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Abstract

In this paper a mathematical model that describes the flow of infectious disease
in a population is proposed and studied. It is assumed that the disease divided the
population into four classes: susceptible individuals (S), vaccinated individuals (V),
infected individuals (1) and recover individuals (R). The impact of immigrants,
vaccine and external sources of disease, on the dynamics of SVIRS epidemic model
is studied. The existence, uniqueness and boundedness of the solution of the model
are discussed. The local and global stability of the model is studied. The occurrence
of local bifurcation as well as Hopf bifurcation in the model is investigated. Finally
the global dynamics of the proposed model is studied numerically.
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Local and Hopf bifurcation.
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1.Introduction

Mathematical models have become
important tools to study and analyze the
spread and control of infectious disease.
Most the proposed mathematical models
those describe the transmission of infectious
disease have been derived from the classical
susceptible — infective — recover (SIR)
model, which is suggested originally by
Kermack and Mckenderick [1]. In that model
the susceptible individuals become infective
by contact with infected individuals and then
the infected individuals may recover and
transfer to removal individuals at a specific
rate. Numbers of mathematical models were
developed to study and analyze the spread of
infectious diseases in order to prevent or
minimize the transmission of them through
guarantine and other measures see for
example [2-5] and the references there in.

On the other hand, since the resistance
against an infectious disease represents
protection that reduces an individual’s risk of
contracting the disease, therefore many
epidemiological models involving
vaccination (V) have been proposed and
studied, see for example [6-8] and the
reference there in.

Keeping the above in view, there are
many infectious diseases spread within the
population by direct contact between
susceptible and infective individuals, they
may spread through external sources in the
environment such as (air, water, insects,
etc...). Therefore, recently Das et al. [9]
have been proposed and studied a
mathematical model consisting of eco-
epidemiological model involving external
sources of disease. In this paper we proposed
and studied a mathematical model consisting
of SVIRS epidemic model involving
immigrant individuals, some of them may
arrive infected with the disease, and vaccine
in which it is assumed that the disease
transmitted by contact as well as external
sources in the environment.

2. The mathematical model:

Consider a simple epidemiological model
in which the total population (say N(t)) at
time t is divided in to three sub classes the
susceptible  individuals  S(t), infected
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individuals I(t) and recover individuals R(t).
Such model can be represented as follows:

ds

— = A-PBIS— 15

pm BIS — p

di

E:ﬁIS—(,qua)l (1)
dr

— —a — R

a & A

Here A >0 is the recruitment rate of the
population, gz >0 is the natural death rate of

the population, £ >0 is the infected rate

(incidence rate) of the susceptible individuals
due to direct contact with the infected
individuals and « > 0 is the natural recovery
rate of the infected individuals.

Now, since there are many infectious
diseases (Alanfelonzha, bird’s Anfelonzha
and typhoid etc.) spread in the environment
by different factors including insects, contact
or other vectors, therefore, we assumed that
the disease in the above model will
transmitted  between  the  population
individuals by contact as well as external
sources of disease in the environment with an
external incidence rate S, >0. Also it is

assumed that the lifetime of removal
individual’s immunity may not continue
forever and then the removal individuals
return to be susceptible class with a constant
rate ¥ >0 (also known as losing removal
individual’s immunity rate). Further, there is
a constant flow, say A>0, of a new
members arriving into the population with
the fraction p of A arriving infected (
0< p<1). Then the above system (1) can

be rewritten in the form:

L A=A (B + S-S +R
3—1=DA+(ﬁo+ﬂl)S—(#+a)l ®)
e al—(r+ R

Keeping the above in view, in order to study
the effect of vaccination on the system (2) let
V(t) represented the vaccinated individuals in
the population at time t , and then the
following assumptions are made:
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«» The susceptible class is vaccinated at
per capitarate w >0.

« The infection can invade the
susceptible class or vaccinated class
depending on vaccine efficiency.

+« The vaccine reduces the possibility
of infection by a factor of o, which
is known as intensity vaccine
immunity rate, where 0< o <1.

