
studied. It is well known that the system is said to
be persistence if and only if each species persists.
Mathematically this is meaning that the solution
of system (5) do not have omega limit set in the
boundaries of R® Gard and Hallam [10].
Therefore, in the following theorem, the necessary
and sufficient conditions for the uniform
persistence of the system (5) are derived.
Theorem 8. Assume that there are no periodic
dynamics in the boundary planes xz; and xz,
respectively. Further, if in addition to conditions
(31c), (31d) the following conditions are hold.

;X

= > wgly + @y + oy (X) (46)
W, + X
and
a)3x~ > w,Z, + 05 + g (X) 47
@ + X
Then, system (5) is uniformly persistence.
Proof: Consider the function

o(x,21,2,) =xPz,”z,”, where p;;i=123 is an
undetermined positive constants. Obviously
o(x,z;,2,) is a C' positive function defined in
R}, and o(x,,2,) >0 if x—>0 or z —0 or
z, — 0. Consequently we obtain

Y(x 2,25) =

o'(X,21,2,) _

o(X,29,2,) P81 + P29z + P33
Here g;;i=12,3 are given in system (5). Therefore

|

—w5 —wg | (X)J

Z;

Y(X,21,2,) = p{l—x—z—l—

W +X @y +X
+p3L

Now, since it is assumed that there are no periodic
attractors in the boundary planes, then the only
possible omega limit sets of the system (5) are the
equilibrium  points  Fy,F,,F, and F, . Thus

according to the Gard technique [10] the proof is
follows and the system is uniformly persists if we
can proof that W()>0 at each of these points.
Since

W(R) = pr—@5p; —wyPs

—wgZy — g — o T (X)

(48a)
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Y(F) :(ﬁ_a’s — g f (DJ [

(48b)

J{ “r —a)g_aﬁof(l)Jps
@, +1
X
‘I’(szl){ o A—wsfl—%—aaof(i)Jps
W, + X

. (48¢)

w3 X
Y(F, )= ——=
(Fe,) [a}ﬁx

— w2y — 05 — wy f (Y)Jpz

. (48d)
where f(1), f(x) and f(X) are obtained from
Eqg. (6) by substituting x=1, x=% and x=X
respectively. Obviously, W¥(F,)>0 for suitable
choose of p,>0 sufficiently large than
p; >0 fori=23. W(F,)>0 for any positive
constants p;;i =2,3 provided that conditions (31c)
and (31d) hold. However, Y¥(F,) and ‘¥(F,,)

are positive provided that the conditions (46) and
(47) are satisfied respectively. Then strictly
positive solution of system (5) do not have omega
limit set and hence, system (5) is uniformly
persistence. [

6. The local Bifurcation:-

In this section an investigation for the
dynamical behavior of system (5) under the effect
of varying one parameter at each time is carried
out. The occurrence of local bifurcation in the
neighborhood of the equilibrium points of the (5)
are studied in the following theorems.

Theorem 9. Assume that condition (31b) holds
and the parameter «, passes through the value
@5 = (w5 + g f V))(w, +1) where f(1) is obtained
from Eq. (6) by substituting x =1, then system (5)
near the equilibrium F, has:
1. No saddle-node bifurcation.
2. A transcritical bifurcation but no pitch-
fork bifurcation can occur provided that
the following condition holds:

( f (1) '
el @ - oy f()

where
F'@) =g F O
3. A pitch-fork bifurcation otherwise.

(49)
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Proof. According to the Jacobian matrix of system
(5) at F, that is given by J,, it is easy to verify

that as «w; =a@;, the J,(F,,@;) has the following
eigenvalues:

A=-1 Jp=0and 3 =25 —wg @y f ()

Let v=(4.6,,6,)' be the -eigenvector of
J,(F., @) corresponding to the eigenvalue
A,=0. Then it is easy to check that

T ~
V= [aﬂfz 0, 0}, where 0, represents any
let W= (h,h,,hy)"
represents the eigenvector of J,7(F,,@,) that

nonzero real value. Also,

corresponding to the eigenvalue 1, =0.
Straightforward calculation shows that
w=(0,h,,0)", where h, is any nonzero real
number.

