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Abstract 

       In this paper, a mathematical model consisting of harmful phytoplankton and two 

competing zooplankton is proposed and studied. The existence of all possible 

equilibrium points is carried out. The dynamical behaviors of the model system around 

biologically feasible equilibrium points are studied. Suitable Lyapunov functions are 

used to construct the basins of attractions of those points. Conditions for which the 

proposed model persists are established.  The occurrence of local bifurcation and a Hopf 

bifurcation are investigated. Finally, to confirm our obtained analytical results and 

specify the vital parameters, numerical simulations are used for a hypothetical set of 

parameter values. 
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متنافسةال ةحيوانيال القو عالعالق نباتي واحد ضار واثنين من يتكون من  ديناميكية نظام  
 

و اسراء عامر عايد جي رائد كامل نا  
 قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

 الخلاصة
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1. Introduction: 
     Termination of planktonic blooms is of great 

importance to human health, ecosystem, 

environment, tourism and fisheries. Toxic 

substances released by plankton play an important 

role in this context. The effect of toxin-producing 

plankton (TPP) on zooplankton is observed from 

the field-collected samples and mathematical 

modeling. Information from both the studies led  

 

us to suggest that TPP may terminate the 

planktonic blooms by decreasing the grazing 

pressure of zooplankton and thus acts as a 

biological control [1].  

The role of toxin producing phytoplankton (TPP) 

in food web can not be ignored. Reduction of 

grazing pressure of zooplankton due to release of 

toxic chemical by phytoplankton plays an 

important role in the species interaction [2]. TPP 

act as a strong mediator of zooplankton feeding 

rate, as shown in both field and laboratory-based 

studies, see [3,4]. Chattopadhyay et al. [1] 

observed the effect of TPP on zooplankton 

population and suggested a suitable control 

mechanism with the help of mathematical 

modeling and experimental observation. 

Chattopadhyay and Sarkar 2003 [5], have been 

investigated the effect of existence of TPP in a 

food chain system on their dynamical behavior. 

Their result suggested that chaotic behavior less 

likely occurs in a real food chain dynamics. Later 

on, a number of studies have been conducted to 

investigate the effects of TPP species on the 

overall dynamics of phytoplankton and 

zooplankton, see [6,7,8] and the references 

therein. Recently, Tanmay Chowdhury et al [9], 

proposed and studied a mathematical model 

consisting of non-toxic phytoplankton (NTP) - 

toxic phytoplankton (TPP) – zooplankton with 

constant and variable zooplankton migration. 

They concluded that the migratory grazing of 

zooplankton has a significant role in determining 

the dynamic stability and oscillation of 

phytoplankton zooplankton systems.     In this 

paper however, the effect of toxin producing 

phytoplankton on the dynamics of two competing 

zooplankton is considered. It is assumed that the 

distribution of toxic substance follows either 

Holling type-I form or Holling type-II form.  

 

 

2. Mathematical model formulation:-  
   Consider the simple phytoplankton-zooplankton 

system with Holling type-II functional response 

which can be written as: 
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Here )(TP  and )(1 TZ  represent the densities of 

phytoplankton and zooplankton at time T  

respectively. While the parameters r , K , m ,  , 1m  

and 1  are assumed to be positive parameters and 

can be described as follows:  r  represents the 

intrinsic growth rate of phytoplankton; K  is the 

carrying capacity; m  represents the maximum 

attack rate of zooplankton to the phytoplankton 

P ;   is the half- saturation constant; 1m  

represents the zooplankton conversion rate from 

phytoplankton P ; 1  is the natural death rate of 

zooplankton.  

Assume that, the phytoplankton P  produces a 

toxin, as a defensive strategy against the predation 

from zooplankton, which effect negatively on the 

growth of the zooplankton. Therefore, the above 

system can be reformulated as: 
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Here 01   represents the liberation rate of toxic 

substance by the harmful phytoplankton P ; while 

)(Pf  represents the distribution of toxic 

substance which is assumed to be follows either 

Holling type-I form (called case 1) or Holling 

type-II form (called case 2) that means: 
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Here 0a  and 01 a  represent the maximum 

zooplankton ingestion rates for the toxic substance 

produced by phytoplankton P , while 02   is the 

half- saturation constant of the zooplankton 1Z  by 

the toxic substance. 

Now, if we imposed the following additional 

assumptions on system (2): 

1- There exists another zooplankton, denoted by 

)(2 TZ . 

2- The second zooplankton 2Z  consumes the food 

from phytoplankton according to Holling type-II 
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with maximum attack rate 0n  and half- 

saturation constant 01  , while  01 n  represents 

the conversion rate of food from P  to the 2Z . 

Further the second zooplankton is decay 

exponentially in case of absence of phytoplankton 

with natural death rate 02  . Finally it is 

assumed that there is inter-specific competition 

between the first zooplankton and second 

zooplankton with competition rates 0  and 

0  respectively. 

3- The phytoplankton P  produces a toxic 

substance that effects on the second zooplankton 

2Z  too with the same function )(Pf that given in 

equation (3) but different liberation rate 02  .  

Therefore, the above two species system (2) can 

be extension to three species system and 

reformulated as:  
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      (4)                                

Note that system (4) has 15 parameters for case 1 

and 16 parameters for case 2 which make the 

analysis difficult. Therefore, to reduce the number 

of parameters and then simplifying our system the 

following dimensionless variables are used  
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Therefore, substituting these new variables in 

system (4) and then simplifying the resulting 

terms. We obtain the following dimensionless 

system:
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where: 
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with 
K


 1 , 

K
1

2


  , 
r

m1

3  , 
n
K 4 , 

r
1

5


  , 
r
1

6


  , 
r

n1

7  , 
m

K
 8 , 

r
2

9


  , 

r
2

10


  , aK11 , 
K

2

11


  . 

represent the dimensionless parameters. 

     Clearly, system (5) contains 11 parameters in 

case 1 and 12 parameters for case 2 which may 

make the analysis of system (5) easier. The initial 

condition for system (5) may be taken as any point 

in the region  0,0,0:),,( 2121
3  zzxzzxR .  

Obviously, the interaction functions in the right 

hand side of system (5) are continuously 

differentiable functions on R3
 , hence they are 

Lipschitizian. Therefore the solution of system (5) 

exists and is unique. Further, all the solutions of 

system (5) with non-negative initial condition are 

uniformly bounded as shown in the following 

theorem. 