« The wvaccine may not give a
permanent immunity for susceptible
individuals, so the wvaccine may
disappear and then the individuals
loss the immunity with rate
0<H<1.

Accordingly, the flow of disease in system
(2) along with the above assumptions can be
representing in the following block diagram:

(8-81)s
PA

A (I-DA

Vs
B-BI)v
Susceptible Vaccinated 'M‘l Infectives 'L.
oV
lm l [0 u

YR
Figure 1- Block diagram of system (2).

Removal

qu

Therefore system (2) can be modified to:

‘(’j—f=A+(1— D)A— (o + B1)S — (u+y)S + &V + R

W S~ o(fo+ AN —(u+ OV

©)
L= PA+ (o + S + (o + AN —(u+ )l
Z—T=al—(y+7)R
Clearly for o=0 the vaccine is

completely affective. While, o =1 stand for
the situation where the vaccine is totally
ineffective. On the other hand, 6=0
denotes to the case when immunity is life-
long while &=1 corresponds to the case
where there is absolutely no vaccine induced
immunity. Therefore at any point of time t
the total number of population becomes
N=S{t)+V({t)+I1(t)+R().

Obviously, due to the biological meaning of
the variables S(t), V(t), I(t), and R(t), system
(3) has the domain

mi:{(s,v,l,R)em“,s >0,V >0, zo,Rzo}

which is positively invariant for system (3).
Clearly, the interaction functions on the right
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hand side of system (3) are continuously
differentiable. In fact they are Liptschizan

function on 9%1. Therefore the solution of

system (3) exists and is unique. Further, all
solutions of the system (3) with non-negative
initial conditions are uniformly bounded as
shown in the following theorem.

Theorem (1): All the solutions of system

(3), which are initiate in iRﬂ, are uniformly

bounded.

Proof: Let ( S(t), V(t), I(t), R() ) be any
solution of the system (3) with non-negative
initial condition ( S(0), V(0), 1(0), R(0) ),
since N(t)= S(t)+V(t)+I(t)+R(t), then :

dN_ds dv di R
dt  dt dt dt dt
Which gives
dN
—+uN =A+A
a

Now, by solving the above linear differential
equation, we get that the total population is
asymptotically constant by:

N(t) = A+A

Hence all the solutions of system (3) that

initiate in iRi , are confined in the region:

A+A
U

g:{(s,v,l,R)emi:Ns +g;gzo}

which is complete the proof. [

3. Existence of Equilibrium points of
system(3)

In this section, the existence of all
possible equilibrium points of system (3) is
discussed. Clearly, if 1 =0, then the system
(3) has an equilibrium point called a disease
free equilibrium point and denoted by
E, =(S,,V,,0,0) where:

s _ (A+A)(u+0)

u(u+0+y)
y(A+A)

T p(u+0+y)

(4)

However, if 1 =0 then the system (3) has an
endemic equilibrium point denoted by
El = (51’V1’ |1 ) Rl) where Sl’vl’ |1 and Rl
represent the positive solution of the
following set of equations:



Naji and Muhseen

A+Q-p)A—(Bo +B)S—(u+y)S+N +R=0
YS—o(fo+ BN —(u+0O)N =0

PA+ (Lo +B1)S+0(Bo + BIN —(u+a)l =0

al —(u+y)R=0

Q)

Straightforward computation to solve the
above system of equations gives that:

S = [o(B. + Bl1)+(u+0)] L
1= Z
L

V=" (6)
alq

Ry =
H+Y

here :

L= {(u+ A+ @ P AL+ ey
Z= (Bo+ B+ w){(u+o(Bs + Aly) + ]+ 0(u+7)}
+y(u+o(Bs + Bl1) + ul

While 1, is a positive root for the following
third order equation:

D113+ Dyl? +D3ly +Dg =0 7)
here:
Dl=6yﬂ2(y+a+y)<0

D2 = (A+ Ao (u+7)]
+ par20f. + oy + u+6]
—(u+a)u+ )0+ BRops +ou+ oy + p)