Now, since g% G,, (X,@3) =[0, afgx,O] , Where
X =(x12,2,)) and G=(G,G,,G;)"  with

G;; i =1,2,3 represent the right hand side of system
(5). Then we get G, (F,.@;)=(000)"and the
following is obtained:

W'[G,, (Fy,@5)] = (0,h,,0)(0,00)" =0
Thus the system (5) at F, does not experience any

saddle-node bifurcation in view of Sotomayor
theorem [11]. Also, since

W' [DG,,, (Fy, @5)V] = (0, h,,0)(0,
h,6,
2% 20
“’3(X’a)3)|X:Fx,w3:&)’3 "

—wgf '(1){ L Jézzﬁz
w +1

where D?G(F,, ;) = DJX(X,a)3)|X:Fx’%:@ . Clearly,

{+1’)

here DG, (Fy, @3) =G
Moreover, we have

W' [D?G(F,, @3)(V,V)] =

_ 2(0’1(”5‘*'wef ®)
o+l

W' [D?G(F,,@3)(V,V)] # 0 provided that condition
(49) holds, and then by Sotomayor theorem, the
system (5) possesses a transcritical bifurcation but
not pitch-fork bifurcation near F, where w; =a;.

However, violate condition (49) gives that
W' [D?G(F,,@3)(V,V)]=0, and hence further
computation shows
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=Trp3 = \(v v Y] — 2 2eles+asf )
W [D'6(F a5)(7, 7, 7] = -3 2
1 2
+a)6f”(1)(—J 6,%h, # 0
o +1

where:

0 for casel

rM= —_2a_1a>113 for case 2
(011 +1)

Therefore system (5) possesses a pitch-fork
bifurcation near F, where w; =w;.m

Theorem 10. Assume that conditions (37a)-(37b)
hold and the parameter «, passes through the

. o, +X, . .
B ===ty + @y + x0T (),
system (5) near the equilibrium F,, has:
1. No saddle-node bifurcation.
2. A transcritical bifurcation but no pitch-
fork bifurcation can occur
provided that one of the following
condition holds:
504§12

R =[%(wsil +ay + oy f (R)- o f ’(ﬁ)gzz{g ; ]

2
(%] [_g4w4+@]¢o
S3 G2
... (50)

352
3. A pitch-fork bifurcation provided that
R=0

value then

(51a)

R = (2012(60821“”9+@10f ®)
1~ 29
62X

2
+ (x))(%) £0

... (51b)

G3 =a)la)3—a)6f'(f<)g12, Ga :_§12+21

where f(X) is obtained from Eg. (6) by
substituting x=x, f'(X) is given in Eq. (32) and
0 forcasel
re = __2a—15}13 for case 2
(@11 +%)

Proof. Follows directly by applying Sotomayor
theorem as shown in proof of theorem (11). [
Theorem 11. Assume that conditions (35a) and
(35b) hold and the parameter @, passes through
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the value @, =2"%(0,7,+a5+mf (X)), then

system (5) near the equilibrium F,, has:

1. No saddle-node bifurcation.

2. A transcritical bifurcation
pitch-fork bifurcation can occur
provided that one of the following condition
holds:

L=(5

but no

(@47, + 05 + 05 F (X)) - 05 T (R )(::7;22)
+ [%fzj [— a0+
... (52)

3. A pitch-fork bifurcation provided that
L=0 (53a)

o

101
X

+5—3)¢0

Za)l(w4f2;(20;+w6f(§)) oyt "(Y)j(w‘;—fzzjz 0
.... (53Db)
here =w+X, S =0y +X,
&3 = w0y _%of,(i)fzz , & =—£5+7,
where f(X) is obtained from Eg. (6) by
substituting x=x, f'(X) is givenin Eqg. (34) and
0
fr(X) =1 —2amy,
(@1 +%)°
Proof. Follows directly by applying Sotomayor
theorem as shown in proof of theorem (11). [

forcasel

for case 2

7. Hopf bifurcation.
Finally, in order to investigate the Hopf
bifurcation of the model system (5), we will
follow the Liu approach [12] as shown in the
following theorem.
Theorem 12. Assume that the coexistence
equilibrium point of system (5) exists and let in
addition to conditions (39a)-(39c), the following
conditions hold:
x"B;B,
2,'B,*Bs

x"B,B;B,
X"By?—2,"B,B,"B,

(54)