Theorem 1. All the solutions of the system (5), 

which initiate in R3
  are uniformly bounded. 

Proof. Let ))(),(),(( 21 tztztx  be any solution of the 

system (5). Since 

)1( xx
dt

dx
     

Thus by solving the differential inequality: 

0,1)(1)(lim  ttxtxSupt  

Now, consider the function: 

231773211 ),,( zzxzzxW    

Then the time derivative of )(1 tW along the 

solution of the system (5) is: 

11
1 DDW

dt

dW
  

where  73195 2,,,1min   DD . 

By comparing the above differential inequality 

with the associated linear differential equation, we 

obtain: 

             e Dtwe Dt
D

D
W  10

1
1 )1(0  

Where 101 )0( WW   and hence we get: 

             ,0 1
1

D

D
W   as t  

Hence, all the solutions of system (5) are 

uniformly bounded, and then the proof is 

complete.                                                               ■                                                                                          

According to the above theorem system (5) is 

dissipative system. 
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3. Existence of equilibrium points and stability 

analysis. 
   The system (5) have at most five non-negative 

equilibrium points, two of them 

namely )0,0,0(0 F , )0,0,1(xF  always exist. 

While the existence of other equilibrium points 

are shown in the following:   

 The second zooplankton free equilibrium 

point )0,ˆ,ˆ( 11
zxFxz   exists in 2. RInt  of 1xz plane, 

where 

         )ˆ)(ˆ1(ˆ 11 xxz                                          (7)                                                      

while x̂  in case 1, represents the positive root to 

the following equation: 

032
2
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where 01161  e , 0513  e  and 

1161352  e . So by using Descartes rule 

of signs, Eq. (8) has either no positive root and 

hence there is no equilibrium point or two positive 

roots given by: 
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Clearly 1x̂  and 2x̂  are positive provided that:  
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31
2
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and then, by substituting 2,1,ˆ ixi  in Eq. (7), 

there exist two second zooplankton free 

equilibrium points in the 2. RInt  of 1xz plane  

namely 
111zxF  and 

122zxF , provided that  

          2,1for1ˆ  ixi .                                      (10)                                                                                                                                                         

Now for case 2, x̂  in Eq. (7) represents a positive 

root to the following equation: 
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where 61534  ae  , 011516  e  

and 611115511135  ae  . So by using 

Descartes rule of signs, Eq. (11) has a positive 

root given by:  
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provided that the following condition holds:  

61534 0  ae                       (12b)                                                   

Therefore, by substituting x̂  in Eq. (7), system (5) 

has a unique second zooplankton free equilibrium 

point in the 2. RInt  of 1xz plane denoted by 
1xzF , 

provided that 

 1ˆ x                                                             (13)                                                               

    The first zooplankton free equilibrium point 

)~,0,~( 22
zxFxz   exists in RInt 2.   of -xz2 plane  
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while x~  in case1, represents the positive root to 

the following equation: 
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11102798  e . So by using Descartes rule 

of signs, Eq. (15) has either no positive root and 

hence there is no equilibrium point or two positive 

roots given by: 
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~x  and 2
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and then, by substituting 2,1,~ ixi  in Eq. (14), 

there exist two first zooplankton free equilibrium 

points in the 2. RInt  of 2xz plane  namely 
211zxF  

and 
222 zxF , provided that  

 2,1for1~  ixi .                                 (17)                                                                                                                                                 

Now for case2, x~  in Eq. (14) represents the 

positive root to the following equation: 
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provided that the following condition holds: 
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Therefore, by substituting x~  in Eq. (14), system 

(5) has a unique first zooplankton free equilibrium 

point in the 2. RInt  of 2xz plane denoted by 
2xzF , 

provided that 

             1~ x                                                     (20)                                                                                                       

       Finally the coexistence equilibrium point 
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Clearly *
2z  is positive under the following two 
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     So by using Descartes rule of signs, Eq. (24) 

has a unique positive root say x  provided that at 

least one of the following two conditions hold:  
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Again, it is clear that *
2z  is positive under the 

conditions: 
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While x  represents the positive root of the 

following equation: 
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





















q

aa

q

aa

q

q

q

 

So by using Descartes rule of signs, Eq. (29) has a 

unique positive root say x  provided that one set 

of the following sets of conditions hold:  

0,0 42  qq                                      (30a)                                                                                                                                                         

0,0,0 432  qqq                            (30b)                                                    

0,0,0 432  qqq                            (30c)                                                    

In the following, the local dynamical behavior of 

the system (5) around each of the above 

equilibrium points is discussed. First the Jacobian 

matrix of system (5) at each of these points is 

determined and then the eigenvalues for the 

resulting matrix are computed and then the 

obtained results are summarized in the following: 

 The Jacobian matrix of system (5) at the 

equilibrium point )0,0,0(0 F  can be written 

as 3,2,1,;][)( 3300   jicFJJ ij , where 111 c , 

522 c , 
933 c  and zero otherwise. Then 

the eigenvalues of  0J  are: 

     0101  , 0502    and 0903                                                                                                          

Therefore, the equilibrium point 0F  is a saddle 

point. 
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The Jacobian matrix of system (5) at the 

equilibrium point )0,0,1(xF  can be written as 

3,2,1,;][)( 33   jidFJJ ijxx , where 111 d , 

1
1

12
1



d , 

1
1

13
2



d , )1(65122

1

3 fd 






, 

)1(109133
2

7 fd 






 and zero otherwise. 

Hence, the eigenvalues of xJ  are: 

011 


, )1(6512
1

3 f








                         

)1(10913
2

7 f








 

where )1(f  is obtained from Eq. (6) by 

substituting 1x . Clearly, xF  is locally 

asymptotically stable in the 
3
R  if the following 

two conditions are satisfied                                                                                         

)1(6511

3 f






                        (31a)  

and 

)1(10912

7 f






                              (31b)                                                       

However, xF  is a saddle point in the 
3
R  if at least 

one of the following two conditions are satisfied: 

    )1(6511

3 f






                        (31c) 

 and 

   )1(10912

7 f






                             (31d)                                                                                                                                   

      Before we go further to analyze the dynamical 

behavior of system (5) in the neighborhood of the 

second zooplankton free equilibrium point, recall 

that the system have either two equilibrium points 

111zxF and 
122zxF or there is no equilibrium point in 

case1.While, it has a unique equilibrium point 

1xzF  in case 2. Since all these equilibrium points, 

whenever they exist have the same locally 

stability conditions which depend on the form of 

equilibrium points, therefore we assume here 
1xzF  

represent any one of them that belongs to 

1xz plane. 