D3 =(u+ O pAB(u+y) + afsy] + oayfs (Bo +v)

+(u+ ) PlopAu + (A + A)20B, + oy + 1+ 0)]

~[PAB(u+0) + (1 + )(SBo + 1) Bo + 1+ ) + OB + )1}
D4 = PA(So + )t + )0 + 1+ 0]

+ PAY (u + y)(oBo + 1) + Bo(p+7)
[A +(1- p)A][o—/i'0 +oy + u+ 9]> 0

Clearly, equation (7) has a unique positive
root given by 1, and then E; exists uniquely

in Int. R% if and only if at least one of the
following two conditions hold.

(A +MIoB? (u+ )]
+ Baf(20p. + oy + p+ Ol < (u+a)pu+7y) (83)
[0+ BB, +ou + oy + u)]
PlopAu + (A + A28, + oy + p + O)] > pAB(u + 0)
+(u+a)l(oBs + 1)Bo +u+y)  (8D)
+0(f. + )]

4. Local stability analysis of system (3)

In this section, the local stability analysis
of the equilibrium points E, and E; of the

system (3) is studied as shown in the
following theorems.
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Theorem (2): The disease free equilibrium
point E,=(S,,V,,0,0) of system (3) is
locally asymptotically stable if the following
sufficient condition is satisfied:

BS, +oV,) < u+a 9
Proof:  The Jacobian matrix of system (3)
at (E,) can be written as:

—(u+w) 0 —FSo 7
JE)= v —(u+0) -V 0
° 0 0 B(So + Vo) - (u+a) 0
0 0 a —(u+y)
:[aij]4><4
Clearly, J(E,) has the following
eigenvalues:
sy = C VL oy 02 —autury +0)
Al = B(So +0Vo) = (u+a)
AR =—(u+7)

here A4 ,k=S,V,I,R
eigenvalue in k-direction.
Obviously, A5 and A, have negative real
parts, while Az <0. Therefore E, is locally
asymptotically stable if and only if the
eigenvalue 4, <0, which is satisfied

provided that condition (9) holds and hence
the proof is complete. [

represents  the

Theorem (3): Assume that, the endemic
equilibrium point E]_:(Sl,Vl,|1,R1) of

system (3) exists in the Int.iRi. Then it is
locally asymptotically stable if the following

condition is satisfied:

1> 23(S1 + V) (10)

Proof: The Jacobian matrix of system (3) at

the endemic equilibrium point E; that
denoted by J(E;) can be written:
(B + AD - (u+v) 0 -1 v
v —(of, + o1+ 1+ 0) -op\ 0
fot 1 ot ) BEL+M)-(uta) O
0 0 a —(u+7)
:[bij]tlxé‘.

Now, according to Gersgorin theorem if the
following condition holds:

4
i > o
=
i#]j
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Then all eigenvalues of J(E;) exists in the
region:

4
p=U U*ECI‘U*—bii‘<Z‘bij‘
i=L
1#])
Therefore, according to the given condition
(10) all the eigenvalues of J(E;) exists in
the left half plane and hence, E; is locally

asymptotically stable. [

5. Global stability analysis of system (3)

In this section, the global dynamics of
system (3) is studied with the help of
Lyapunov function as shown in the
following theorems.

Theorem (4): Assume that, the disease free
equilibrium point E, of system (3) is locally
asymptotically stable. Then the basin of
attraction of E_, say B(Eo)ciRA', satisfy
the following conditions:

0 2 + 0+
(§F) =5 a9
sV s v
PR o+ )G, +oV)<[75 ]R+yl (11b)

Proof. Consider the following positive

definite function:
S ]+[V -V, —VolnV ]+ I+R
SO Vo

Clearly, leRf—>R is a continuously
differentiable function such that
Wi (S,.V,,0,00=0,and Wy (S,V,I,R)>0
v(S,V,1,R) = (S,,V,,0,0). Further we

wl_[S—so—soln

have:
dwg (S-S, ds+ V-V, d_v ﬂ drR
dt S dt \Y dt dt dt

By simplifying this equation we get:
LU WA FPY: +[§+ﬂ](5—so)(v -V.)