<@, <

Then a simple Hopf bifurcation of the model
system (5) occurs at

X"B;Bs

2,"B,BS

D2
7,"B,B{B,

B;;i=12,34,5 are given in Eqg. (36).

wg=awy =

and
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Proof. According to the Liu approach a simple
Hopf bifurcation occurs if and only if

A(#) >0, Ag(u.) >0, A(u,) =0 and 3—A\ #0,
Hl =,

where y, is a critical value of the key parameter
and A fori=13and A are given in equations
(38a), (38b) and (38c). Note that it is clear that
D, <0 under the condition (54) and hence @, is
positive under the conditions (39a)-(39b). Now,
by substituting the value of @, in these equations
we obtain:

X"B,

Al(a)s*):—Bsz , Wwhich is positive due to
1 P2
condition (39a).
e X072,

Ag(wg )=%[a’8 (a)4B3—BzB4)—a)4BlB5]

B1 BZ

:X*Zl*zz* D, (4B —B,B,)

B,?B,” z,"B%B,B,

*n 2
X Bj

*p4
z, B,;B,

X Bj

w3
7, B,

NAERREN

Clearly, Aj(wg")>0 under the conditions (39a)-

(39c) with (54). Moreover, rewrite equation (38c)
gives that:

o
X 2y 2, By
2
B."B,

*2
X"2,"ByBs

*2 % x x %
A= X 73 B3B, | @,Xz; 7, Bg
B,%B,°

B15 B22 BlBZ2

Hence it easy to verify that A(wg")=0. Finally,
since
da
day

_ X'z2, B,

= > #0
B,"B,

*
wg =g

Thus, a simple Hopf bifurcation occurs in system

(5) at wg =wy". [
8. Numerical analysis.

In this section the global dynamics of system
(5), is studied numerically. In both the cases 1 and
2, system (5) is solved numerically for different
sets of parameters and different sets of initial
conditions, and then the attracting sets and their
time series are drown.
For the following set of parameters
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@ =01, w,=01,0;=0.75, @, =01, w;=0.60,
s =0.01,0; =075,  @3=01,  w,=0.60,
a)lo :0.0l a)11=0.25, CT)llzo.l, a.l =1

(55)

The attracting sets along with their time series
of system (5) for case 1 and case 2 are drown in
Figure. (1) and Figure. (2) respectively, starting
from different sets of initial conditions.

@

nitial point
0.650.70.7)

Stable point
(0.46,015,0.15)

Second zooplankion

Phytoplankton

yyyyy

b )
/ /
/

Figure.1-The phase plot of system (5) in case 1.
(@ The solution of system (5)
approaches asymptotically to stable
positive point starting from different
initial points. (b) The trajectories of x
as a function of time. (c) The

trajectories of z, as a function of time.
(d) The trajectories of z, as a function
of time.

Zooplankton

Second

74

Figure 2-The phase plot of system (5) in case 2.
() The solution of system (5) approaches
asymptotically to stable positive point
starting from different initial points. (b)
The trajectories of x as a function of
time. (c) The trajectories of z, as a

function of time. (d) The trajectories of z,
as a function of time.
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Note that from now onward, time series
figures, we will use solid line type forx, dash
line type for z, and dot line type for z,.
However for the above set of data with
ws =wy =058, the system (5) approaches
asymptotically to stable limit cycle in both the
cases as shown in the following two figures
respectively.

)

Phytoplankton
o o o o o

|

Rt
AR |
| 1] | e
T e
N | T

mﬁJ}}\ ;
0.06 t L) i

cond zooplankion
S oo e

Second

|
!
I
|
|
|

Figure 3-The phase plot of system (5) in case 1
for the data given by Eq. (55) with
@5 =wy =0.58. (a) The solution of system
(5) approaches asymptotically to limit
cycle. (b) The trajectory of xas a function
of time. (c) The trajectory of z, as a
function of time. (d) The trajectory of z,
as a(function of time.