So, the Jacobian matrix of system (5) at the 

second zooplankton free equilibrium point 

)0,ˆ,ˆ( 11
zxFxz   in 1xz plane, can be written in the 

form:  3,2,1,;][)( 3311
  jifFJJ ijxzxz , where  








 
 2

1

1

)ˆ(

ˆ

11 1ˆ
x

z
xf


,

x
xf

ˆ
ˆ

12
1



 

x
xf

ˆ
ˆ

13
2



, 








 


)ˆ(ˆ 6)ˆ(121 2
1

31 xfzf
x





, 1423 ẑf  , 

)ˆ(ˆ 10918ˆ

ˆ

33
2

7 xfzf
x

x








 and zero 

otherwise. Therefore, the eigenvalues of 
1xzJ  are 

given by:  

2

)ˆ(41ˆ

1ˆ

6)ˆ(ˆ

ˆˆ
2

)ˆ(

ˆ2

)ˆ(

ˆ

2

ˆ
2,1

2
1

31

1

1

2
1

1

2
1

1








 






 










 





xfx
xx

zx

x

z

x

zx













and 

          )ˆ(ˆˆ
10918ˆ

ˆ

3
2

7 xfz
x

x








     

 where )ˆ(xf  is obtained from Eq. (6) by 

substituting xx ˆ  and  

            xxdx
d xfxf ˆ)()ˆ(                                  (32) 

Consequently, 
1xzF  is locally asymptotically stable 

in the 
3
R  if the following conditions are satisfied:  

             2
11 )ˆ(ˆ xz                                         (33a)                                                                                                                                                                                                                     

2
1631 )ˆ)(ˆ( xxf                         (33b)                                               

and 

 

            )ˆ(ˆ
ˆ

ˆ
10918

2

7 xfz
x

x








              (33c)    

Obviously, conditions (33a) and (33b) guarantee 

the local stability of 
1xzF  in the 2. RInt  of the 

1xz plane. However, 
1xzF will be unstable point in 

the 
3
R  if we reversed any one of the above 

conditions. 

Similarly, it is assumed that, 
2xzF  represent any 

one of the first zooplankton free of the equilibrium 

points those may belong to 2xz plane. Hence the 

Jacobian matrix of system (5) at the first 

zooplankton free equilibrium point )~,0,~( 22
zxFxz   

in 2xz plane, can be written in the form: 

3,2,1,;][)( 3322
  jihFJJ ijxzxz , where 








 
 2

2

2

)~(

~

11 1~
x

z
xh


, 

x
xh ~
~

12
1



, 

x
xh ~
~

13
2



, 

)~(~
6524~

~

22
1

3 xfzh
x

x

























 )~(

)~(

~
102

2

72
231 xf

x
zh 




,  

2832
~zh   and zero otherwise. Hence, the 

eigenvalues of 
2xzF are given by:  
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2

)~(41~

1
~

10)~(
~

~~2

)~(

~
2

)~(

~

2

~

3,1

2
2

72

2

2

2
2

2

2
2

2








 






 








 





xfx
xx

zx

x

z

x

zx













and 

)~(~
~

~~
6524

1

3
2 xfz

x

x





 


  

where )~(xf  is obtained from Eq. (6) by 

substituting xx ~  and  

            xxdx
d xfxf ~)()~(                                 (34) 

Consequently, 
2xzF  is locally asymptotically 

stable in the 
3
R  if the following conditions are 

satisfied: 

              2
22 )~(~ xz                                      (35a)                                                                                                                                           

2
21072 )~)(~( xxf                      (35b)                                                   

and 

)~(~
~

~

6524
1

3 xfz
x

x








              (35c)                                                  

Obviously, conditions (35a) and (35b) guarantee 

the local stability of 
2xzF in the 2. RInt  of the 

2xz plane. While, 
2xzF  is unstable point in the 

3
R  if we reversed any one of the above 

conditions. 

Finally, the Jacobian matrix of the system (5) at 

the positive equilibrium point ),,( 2121
zzxF zxz

  

in the RInt 3.   can be written as: 

  3,2,1,;)(
332121




jiaFJJ ijzxzzxz       (36)                                       

where 2
2

2
1

3
*

11 BB

Bx
a  , 0

1

*

12 
B
xa , 0

2

*

13 
B
xa , 

2
1

4
*

1

21 B

Bz
a  , 022 a , 01423 


za  , 

2
2

5
*

2

31
B

Bz
a  , 

02832 


za  ; 033 a  with 

011  xB  , 022  xB  , 

2
1

*
2

2
2

*
1

2
2

2
13 BzBzBBB  , 

)( *2
16314 xfBB    and 

)( *2
210725 xfBB   . 

Accordingly the characteristic equation of 
21zxzJ  

can be written as: 

032
2

1
3  AAA                         (37)                                                      

here 

23123121132311323

3113322321122

111

)( aaaaaaaaA

aaaaaaA

aA







 

and 

)(

)(

2132311113

2331211112321

aaaaa

aaaaaAAA




 

So, by substituting the value of ,ija and then 

simplifying the resulting terms we obtain: 

2
2

2
1

3
*

1 BB

Bx
A                                         (38a) 

 5144283843 2
2

2
1

*
2

*
1

*

BBBBBA
BB

zzx
    

                                                       … (38b) 






 






 

4
*

1853

5
*

2443

4
2

*

2
2

1

*
2

*

4
1

*

2
21

*
1

*

BzBB

BzBB

B

x

BB

zx

B

x

BB

zx





 

                                                   …    (38c) 

Therefore, in the following theorem, the local 

stability conditions for the positive equilibrium 

point 
21zxzF  in the RInt 3.   are established. 

Theorem 2. Assume that 
21zxzF  exists in the 

RInt 3.   and the following conditions are satisfied; 

  
2

2
2

1
2

12
2

21 BBBzBz 
                      (39a) 

                                                  

2
210

72
2

16

31 )( *

BB
xf








                          (39b)          

            

 51442348 )( BBBBB                    (39c)                                               

and 










3

*

4
24

*
18

4
1

*
24

43
*

,.max5
Bx

BBz

Bz

BBx
B




            (39d)  

Then it is locally asymptotically stable. 