dt S
(”+‘9) Se v (B + BI)(S. +0V.)

v -Ve)2 + P22

[5pe]

Therefore, according to condition (11a) it is
obtain that:
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dw, _

2
B Vel 7 Y iy |V
dt = |: S (S So) (V Vo):|

+(ﬁ +61)(S, +0V.)— {[75—+ij+#|}

ObV|oust 1 <0 for every initial points

satisfying condltlon (11b) and then W, is a
Lyapunov function provided that conditions
(11a)-(11b) hold. Thus E. is globally
asymptotically stable in the interior of
B(E,), which means that B(E,) is the basin

of attraction and that complete the proof. =

Theorem (5):Let the endemic equilibrium
point E; of system (3) is locally
asymptotically stable. Then it is globally

asymptotically stable provided that:
ﬂ(Sl-i-OVl) <ut+ao

[B(s1+ 1)+ o2 < LB + B+ p+y]
[/1+a—ﬂ(81+o\/l)]

(12a)

(12b)

[o+vP <316+ A+ usv a0+ (. + )] (120)
2

y2<§[ﬂo+ﬂl+,u+y/][y+y] (12d)

[o(6. + 1 ~VDIP <2 [+ 0+ (4. + 1) (12¢)

[u+a - B(Sy+ovy)]
2

a? < Slura—psy+ovplu+y]
Proof: Consider the following positive
definite function:

2 2 2 2
(S-51) +(V -V ) +(| —1y) +(R—R1)

2 2 2 2
Clearly, W,: Rf—>R is a continuously
differentiable function such that
W5 (S, V4, 11,R)) =0, and W»(S,V,1,R) >0

v(S,V,I,R)#(51,V1,11,Ry) . Further, we
have:

(12h)

W2=

d‘g’z S-s02 s - S+ 0-m S R-ROT

By 5|mpI|fy|ng this equation we get:
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aw, 1

dt 3
1
+013(8 = 8)(1 = 1) - S a(S ~5y)?

1
01(S-Sp)° —§Q33(| -15)?

1

=5 822V V) + 01a(S - SV ~Va)
1 1

-3 %S -81)” -2 0sa(R-Ry)?

1

+014(S -S)(R-Ry) —5%2(\/ -Vy)?
1 2

_5‘3133(' =17+ a3V =Vy)(I - 1p)

- s(1 - 11)? -2 dsa(R-Ry)?

+034(1 = 11)(R-Ry)
With
Or1=pFo + Pl +u+y 3 =51+ fo + fl1,
Uzz=u+a-pB(S1+oV1),q2=0+y,
Up2=p+0+0(B+Pl),Qaa=n+y,
U4 =7,423=0(B + Bl1—- A1),
U4 =
Therefore, according to the conditions (12a)-
(12h) we obtain that:

2
dﬂ 9L g _gy_ (933 _
it < l: 3 (5-S1) 3 (1 |1):|

2
M1 g gy 922
—{ 5 OS5~ Vl)}
2
Z| L gy 944 p_
{ 3 C-S)— (R Rl):|
2
922 oy [983 ¢
{ > V=V === |1)}

2
Z| 1983y y= (Y44 R
{ 3 (I-17) > (R Rl):|

dW,

dt <O, W2
Lyapunov function provided that the given
conditions hold. Therefore, E; is globally
asymptotically stable. [

Clearly, and then is a

6. The local bifurcation analysis of system (3)

In this section, the occurrence of local
bifurcations  (such  as  saddle-node,
transcritical and pitchfork) near the
equilibrium points of system (3) is studied in
the following theorem.