()

Phytoplankion
o oo o

First zooplank
S =

Figure 4-The phase plot of system (5) in case 2
for the data given by Eg. (55) with
w5 =wy=058. (a) The solution of
system (5) approaches asymptotically to
limit cycle. (b) The trajectory of xas a
function of time. (c) The trajectory of
z; as a function of time. (d) The

trajectory of z, as a function of time
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According to the above figures, it is observed
that, although two competing species can not
survive for all the time simultaneously, the
existence of phytoplankton makes the survival of
both the competing zooplankton species possible.
Now, further analysis for the role of varying the
natural death rates of both zooplanktons,
represented by w;andw,, on the dynamics of

system (5) is performed, and the following results
are obtained:
For case 1: system (5) has a periodic dynamic in

the Int.R® for the data given by Eq. (55) with
w5 =y <059 see for example Figure. (3), while
for 0.6<w;=wy,<0.67 the system (5) has a
globally asymptotically stable positive point in the
Int.R? see for example Figure. (1). It approaches
asymptotically to the equilibrium point F, =(10,0)
for the data given by Eq. (55) with ws =@y >0.68
as shown in Figure. (5). Finally, for all the values
of w; <wm, with rest of data as given in Eq. (55),

system (5) loses its persistence and the solution
approaches asymptotically to either periodic

attractor in the Int.R? of xz, — plane or stable point

in the Int.R? of xz, —plane or to the equilibrium
point F, =(1,0,0) see for explanation Figure. (6a)-

(6¢), however similar observations have been
obtained and the solution of system (5)
approaches to one of these three types of attractors

in the Int.R? of xz,—plane for the all values of
w5 > wmy With the rest of data as given in Eq. (55).
For case 2: it is observed that, the system (5) has
a periodic dynamic in the IntR® when
s = wy <0.58 with the rest of data as in Eq. (55)
see for example Fig. (4), while the system (5) has
a globally asymptotically stable positive point in
the Int.R® for 0.59 <@ = wy <0.67 with the rest of
data as in Eq. (55) see for example Fig. (2), and
finally the system approaches asymptotically to
equilibrium point F, =(0,0) for ws=w,>0.68
with the rest of data as in Eq. (55). Again as in
case 1, it is observed that for all the values of
ws <y With rest of data as given in Eq. (55)

system (5) approaches asymptotically to the
Int.R? of xz, —plane, while it approaches to the

Int.R? of xz,—plane for all values of ws>ay
with rest of data as given in EqQ. (55).
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0 1000 2000 3000 4000 5000
Time

Figure 5-The trajectories of system (5) in case 1,
for the data given in Eg. (55) with
s = wy =0.68,approaches  asymptotically  to

Stable point F, =(1,0,0).
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000 B 00 0

Figure 6-The trajectories of system (5) in case 1,
for the data given in Eqg. (55), approaches
asymptotically to: (a) Periodic dynamics in
xz, —plane for o; =0.55 and w, =0.64; (b) Stable
point (0.59,0.28,0) in xz; —plane for s =0.64 and
@y =0.66; (C) Stable point F, =(1,0,0) for w; =0.7
and wy =0.75.

According to the above, the effect of the other
parameters on the dynamics of system (5) is also
studied in case of varying different couples of
parameters simultaneously and the obtained
results are summarized in the following tables.

Table 1 - Numerical behavior and persistence of system (5) in case 1, as varying in some parameters
keeping the rest of parameters fixed as in Eq. (55).