 

Proof. According to the Routh-Hawirtiz criterion 

the characteristic equation (37) has roots with 

negative real parts if and only if 01 A , 03 A  

and 0 . Note that, it is easy to verify that, 

condition (39a) guarantees that 03 B  and hence 

01 A ; while conditions (39b) ensure that 04 B  

and 05 B , hence 3A  will be positive provided 

that conditions (39a)-(39c) hold. Further, the 

conditions (39a)-(39b) with condition (39d) 

guarantee that 0 . Hence, all the roots 

(eigenvalues) of the 
21zxzJ  have negative real parts. 
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Therefore 
21zxzF  is locally asymptotically stable in 

the RInt 3.   and hence the proof is complete. ■     

   

        Now, before go further to study the global 

dynamical behavior of system (5) in the RInt 3.  , 

we will discuss the dynamical behavior of system 

(5) in the interior of the boundary planes as shown 

in the following theorems. 

Theorem 3. System (5) has no periodic dynamics 

in the 2. RInt  of 1xz and 2xz planes provided 

that  
2

11 )( xz                                           (40)                                                                        

2
22 )( xz                                          (41)                                                                       

respectively. 

Proof. The proof follows directly by using 

Bendixson-Dulic criterion with Dulic functions 

11 xz  and 21 xz  respectively.                               ■           

    

      Keeping the above in view, Since all the 

solutions of the system (5) are bounded and 
1xzF  

and 
2xzF  (for case 2) are the unique positive 

equilibrium points in 2. RInt of the 1xz  and 2xz  

planes respectively, hence by using the Poincare-

Bendixson theorem 
1xzF  and 

2xzF  are globally 

asymptotically stable in the 2. RInt  of 1xz plane 

and 2xz  plane respectively.  

 

4. Global stability of the system. 
      In this section the global stability of the 

equilibrium points xF ,
1xzF ,

2xzF  and 
21zxzF  in 3

R  

are  investigated as shown in the following 

theorems. 

Theorem 4. Assume that the equilibrium point 

xF  is locally asymptotically stable in the 3
R , and 

let the following conditions: 

13

5 1




                (42a)                                                                      

27

9 1




                                              (42b)                                                    

hold, then xF  is globally asymptotically stable in 

the 3
R . 

Proof. Consider the following positive definite 

function: 

  23121211 ln1),,( zczcxxczzxU   

Clearly ,: 3
1 RRU   and is a 1C  positive definite 

function, where )3,2,1(, ici  are nonnegative 

constants to be determined. Now, since the 

derivative of 1U  along the trajectory of system (5) 

can be written as: 

   

 

  2183422
2

1
93

1
1

1
52

2

2
731

1

1
321

2
1

1 1

zzccz
x

c
c

z
x

c
c

x

xz
cc

x

xz
ccxc

dt

dU

















































 So, by choosing the nonnegative constants as 

11 c , 
3

2

1


c  and 

7
3

1


c  gives:  

        

 

21
7

8

3

4
2

27

9

1
13

521

1

1
1

zzz

zx
dt

dU





























































 

Therefore, 01 
dt

dU
 under conditions (42a) and 

(42b), and hence 1U  is strictly Lyapunov function. 

Therefore, xF  is globally asymptotically stable in 

the 3
R .                                                                  ■                   

 

     Now, since system (5) in case 1, may have 

either two equilibrium points or no equilibrium 

points in the 3. RInt  of the 1xz  and 2xz  planes 

respectively. Therefore, in the following two 

theorems we will study the global dynamics of 

system (5) in these planes for case 2 only.  

Theorem 5. Assume that the second zooplankton 

free equilibrium point 
1xzF  is locally 

asymptotically stable in 3
R . Then the basin of 

attraction of 
1xzF is given by: 

          0,ˆ,ˆ:),,()( 211
3

211
  zzzxxRzzxFB xz  

provided that: 

)ˆ(ˆ 111 xz                                      (43a)                                                        

              )ˆ()ˆ)(1( 1116111113 xax   (43b)      
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Proof. Follows directly by using the candidate 

Lyapunov function 

           

23
1

1
1112

1212

ˆ
lnˆˆ

ˆ
lnˆˆ),,(

zc
z

z
zzzc

x

x
xxxczzxU























 ■    

Theorem 6. Assume that the first zooplankton 

free equilibrium point 
2xzF  is locally 

asymptotically stable in 3
R . Then the basin of 

attraction of 
2xzF is given by: 

 221
3

21
~,0,~:),,()(

2
zzzxxRzzxFB xz  

provided that: 

)~(~
222 xz                                     (44a) 

                                       

           )~()~)(1( 21110111117 xax   (44b)                          

Proof. Follows directly by using the candidate 

Lyapunov function 

      























2

2
2223

121213

~ln~~

~ln~~),,(

z

z
zzzc

zc
x

x
xxxczzxU

       ■ 

Theorem 7. Assume that the coexistence 

equilibrium point 
21zxzF is locally asymptotically 

stable in 3. RInt . Then the basin of attraction of 

21zxzF is given by: 

   221121 ,,:),,()(
21

zzzzxxzzxEB zxz  

provided that: 

          
))((

)()(

2121

211122









xx

zxzx




                        

                                                                   … (45a)                                                                                                                                              

           )( 11163
 x                               (45b)                                                       

           )( 211107
 x                             (45c)                                                                                                                                                

Proof. Follows directly by using the candidate 

Lyapunov function 

            





















































2

2
2223

1

1
1112

1214

ln

ln

ln),,(

z

z
zzzc

z

z
zzzc

x

x
xxxczzxU

■ 

 

5. Persistence Analysis.  
      In this section, the persistence of system (5) is 

studied. It is well known that the system is said to 

be persistence if and only if each species persists. 

Mathematically this is meaning that the solution 

of system (5) do not have omega limit set in the 

boundaries of 3
R  Gard and Hallam [10]. 

Therefore, in the following theorem, the necessary 

and sufficient conditions for the uniform 

persistence of the system (5) are derived. 