Theorem (6): System (3) has a transcritical
bifurcation near the disease free equilibrium
point E,, but neither saddle-node
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bifurcation, nor pitchfork bifurcation can
accrue at the parameter

Ho =PB(Ss +0oV,) —a (13)
Proof: It is easy to verify that the Jacobian
matrix of system (3) at (E,,x) can be
written as:

J,, =Df(E, u)

= (1o +y)

174
0

0

0 - S
—(u.+0) —pV,

0 0

0 a

e
0

0
=t +7)

Clearly, the third eigenvalue 4, in I-
direction is zero (A4 =0), further the
eigenvector  (say K:(kl,kz,k3,k4)T)
corresponding to 4, =0 satisfy the
following:

Jﬂo K =AK then Jﬂo K =0 From which

we get that:
—~(#o +y)ky + 6k — fS.k3 + 7Kg =0 (14a)
YKy — (o + ko — BV k3=0 (14b)
okg —(uo +y)kg =0 (14c)
So by solving the above system of equations
we get:
ki =—xKk3; ko =—yk3; kg = k3
Where:

{BO(u, + V. + (o + O)BS. (. +7) +ay)}
2,
WwlaBo(u, + V. + (1o + 0)(BS (ue + 1) + ay )|+ 20BuV, |
241, (145 +0)

X=

y:

a
7=
(4o +7)

Here ks be any non zero real number. Thus

—Xk3
- yk
K | VK3
ks
Zk3
Similarly the eigenvector

W =(w , W, ,ws,w,) that corresponding

to 4; =0 of J; can be written:

(¢}
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[—(ue +y) v 0 0 w
T oW 0 —(u+6) 0 0 12| _,
Ho -5, -gfV, 0 a w3
4 0 0 —(to+7)] [ Wa
This gives:
)
0
W =
W3
| 0

Here ws is any non-zero real number. Now

rewrite system (3) in a vector form as:
dX
—=f(X
m (X)

Where X =(S,V,1, R)T and
f=(f,f,, f3, fo)7 with f,i=1234 are

given in system (3), and then determine

dr = f, we get that:

de ¥
-S -S,
-V -V,
f = O then f (B tto) = 0
-R 0
Therefore:

W', (E. ) =0
Consequently, according to Sotomayor
Theorem [10] the system (3) has no saddle-
node bifurcation near E, at g, .
Now in order to investigate the accruing of
other types of bifurcation, the derivative of
f with respect to vector X, say

u
Df ,(E., 1), is computed
-1 0 0 O
0 -1 0 O
Df , (Eo, tt0) =
uBote)=l g o 1 o
0 0 0 -1
So

W - [Df (B, 2.) - K= —kawg =0
Again, according to Sotomayor theorem, if
in addition to the above, the following holds
wT ~lD2f(Eo,,uO)-(K,K)J¢O
here Df (E., ) is the Jacobian matrix at
E. and u,, then the system (3) possesses a

transcritical bifurcation but no pitch-fork
bifurcation can occur. Now since we have
that:

Iragi Journal of Science. Vol 54.No 3.2013.Pp 764-774

2xﬁk§
2ypK2
= B(x+0y)(L+Kk3)ks
0

D21 (€. 1) (K K-

Therefore:

wT -[sz(Eo,ﬂo)'(KK)}:*ﬂ(x+dy)(l+k3)k3w3 0

Then the system (3) has a transcritical
bifurcation at E, when the parameter u

passes through the bifurcation value z,. =

7. Numerical analysis of system (3):

In this section, the global dynamics of
system (3) is studied numerically. The
objectives of this study are confirming our
obtained analytical results and understand the
effects of immigration, existence of vaccine
and existence of the external sources for
disease on the dynamic of SVIRS epidemic
model. Consequently, first system (3) is
solved numerically for different sets of initial
conditions and for different sets of
parameters. It is observed that, for the
following set of hypothetical parameters that
satisfies stability condition (9) of disease free
equilibrium point, system (3) has a globally
asymptotically stable disease free
equilibrium point as shown in following
figure.