Parasr;geerr: E’;‘;i)ed in Numerical behavior of system (5) Persistence of system (5)
@ =, <0.09 Approaches to periodic dynamic in Int.R? Persists
0l =w, <023 Approaches to stable point in Int.R? Persists
@ =, 20.24 Approaches to stable point F, =(1,0,0). Not persists
w; =w; <0.66 Approaches to stable point F, . Not pe_rsists
067<w3=0m; <0.75 Approaches to stable point in Int.R? Persists
@y =; 20.76 Approaches to periodic dynamic in Int.R? Persists
wy =g <0.07 Approaches to periodic dynamic in Int.R? Persists
0.08<a@, =wy <781 Approaches to stable point in Int.R? Persists
@y = 0 2 7.82 Approaches to stable point F, . Not persists
wg = 29 <0.32 Approaches to stable point in Int.R? Persists
ws = =033 Approaches to stable point F, . Not persists
@, <8.07 Approaches to stable point in Int.R? Persists
w,>8.08 Approaches to stable point F, . Not Persists
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Table 2- Numerical behavior and persistence of system (5) in case 2, as varying in some parameters
keeping the rest of parameters fixed as in Eq. (55).

Parameters varied in

Numerical behavior of system (5)

Persistence of system (5)

system (5)
o =, <0.09 Approaches to periodic dynamic in Int.R> Eers!sts
ersists
0l<ay =@, <022 Approaches to stable point in Int.R?
@ =0y 2023 Approaches to stable point F, . Not persists
w; =w; <0.67 Approaches to stable point F, . Not pe'rsists
0.68<w; =w; <0.76 Approaches to stable point in Int.R? Persists
w3 =w; 2077 Approaches to Periodic dynamic in Int.R® Persists
@, =w3 <0.03 Approaches to periodic dynamic in Int.R> Eers!sts
ersists
004<w, = <715 Approaches to stable point in Int.R?
Wy =g >17.16 Approaches to stable point F, . Not persists
wg = w7 <0.08 Approaches to stable point in Int.R® N Ptersist_st
wg =y 20.09 Approaches to stable point F, . O Persists
for all values of @, Approaches to stable in Int.R® Persists
a <8.77 Approaches to stable point in Int.R? N Ptersist_st
3 28.78 Approaches to stable point F, O persists

Table 3- Numerical behavior and persistence of system (5) in case 1, as varying in some parameters

keeping the rest of parameters fixed as in Eq. (55) with @5 = @y =0.58.

Parameters varied in

Numerical behavior of system (5)

Persistence of system (5)

system (5)
o =w, <011 Approaches to periodic dynamic in Int.R> Persists
012<m =, <0.28 Approaches to stable point in Int.R? Persists
@ =, 20.29 Approaches to stable point F, . Not persists
wy =w, <0.64 Approaches to stable point F, . Not persists
0.65<m; =w; <0.73 Approaches to stable point in Int.R? Persists
@y =07 20.74 Approaches to Periodic dynamic in Int.R? Persists
w, =g <0.18 Approaches to periodic dynamic in Int.R? Persists
019< @, =wy <9.81 Approaches to stable point in Int.R? Persists
@y = 0 29.82 Approaches to stable point F, . Not persists
ws = <0.14 Approaches to periodic dynamic in Int.R? Persists
0.15< @ =W =0.39 Approaches to stable point in Int.Rf Persists
@ =004 Approaches to stable point F, . Not persists
w1 <372 Approaches to periodic dynamic in Int.R? Persists
3.73<;<10.08 Approaches to stable point in Int.R® N;egzlf;?sts
;1 >10.09

Approaches to stable point F,
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Table 4- Numerical behavior and persistence of system (5) in case 2, as varying in some parameters
keeping the rest of parameters fixed as in Eq. (55) with @y = @y =0.58.