Theorem 8. Assume that there are no periodic 

dynamics in the boundary planes 1xz  and 2xz  

respectively. Further, if in addition to conditions 

(31c), (31d) the following conditions are hold.                                                                               

)ˆ(ˆ
ˆ

ˆ
10918

2

7 xfz
x

x








                (46)                                                 

and 

)~(~
~

~

6524
1

3 xfz
x

x








                (47)                                                  

Then, system (5) is uniformly persistence. 

Proof: Consider the function 

321
2121 ),,(

ppp
zzxzzx  , where 3,2,1; ipi  is an 

undetermined positive constants. Obviously 

),,( 21 zzx  is a 1C  positive function defined in 

3
R ,  and 0),,( 21 zzx  if 0x  or 01 z  or 

02 z . Consequently we obtain 

      332211),,(

),,(
21

21

21),,( gpgpgpzzx
zzx

zzx







 

Here 3,2,1; igi  are given in system (5). Therefore 



















































)(7

)(

1),,(

10918
2

3

6524
1

3
2

2

2

1

1
121

xfz
x

x
p

xfz
x

x
p

x

z

x

z
xpzzx













 

Now, since it is assumed that there are no periodic 

attractors in the boundary planes, then the only 

possible omega limit sets of the system (5) are the 

equilibrium points 
21

,,0 xzxzx FandFFF . Thus 

according to the Gard technique [10] the proof is 

follows and the system is uniformly persists if we 

can proof that 0(.)   at each of these points. 

Since  

      392510)( pppF                             (48a)                              
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3109
2

7

265
1

3

)1(
1

)1(
1

)(

pf

pfFx















































            (48b) 

      310918
2

)ˆ(ˆ
ˆ

ˆ
7)(

1
pxfz

x

x
Fxz 
















 




                                             

                                                                 …  (48c)                        

      26524
1

3 )~(~
~

~
)(

2
pxfz

x

x
Fxz 













 




 

                                                                 …  (48d)                         

where )1(f , )ˆ(xf  and )~(xf   are obtained from 

Eq. (6) by substituting 1x , xx ˆ  and xx ~  

respectively. Obviously, 0)( 0  F  for suitable 

choose of 01 p  sufficiently large than 

3,20  iforpi . 0)(  xF  for any positive 

constants 3,2; ipi  provided that conditions (31c) 

and (31d) hold. However,  )(
1xzF  and )(

2xzF  

are positive provided that the conditions (46) and 

(47) are satisfied respectively. Then strictly 

positive solution of system (5) do not have omega 

limit set and hence, system (5) is uniformly 

persistence.                                                            ■                                                                           

 

6. The local Bifurcation:- 
      In this section an investigation for the 

dynamical behavior of system (5) under the effect 

of varying one parameter at each time is carried 

out. The occurrence of local bifurcation in the 

neighborhood of the equilibrium points of the (5) 

are studied in the following theorems. 

 

Theorem 9. Assume that condition (31b) holds 

and the parameter 3  passes through the value 

)1))(1(( 1653   f


 where )1(f  is obtained 

from Eq. (6) by substituting 1x , then system (5) 

near the equilibrium xF  has: 

1. No saddle-node bifurcation. 

2. A transcritical bifurcation but no pitch-

fork bifurcation can occur provided that 

the following condition holds: 

)1(61

))1((

1

651 f
f 









                            (49) 

where                           

  1)()1(  xdx
d xff                                       

3. A pitch-fork bifurcation otherwise. 

Proof. According to the Jacobian matrix of system 

(5) at xF  that is given by xJ , it is easy to verify 

that as 33 


 , the ),( 3


xx FJ  has the following 

eigenvalues: 

0,1 21  


 and )1(10913
2

7 f








 

Let Tv ),,( 321 


  be the eigenvector of 

),( 3


xx FJ  corresponding to the eigenvalue 

02 


. Then it is easy to check that 

T

a

a
v








0,, 2
11

212 
 





, where 2


 represents any 

nonzero real value. Also, let Thhhw ),,( 321


  

represents the eigenvector of ),( 3


x
T

x FJ  that 

corresponding to the eigenvalue 02 


. 

Straightforward calculation shows that 
Thw )0,,0( 2


 , where 2h


 is any nonzero real 

number. 

Now, since T

x

xzG XG `
3 ]0,,0[),(

1

1

33 
 


 , where 

TzzxX ),,( 21  and TGGGG ),,( 321  with 

3,2,1; iGi  represent the right hand side of system 

(5). Then we get T
xFG )0,0,0(),( 33




and the 

following is obtained: 

         0)0,0,0)(0,,0()],([ 233
 T

x
T hFGw


 .  

Thus the system (5) at xF  does not experience any 

saddle-node bifurcation in view of Sotomayor 

theorem [11]. Also, since  

0

)0,,0)(0,,0(]),([

1

123

1

22

1

2

3
















 





h

T
x

T hvFDGw
 

here 
33

33 ,33 ),(),(
  





xFXXx XGFDG . 

Moreover, we have  

  2
2

2
1

61

))1((

3
2

1

1
)1(2

)],)(,([

1

651 hf

vvFGDw

f

x
T






































 

where 
33,33

2 ),(),(


 





xFXxx XDJFGD . Clearly, 

0)],)(,([ 3
2 vvFGDw x

T 
  provided that condition 

(49) holds, and then by Sotomayor theorem, the 

system (5) possesses a transcritical bifurcation but 

not pitch-fork bifurcation near xF  where 33 


 . 