A =400, A=100, p =0, 3 = 0.0005,
B, =0, u=01p =05 0=005  (15)
=001, 2=08,7=05

1500 4000

M 3000

& 1000} £ ooy /

0 2000 4000 6000 0 2000 4000 6000
Time Time

(d)

Infected

ol e [ E—
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Time Time

Figure 2- Time series of the solution of
system (3). (a) trajectories of S, bg
trajectories of V, (gl) trajectories of 1 and (d
trajectorles of R. The solid line refers to the
trajectory started at (1500,1200,1500, 1500)
while dotted line refers to trajectory started
at (500,400,500,900).
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Clearly, Figure (2) show that the solution of
system (3) approaches asymptotically to the
disease free equilibrium point
E, =(115338460,0) starting from two
different initial points and this is confirming
our obtained analytical results. However, for
the data given by equation (15) with
L =0.001. The trajectories of system (3)
starting from different sets of initial data are
drawn in Figures(3a)-(3d).

(a)
3000

0 2000 4000

Time

()

6000 0 2000 4000

Time

6000

(d)

6000 o

Infected

o 2000 4000
Time

2000 4000

Time

6000

Figure 3-Time series of the solution of
system (3). (a) trajectories of S , (b)
trajectories of V, (c) trajectories of I and (d)
trajectories of R. the solid line refers to the
trajectory started at (1500,1200,1000,900)
while the dotted line refers to the trajectory
started at (700,800,500,100).

Obviously, Figure (3) Show clearly the
convergence of system (3) to the endemic
equilibrium point E; =(871,2800,568 758)
asymptotically from two different initial
points. This is indicates to occurrence of a
transcritical bifurcation near the disease free
equilibrium point at a specific value of
S <(0.00050.001), so E, became unstable
and the solution of system (3) approaches to
E;. In addition to that, the above two
figures refer to that increasing the contact
rate between S and | causes destabilizing
to disease free equilibrium point and the
system approaches instead to the endemic
point.

Now the effect of increasing the incidence
rate of disease resulting from external
sources in the environment on the dynamics
of system (3) is studied by solving the
system numerically for the parameters values
Po=0.1,0.5,1 respectively, keeping other
parameters fixed as given in equation (15),

771

Iragi Journal of Science. Vol 54.No 3.2013.Pp 764-774

and then the trajectories of system (3) are
drawn in Figures (4a)-(4c) respectively.

Note that, in the next figures (4-9), we will
use the following representations: Solid line
for describing trajectory of S; dashed line
for describing trajectory of V; dash dot line
for describing trajectory of I; dotted line for
describing trajectory of R and starting at
(2000, 1500, 1000, 1250).

Figure 4- Time series of the solution of
system (3). (a) for py=0.1, (b) for

fio =05, (c)for fy=1.

According to Figure (4), as the incidence rate
of disease resulting from external sources
increases (through increasing /), the

disease free equilibrium point of system (3)
becomes unstable point and the trajectory of
system (3) approaches asymptotically to the
endemic equilibrium point. In fact as f,

increases it is observed that the number of
susceptible and vaccinated individuals
decrease and the number of recover and
infected individuals increases.

Similar results are obtained, as those shown
in case of increasing f,, in case of

increasing the density of arriving infected
immigrant individuals, that is means
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increasing p and keeping other parameters
fixed as given in (15).

The effect of varying the vaccine coverage
rate on the dynamical behavior of system (3)
is studied too. The system is solved
numerically  for different values of
w =0.01,0.2,0.9, keeping other parameters
fixed as given in equation (15) and then the
trajectories of system (3) are drawn in
Figures (5a)-(5c) respectively.

Figure 5- Time series of the solution of
system (3). (a) for w =0.01, (b) for w =0.2,
(c) for w=0.9.

From the above figure it is clear that as the
rate of vaccine coverage increases the
endemic equilibrium point of system (3)
becomes unstable point and the trajectory of
the system approaches asymptotically to the
disease free equilibrium point attendant that
increasing in vaccined individuals and
decreasing in susceptible individuals.

The effect of varying the lifetime of vaccine
immunity, on the dynamical behavior of
system (3) is investigated. The system (3) is
solved numerically for the values 6=0.1,
0.2, 1, keeping the rest of parameters fixed as
given in equation (15), and then the
trajectories of system (3) are drawn in
Figures (6a)-(6¢). In this case, it is observed
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that increasing 6 (that is decreasing the
lifetime of vaccine immunity) destabilizes
the disease free equilibrium point and then
the solution of system (3) approaches to
endemic equilibrium point attended that
increasing in the susceptible, infected and
recover individuals while the number of
vaccinated individuals decreases.