Parameters varied in . . .
system (5) Numerical behavior of system (5) Persistence of system (5)
@ =w, <0.10 Approaches to periodic dynamic in Int.R? Eers!s'is
_ ersists
01l<w =, <026 Approaches to stable point in Int.R?
@y =@, 20.27 Approaches to stable point F, Not persists
w3 =w; <0.65 Approaches to stable point F, Not persists
066<w;=w; <0.73 Approaches to stable point in Int.R® Persists
0y =0; 20.74 Approaches to Periodic dynamic in Int.Rf Persists
w, =g <0.14 Approaches to periodic dynamic in Int.R? Persists
0.15<w, =wy <9.15 it i 3 .
Wy = Wy Approaches to stable pointin Int.R} Persists
@y =05 29.16 Approaches to stable point F, Not persists
ws = w1 <0.02 Approaches to periodic dynamic in Int.R? Eers!sts
ersists
0.03< @ =, <0.10 Approaches to stable point in Int.R?
@6 =y 20.11 Approaches to stable point F, Not persists
for all values of @, Approaches to periodic dynamic in Int.R? Persists
a; <2 Approaches to periodic dynamic in Int.R? gersists
ersists
201<a =10.98 Approaches to stable point in Int.Rf Not persists
g 210.99 Approaches to stable point F,

9. Conclusions and Discussions.

In this paper, a mathematical model
consisting of single harmful phytoplankton
interacting with two competing zooplankton
species has been proposed and analyzed. It is
assumed that the phytoplankton producing a
toxin substance as a defensive strategy against
the predation by zooplankton. The effect of
toxin producing plankton on the dynamical
behavior  of  phytoplankton-zooplankton
system is considered. Two different scenarios
of the distribution of the toxin substance,
through Holling type-l (called case 1) and
Holling type-II (called case 2), are studied. In
both the cases, the dynamical behavior of
system (5) has been investigated locally as
well as globally. The conditions for the
system (5) to be persists have been derived.
The occurrence of local bifurcation as well as
Hopf bifurcation in system (5) is investigated.
Finally the effects of varying the parameters
on the dynamics of system (5) are studied
numerically and the trajectories of the system
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are presented in the form of figures and
tables. According to those figures and tables

the following conclusions are obtained.
1. Increasing the natural death rates for
both the zooplankton (ws and )

simultaneously keeping the rest of
parameters as given in Eq. (55) for
both the studied cases have stabilizing
effect on the dynamics of system (5)
and then with further increasing of the
parameters values the system faces
extinction in both the zooplankton
and the solution approaches to
Fy =(10,0).

Increasing the half  saturation
constants (@ andw,) simultaneously
or inter-specific competition
parameters  between  both  the
zooplankton  species (@, and wy)
simultaneously, keeping the other
parameters fixed as given in Eg. (55)
with @ = wy =0.6 (the system (5) has
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a stable positive point) and
ws =wy =058 (the system (5) has
periodic dynamics), for both the cases
described above have the same effect
as that of the natural death rates given
in (1).

Increasing the liberation  rates
constants of toxin substance from
phytoplankton (g and awy)
simultaneously — with  the  other
parameters as given in Eq. (55) have
extinction effect on the system.
However increasing the values of
these parameters simultaneously with
the other parameters as given in Eq.
(55) and @;=wy=058  have
stabilizing effect at first and then lead
to extinction in both the zooplankton

species.
Increasing the conversion rates
parameters (w3 and w;)

simultaneously keeping the rest of
parameters as given in Eq. (55), when
the system (5) has asymptotically
stable point and periodic dynamics,
for both the studied cases causes
coexistence of all the species at the
stable positive point. However
increasing these parameters further
causes losing to the stability and the
system (5) goes to periodic dynamics.
Increasing the maximum ingestion
rates of two zooplankton to the toxin
produced by phytoplankton (), in

case 1, keeping other parameters
fixed as in Eg. (55) has extinction
effect and the system approaches to
F, =(10,0), however for the data in
Eq. (55) with @, =w,=0.58 it has
stabilizing effect at first and then
extinction of both the zooplankton
species and the system approaches to
F, =(0,0).

Varying the half saturation constant
of zooplankton to the toxin substance
using Holling type-1l for the
distribution of the toxin substance
does not has any effect on the
dynamics of system (5).
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7. Finally, increasing the maximum
zooplankton ingestion rate to the
toxin  substance  produced by
phytoplankton (a;), in case 2,
keeping other parameters fixed as in
Eq. (55) has extinction effect and the
system approaches to F, =(10,0),
however for the data in Eq. (55) with
s =wy =058 it has stabilizing effect
at first and then extinction of both the
zooplankton species and the system
approachesto F, =(10,0).
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