However, violate condition (49) gives that 

0)],)(,([ 3
2 vvFGDw x

T 
 , and hence further 

computation shows 
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 0
1

1
)1(

3)],,)(,([

2
3

2

2

1
6

)1(

))1((2

3
3

2
1

651



















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



hf

vvvFGDw
f

x
T















 

where:  












2

)1(

2

10

)1(
3

11

111 casefor
a

casefor

f



  

Therefore system (5) possesses a pitch-fork 

bifurcation near xF  where 33 


 .■                                          

 

Theorem 10. Assume that conditions (37a)-(37b) 

hold and the parameter 7  passes through the 

value   )ˆ(ˆ
ˆ

ˆ
ˆ

10918
2

7 xfz
x

x



 


 , then 

system (5) near the equilibrium 
1xzF  has: 

1. No saddle-node bifurcation. 

2. A transcritical bifurcation but no pitch-

fork bifurcation can occur  

      provided that one of the following 

condition holds:      

  

0

)ˆ()ˆ(ˆ

2

3
44

3

18

2
21010918ˆ 2

23

2
1422














































xfxfzR

x
                                                                               

                                                            …. (50) 

3. A pitch-fork bifurcation provided that 

           0R                       (51a)

                        

 
0)ˆ(

2

10ˆ

)ˆ(ˆ2

1
3

2
14

2
2

109182 














 









 xfR

x

xfz                                                                   

                                                                                                           

                                                     … (51b)   

here: x̂11  , x̂22  , 
2
16313 )ˆ(  xf  ,  1

2
14 ẑ                                                        

     where )ˆ(xf  is obtained from Eq. (6) by 

substituting xx ˆ , )ˆ(xf   is given in Eq. (32) and  

             












2

)ˆ(

2

10

)ˆ(
3

11

111 casefor
x

a

casefor

xf



  

Proof. Follows directly by applying Sotomayor 

theorem as shown in proof of theorem (11).         ■ 

Theorem 11. Assume that conditions (35a) and 

(35b) hold and the parameter 3  passes through 

the value  )~(~
~

~
~

6524
1

3 xfz
x

x



 


 , then 

system (5) near the equilibrium 
2xzF  has: 

1. No saddle-node bifurcation. 

2. A transcritical bifurcation but no                                                           

pitch-fork bifurcation can occur  

provided that one of the following condition 

holds:       

         

0

)~()~(~

1

3

2
13

2
2811

84

3

24

2
166524~
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
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 
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
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






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
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












 xfxfzL
x   

                                                                     … (52) 

        3. A pitch-fork bifurcation provided that 

            0L                       (53a)

                         

 
0)~(

2

6~

)~(~2

1
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2
28

2
1

65241 



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








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








 xfL

x

xfz                                                       

                                                        ….  (53b) 

 here x~11  , x~22  , 

2
210723 )~(  xf  , 2

2
24

~z                              

where )~(xf  is obtained from Eq. (6) by 

substituting xx ~ , )~(xf   is given in Eq. (34) and 

         









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2

)~(

2

10

)~(
3

11

111 casefor
x

a

casefor

xf



   

Proof. Follows directly by applying Sotomayor 

theorem as shown in proof of theorem (11).         ■  

 

7. Hopf bifurcation. 
 Finally, in order to investigate the Hopf 

bifurcation of the model system (5), we will 

follow the Liu approach [12] as shown in the 

following theorem.  

Theorem 12. Assume that the coexistence 

equilibrium point of system (5) exists and let in 

addition to conditions (39a)-(39c), the following 

conditions hold: 

 
4

4
21

*
1

2
3

*

432
*

5
4

1
*

2

43
*

4
BBBzBx

BBBx

BBz

BBx


                (54)

               

Then a simple Hopf bifurcation of the model 

system (5) occurs at  

4
241

53

2
3
142

2

88
BBz

BBx

BBBz

D









  

where 4
1524432 BBzBBxD

    and 

5,4,3,2,1; iBi  are given in Eq. (36). 
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Proof. According to the Liu approach a simple 

Hopf bifurcation occurs if and only if 

00)(,0)(,0)( 31 








d
dandAA , 

where   is a critical value of the key parameter 

and  andiforAi 3,1  are given in equations 

(38a), (38b) and (38c). Note that it is clear that 

02 D  under the condition (54) and hence *
8  is 

positive under the conditions (39a)-(39b). Now, 

by substituting the value of *
8  in these equations 

we obtain:  

2
2

2
1

3
*

)( 81
BB

Bx
A 


 , which is positive due to 

condition (39a). 
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Clearly, 0)( 83 


A   under the conditions (39a)-

(39c) with (54). Moreover, rewrite equation (38c) 

gives that: 
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Hence it easy to verify that 0)( 8 


 . Finally, 

since 

0
2

2
1

4
*

2
*

1
*

88
8







BB

Bzzx

d

d
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Thus, a simple Hopf bifurcation occurs in system 

(5) at 
 88  .                                                      ■  

                       

8. Numerical analysis. 
        In this section the global dynamics of system 

(5), is studied numerically. In both the cases 1 and 

2, system (5) is solved numerically for different 

sets of parameters and different sets of initial 

conditions, and then the attracting sets and their 

time series are drown. 

For the following set of parameters 

 

0.1=1 , 0.1= 2 , 0.75=3 , 0.1=4 , 0.60=5 , 

0.01=6 , 75.07  , 1.08  , 60.09  , 

01.010   0.25=11 , 0.1=11 , 1=a1                                             

                                                                 …… (55) 

     The attracting sets along with their time series 

of system (5) for case 1 and case 2 are drown in 

Figure. (1) and Figure. (2) respectively, starting 

from different sets of initial conditions.  
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Figure.1-The phase plot of system (5) in case 1. 

(a) The solution of system (5) 

approaches asymptotically to stable 

positive point starting from different 

initial points. (b) The trajectories of x  

as a function of time. (c) The 

trajectories of 1z  as a function of time. 

(d) The trajectories of 2z  as a function 

of time. 

 

0

0.5

1

0

0.5

1
0

0.5

1

Phytoplankton

(a)

First zooplankton

S
ec

on
d 

zo
op

la
nk

to
n

 initial point 
(0.85,0.9,0.9) 
 initial point 
(0.75,0.8,0.8) 

 initial point 
(0.65,0.7,0.7) 

  Stable point
(0.49,0.15,0.15) 

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1
(b)

Time

P
h
y
to

p
la

n
k
to

n

 

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1
(c)

Time

F
irs

t 
zo

op
la

nk
to

n

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1
(d)

Time

S
e
c
o
n
d
 z

o
o
p
la

n
k
to

n

 
Figure 2-The phase plot of system (5) in case 2. 

(a) The solution of system (5) approaches 

asymptotically to stable positive point 

starting from different initial points. (b) 

The trajectories of x  as a function of 

time. (c) The trajectories of 1z  as a 

function of time. (d) The trajectories of 2z  

as a function of time. 
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     Note that from now onward, time series 

figures, we will use solid line type for x , dash 

line type for 1z  and dot line type for 2z . 