Figure 6-Time series of the solution of
system (3). (a) for 6=0.1 , (b) for #=0.2,
(c) for 6=1.

In the following, system (3) is solved
numerically for the following values of
recovery rates «=0.1, 0.3,0.6, keeping
other parameters fixed as given in equation
(15), and then the trajectories of system (3)
are drawn in Figures (8a)-(8c) respectively.
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Figure 7- Time series of the solution of
system (3). (a) for « =0.1, (b) for & =0.3,
(c) for «=0.6.

It is obvious from Figure (7) that, as the
recovery rate increases from 0.1 to 0.6 the
endemic equilibrium point of system (3)
becomes unstable point and the trajectory of
system (3) approaches asymptotically to the
disease free equilibrium point. But the
number of susceptible and vaccinated
individuals increases while the number of the
infected and recover individuals decreases.
Now the effect of changing the lifetime of
removal individual's immunity on the
dynamical behavior of system (3) is also
studied by changing the value of parameter
y at different values while the other

parameters sill fixed. It is observed that
changing the parameter y has no effect on

the dynamical behavior of system (3).

Finally, the effect of the natural death rate on
the dynamics of system (3) is investigated
numerically. It is observed that, decreases
the parameter u less than 0.1 keeping other

parameters fixed as in (15) causes
transferring in the stability of system (3)
from disease free equilibrium point to
endemic equilibrium point as shown in
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Figure (8). However, , increases the
parameter 4 more than 0.1 keeping other

parameters fixed as in (15) with 4 =0.001

causes transferring in the stability of system
(3) from endemic equilibrium point to
disease free equilibrium point as shown in
Figure (9). Therefore, the death rate due to
the disease plays a vital role as bifurcation
parameter of system (3).

rrrrr

Figure 8- Time series of the solution of
system (3) for the data given by (15) with
varying u. (a) for x=0.05, (b) for
1 =0.01.

rrrrr

Time

Figure 9- Time series of the solution of
system (3) for the data given by (15) with
£ =0.001 and varying . (a) for x=0.15,
(b) for £=0.2.

8. Conclusion and discussion:

In this paper, mathematical model has
been proposed and analyzed. The objective is
to study the effect of immigrants, existence
and nonexistence vaccine, and then existence
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of external sources of the disease in the
environment on the dynamical behavior of
SVIRS epidemic model. The existence and
the stability analysis of all possible
equilibrium points are studied analytically as
well as numerically. It is observed that
system (3) has transcritical bifurcation near
the disease free equilibrium point, but neither
saddle node nor pitchfork bifurcation can
accrue. Further the system (3) do not has
Hopf bifurcation near the endemic
equilibrium point. Finally according to the
numerically simulation the following results
are obtained:

1. The system (3) do not has periodic
dynamic, instead it they approach either
to the disease free equilibrium point or
else to endemic equilibrium point.

2. As the number of the infected immigrant
individuals and the incidence rate of
disease (external incidence rate or
contact incidence rate) increase, the
asymptotic behavior of the system (3)
transfer from approaching to disease free
equilibrium point to the endemic
equilibrium point.

3. As the lifetime of vaccine immunity
decreases (the losing vaccine immunity
rate (6) increases), then the disease free

equilibrium point of system (3) becomes
unstable and the solution will approaches
to the endemic equilibrium point.
Further, similar result is obtained in
system (3) when the natural death rate
decreases.

4. As the recovery rates in the system (3)
increase then the solution in the system
will be transfer from stability at endemic
equilibrium point to stability at disease
free equilibrium point. Further, similar
result is obtained in case of system (3)
when the vaccine coverage rate
increases.

5. Finally, changing the lifetime of removal
individual's immunity in the system (3)
do not has vital effect on the dynamical
behavior of this.
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