However for the above set of data with 

58.095  , the system (5) approaches 

asymptotically to stable limit cycle in both the 

cases as shown in the following two figures 

respectively. 
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Figure 3-The phase plot of system (5) in case 1 

for the data given by Eq. (55) with 

58.095  . (a) The solution of system 

(5) approaches asymptotically to limit 

cycle. (b) The trajectory of x as a function 

of time. (c) The trajectory of 1z  as a 

function of time. (d) The trajectory of 2z  

as a function of time. 
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Figure 4-The phase plot of system (5) in case 2 

for the data given by Eq. (55) with 

58.095  . (a) The solution of 

system (5) approaches asymptotically to 

limit cycle. (b) The trajectory of x as a 

function of time. (c) The trajectory of 

1z  as a function of time. (d) The 

trajectory of 2z  as a function of time 

 According to the above figures, it is observed 

that, although two competing species can not 

survive for all the time simultaneously, the 

existence of phytoplankton makes the survival of 

both the competing zooplankton species possible.  

Now, further analysis for the role of varying the 

natural death rates of both zooplanktons, 

represented by 95  and , on the dynamics of 

system (5) is performed, and the following results 

are obtained:  

For case 1: system (5) has a periodic dynamic in 

the 3. RInt  for the data given by Eq. (55) with 

59.095   see for example Figure. (3), while 

for 67.06.0 95    the system (5) has a 

globally asymptotically stable positive point in the 
3. RInt  see for example Figure. (1). It approaches 

asymptotically to the equilibrium point )0,0,1(xF  

for the data given by Eq. (55) with 68.095   

as shown in Figure. (5). Finally, for all the values 

of  95     with rest of data as given in Eq. (55), 

system (5) loses its persistence and the solution 

approaches asymptotically to either periodic 

attractor in the 2. RInt  of 1xz plane or stable point 

in the 2. RInt  of 1xz plane or to the equilibrium 

point )0,0,1(xF  see for explanation Figure. (6a)-

(6c), however similar observations have been 

obtained and the solution of system (5) 

approaches to one of these three types of attractors 

in the 2. RInt  of 2xz plane for the all values of 

95     with the rest of data as given in Eq. (55). 

For case 2: it is observed that, the system (5) has 

a periodic dynamic in the 3. RInt  when 

58.095   with the rest of data as in Eq. (55) 

see for example Fig. (4), while the system (5) has 

a globally asymptotically stable positive point in 

the 3. RInt  for 67.059.0 95    with the rest of 

data as in Eq. (55) see for example Fig. (2), and 

finally the system approaches asymptotically to 

equilibrium point )0,0,1(xF  for 68.095   

with the rest of data as in Eq. (55). Again as in 

case 1, it is observed that for all the values of 

95     with rest of data as given in Eq. (55) 

system (5) approaches asymptotically to the 
2. RInt  of 1xz plane, while it approaches to the 
2. RInt  of 2xz plane for all values of 95     

with rest of data as given in Eq. (55). 
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Figure 5-The trajectories of system (5) in case 1, 

for the data given in Eq. (55) with 

0.6895  ,approaches asymptotically to 

Stable point )0,0,1(xF . 
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Figure 6-The trajectories of system (5) in case 1, 

for the data given in Eq. (55), approaches 

asymptotically to: (a) Periodic dynamics in 

1xz plane for 55.05   and 0.649  ; (b) Stable 

point )0,28.0,59.0(  in 1xz plane for 64.05   and 

0.669  ; (c) Stable point )0,0,1(xF  for 7.05   

and 0.759  . 

 
     According to the above, the effect of the other 
parameters on the dynamics of system (5) is also 
studied in case of varying different couples of 
parameters simultaneously and the obtained 
results are summarized in the following tables. 

  

Table 1 - Numerical behavior and persistence of system (5) in case 1, as varying in some parameters 

keeping the rest of parameters fixed as in Eq. (55). 

Parameters varied in 

system (3.5) 
Numerical behavior of system (5) Persistence of system (5) 

09.021   

23.01.0 21    

24.021   

Approaches to periodic dynamic in 3. RInt  

Approaches to stable point in 3. RInt  

Approaches to stable point )0,0,1(xF . 

Persists 

 

Persists 

Not persists 

66.073   

75.067.0 73    

76.073   

Approaches to stable point xF . 

Approaches to stable point in 3. RInt  

Approaches to periodic dynamic in 3. RInt  

Not persists 

Persists 

 

Persists 

07.084   

81.708.0 84    

82.784   

Approaches to periodic dynamic in 3. RInt  

Approaches to stable point in
3. RInt  

Approaches to stable point xF . 

Persists 

Persists 

 

Not persists 

 

 

32.0106   

33.0106   

Approaches to stable point in 3. RInt  

Approaches to stable point xF . 

Persists 

Not persists 

 

 

07.811   

08.811   

Approaches to stable point in 
3. RInt  

Approaches to stable point xF . 

Persists 

Not Persists 
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Table 2- Numerical behavior and persistence of system (5) in case 2, as varying in some parameters 

keeping the rest of parameters fixed as in Eq. (55). 

Parameters varied in 

system (5) 
Numerical behavior of system (5) Persistence of system (5) 

09.021   

22.01.0 21    

23.021   

Approaches to periodic dynamic in 3. RInt  

Approaches to stable point in 3. RInt  

Approaches to stable point xF . 

Persists 

Persists 

 

Not persists 

 

 

67.073   

76.068.0 73    

77.073   

Approaches to stable point xF . 

Approaches to stable point in 3. RInt  

Approaches to Periodic dynamic   in 3. RInt  

Not persists 

Persists 

 

Persists 

 

 

03.084   

15.704.0 84    

16.784   

Approaches to periodic dynamic in 3. RInt  

Approaches to stable point in 3. RInt  

Approaches to stable point xF . 

Persists 

Persists 

 

Not persists 

 

08.0106   

09.0106   

Approaches to stable point in 3. RInt  

Approaches to stable point xF . 

Persists 

Not persists 

 

for all values of 11  Approaches to stable in 3. RInt  Persists 

77.81 a  

78.81 a  

Approaches to stable point in 3. RInt  

Approaches to stable point xF  

Persists 

Not persists 

 

 

Table 3- Numerical behavior and persistence of system (5) in case 1, as varying in some parameters 

keeping the rest of parameters fixed as in Eq. (55) with 58.095  . 

Parameters varied in 

system (5) 
Numerical behavior of system (5) Persistence of system (5) 

11.021   

28.012.0 21    

29.021   

Approaches to periodic dynamic in 3. RInt  

Approaches to stable point in 3. RInt  

Approaches to stable point xF . 

Persists 

 

Persists 

Not persists 

64.073   

73.065.0 73    

74.073   

Approaches to stable point xF . 

Approaches to stable point in 
3. RInt  

Approaches to Periodic dynamic   in 3. RInt  

Not persists 

Persists 

 

Persists 

18.084   

81.919.0 84    

82.984   

Approaches to periodic dynamic in 3. RInt  

Approaches to stable point in 3. RInt  

Approaches to stable point xF .  

Persists 

 

Persists 

Not persists 

14.0106   

39.015.0 106  w  

4.0106   

Approaches to periodic dynamic in 
3. RInt  

Approaches to stable point in 3. RInt  

Approaches to stable point xF .  

Persists 

Persists 

 

Not persists 

72.311   

08.1073.3 11   

09.1011   

Approaches to periodic dynamic in 
3. RInt  

Approaches to stable point in 
3. RInt  

Approaches to stable point xF  

Persists 

Persists 

Not persists 
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Table 4- Numerical behavior and persistence of system (5) in case 2, as varying in some parameters 

keeping the rest of parameters fixed as in Eq. (55) with 58.095  . 

Parameters varied in 

system (5) 
Numerical behavior of system (5) Persistence of system (5) 

10.021   

26.011.0 21    

27.021   

Approaches to periodic dynamic in 3. RInt  

Approaches to stable point in 3. RInt  

Approaches to stable point xF   

Persists 

Persists 

 

Not persists 

 

65.073   

73.066.0 73    

74.073   

Approaches to stable point xF  

Approaches to stable point in 3. RInt  

Approaches to Periodic dynamic   in 3. RInt  

Not persists 

 

Persists 

Persists 

 

14.084   

15.915.0 84    

16.984   

Approaches to periodic dynamic in 3. RInt  

Approaches to stable point in 3. RInt  

Approaches to stable point xF   

Persists 

 

Persists 

Not persists 

02.0106   

10.003.0 106    

11.0106   

Approaches to periodic dynamic in 3. RInt  

Approaches to stable point in 3. RInt  

Approaches to stable point xF  

Persists 

Persists 

 

Not persists 

for all values of 11  Approaches to periodic dynamic in 3. RInt  Persists 

21 a  

98.1001.2 1  a  

99.101 a  

Approaches to periodic dynamic in 3. RInt  

Approaches to stable point in 3. RInt  

Approaches to stable point xF  

Persists 

Persists 

Not persists 

 

 

9. Conclusions and Discussions. 
        In this paper, a mathematical model 

consisting of single harmful phytoplankton 

interacting with two competing zooplankton 

species has been proposed and analyzed. It is 

assumed that the phytoplankton producing a 

toxin substance as a defensive strategy against 

the predation by zooplankton. The effect of 

toxin producing plankton on the dynamical 

behavior of phytoplankton-zooplankton 

system is considered. Two different scenarios 

of the distribution of the toxin substance, 

through Holling type-I (called case 1) and 

Holling type-II (called case 2), are studied. In 

both the cases, the dynamical behavior of 

system (5) has been investigated locally as 

well as globally. The conditions for the 

system (5) to be persists have been derived.  

The occurrence of local bifurcation as well as 

Hopf bifurcation in system (5) is investigated. 

Finally the effects of varying the parameters 

on the dynamics of system (5) are studied 

numerically and the trajectories of the system 

are presented in the form of figures and 

tables. According to those figures and tables 

the following conclusions are obtained. 

1. Increasing the natural death rates for 

both the zooplankton ( 5  and 9 ) 

simultaneously keeping the rest of 

parameters as given in Eq. (55) for 

both the studied cases have stabilizing 

effect on the dynamics of system (5) 

and then with further increasing of the 

parameters values the system faces 

extinction in both the zooplankton 

and the solution approaches to 

)0,0,1(xF . 

2. Increasing the half saturation 

constants ( 21  and ) simultaneously 

or inter-specific competition 

parameters between both the 

zooplankton species ( 84  and ) 

simultaneously, keeping the other 

parameters fixed as given in Eq. (55) 

with 6.095   (the system (5) has 
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a stable positive point) and 

58.095   (the system (5) has 

periodic dynamics), for both the cases 

described above have the same effect 

as that of the natural death rates given 

in (1). 

3. Increasing the liberation rates 

constants of toxin substance from 

phytoplankton ( 106  and ) 

simultaneously with the other 

parameters as given in Eq. (55) have 

extinction effect on the system. 

However increasing the values of 

these parameters simultaneously with 

the other parameters as given in Eq. 

(55) and 58.095   have 

stabilizing effect at first and then lead 

to extinction in both the zooplankton 

species. 

4. Increasing the conversion rates 

parameters ( 73  and  ) 

simultaneously keeping the rest of 

parameters as given in Eq. (55), when 

the system (5) has asymptotically 

stable point and periodic dynamics, 

for both the studied cases causes 

coexistence of all the species at the 

stable positive point. However 

increasing these parameters further 

causes losing to the stability and the 

system (5) goes to periodic dynamics. 

5. Increasing the maximum ingestion 

rates of two zooplankton to the toxin 

produced by phytoplankton ( 11 ), in 

case 1, keeping other parameters 

fixed as in Eq. (55) has extinction 

effect and the system approaches to 

)0,0,1(xF , however for the data in 

Eq. (55) with 58.095   it has 

stabilizing effect at first and then 

extinction of both the zooplankton 

species and the system approaches to  

)0,0,1(xF .  

6. Varying the half saturation constant 

of zooplankton to the toxin substance 

using Holling type-II for the 

distribution of the toxin substance 

does not has any effect on the 

dynamics of system (5). 

7. Finally, increasing the maximum 

zooplankton ingestion rate to the 

toxin substance produced by 

phytoplankton ( 1a ), in case 2, 

keeping other parameters fixed as in 

Eq. (55) has extinction effect and the 

system approaches to )0,0,1(xF , 

however for the data in Eq. (55) with 

58.095   it has stabilizing effect 

at first and then extinction of both the 

zooplankton species and the system 

approaches to  )0,0,1(xF .  
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