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Abstract  
     In this paper a mathematical model that describes the flow of infectious disease 

in a population is proposed and studied. It is assumed that the disease divided the 

population into four classes: susceptible individuals (S), vaccinated individuals (V), 

infected individuals (I) and recover individuals (R). The impact of immigrants, 

vaccine and external sources of disease, on the dynamics of SVIRS epidemic model 

is studied. The existence, uniqueness and boundedness of the solution of the model 

are discussed. The local and global stability of the model is studied. The occurrence 

of local bifurcation as well as Hopf bifurcation in the model is investigated. Finally 

the global dynamics of the proposed model is studied numerically.  
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 ،نموذج رياضي يصف انتشار الامراض المعدية في المجتمع السكاني عرض ودراسةفي هذا البحث تم      
افترضنا ان الامراض تقسم المجتمع السكاني الى اربعة اقسام هم افراد معرضين للاصابة و ملقحين و مصابين 

التطعيم درسنا تأثير المهاجرين و . احتمال اصابتهم بالمرض مره ثانية بالمرض و معافين من المرض مع 
تمت مناقشة وجود و . SVIRS  ائيض على ديناميكية النموذج الوبة بالامراوالمصادر الخارجية للاصاب
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1.Introduction 

     Mathematical models have become 

important tools to study and analyze the 

spread and control of infectious disease. 

Most the proposed mathematical models 

those describe the transmission of infectious 

disease have been derived from the classical 

susceptible – infective – recover (SIR) 

model, which is suggested originally by 

Kermack and Mckenderick [1]. In that model 

the susceptible individuals become infective 

by contact with infected individuals and then 

the infected individuals may recover and 

transfer to removal individuals at a specific 

rate. Numbers of mathematical models were 

developed to study and analyze the spread of 

infectious diseases in order to prevent or 

minimize the transmission of them through 

quarantine and other measures see for 

example [2-5] and the references there in. 

 On the other hand, since the resistance 

against an infectious disease represents 

protection that reduces an individual’s risk of 

contracting the disease, therefore many 

epidemiological models involving 

vaccination (V) have been proposed and 

studied, see for example [6-8] and the 

reference there in. 

 Keeping the above in view, there are 

many infectious diseases spread within the 

population by direct contact between 

susceptible and infective individuals, they 

may spread through external sources in the 

environment such as (air, water, insects, 

etc…). Therefore, recently Das et al. [9] 

have been proposed and studied a 

mathematical model consisting of eco-

epidemiological model involving external 

sources of disease. In this paper we proposed 

and studied a mathematical model consisting 

of SVIRS epidemic model involving 

immigrant individuals, some of them may 

arrive infected with the disease, and vaccine 

in which it is assumed that the disease 

transmitted by contact as well as external 

sources in the environment. 

                 

2. The mathematical model: 

 

     Consider a simple epidemiological model 

in which the total population (say N(t)) at 

time  t  is divided in to three sub classes the 

susceptible individuals S(t), infected 

individuals I(t) and recover individuals R(t). 

Such model can be represented as follows:   

 

RI
dt

dR

IIS
dt

dI

SIS
dt

dS













)(                                   (1) 

Here 0  is the recruitment rate of the 

population, 0  is the natural death rate of 

the population, 0  is the infected rate 

(incidence rate) of the susceptible individuals 

due to direct contact with the infected 

individuals and 0  is the natural recovery 

rate of the infected individuals.  

Now, since there are many infectious 

diseases (Alanfelonzha, bird᾽s Anfelonzha 

and typhoid etc.) spread in the environment 

by different factors including insects, contact 

or other vectors, therefore, we assumed that 

the disease in the above model will 

transmitted between the population 

individuals by contact as well as external 

sources of disease in the environment with an 

external incidence rate 0 . Also it is 

assumed that the lifetime of removal 

individual’s immunity may not continue 

forever and then the removal individuals 

return to be susceptible class with a constant 

rate 0  (also known as losing removal 

individual’s immunity rate). Further, there is 

a constant flow, say 0A , of a new 

members arriving into the population with 

the fraction  p  of  A  arriving infected ( 

10  p  ). Then the above system (1) can 

be rewritten in the form: 

 

RI
dt

dR

ISIpA
dt

dI

RSSIAp
dt

dS

)(

)()(

)()1(

















  (2) 

Keeping the above in view, in order to study 

the effect of vaccination on the system (2) let 

V(t) represented the vaccinated individuals in 

the population at time  t , and then the 

following assumptions are made: 
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 The susceptible class is vaccinated at 

per capita rate 0 . 

 The infection can invade the 

susceptible class or vaccinated class 

depending on vaccine efficiency. 

 The vaccine reduces the possibility 

of infection by a factor of  , which 

is known as intensity vaccine 

immunity rate, where 10  . 

 The vaccine may not give a 

permanent immunity for susceptible 

individuals, so the vaccine may 

disappear and then the individuals 

loss the immunity with rate 

10  .  

Accordingly, the flow of disease in system 

(2) along with the above assumptions can be 

representing in the following block diagram: 

 

 
Figure 1- Block diagram of system (2). 

 

Therefore system (2) can be modified to: 

 

RI
dt

dR

IVISIpA
dt

dI

VVIS
dt

dV

RVSSIAp
dt

dS

)(

)()()(

)()(

)()()1(























(3) 

              

Clearly for 0   the vaccine is 

completely affective. While, 1   stand for 

the situation where the vaccine is totally 

ineffective. On the other hand, 0  

denotes to the case when immunity is life-

long while 1  corresponds to the case 

where there is absolutely no vaccine induced 

immunity. Therefore at any point of time t 

the total number of population becomes 

)()()()( tRtItVtSN  .                             

Obviously, due to the biological meaning of 

the variables S(t), V(t), I(t), and  R(t), system 

(3) has the domain 

 0,0,0,0,4),,,(4  RIVSRIVS  

which is positively invariant for system (3). 

Clearly, the interaction functions on the right 

hand side of system (3) are continuously 

differentiable. In fact they are Liptschizan 

function on 4
 . Therefore the solution of 

system (3) exists and is unique. Further, all 

solutions of the system (3) with non-negative 

initial conditions are uniformly bounded as 

shown in the following theorem. 

Theorem (1):  All the solutions of system 

(3), which are initiate in 4
 , are uniformly 

bounded. 

Proof:   Let ( S(t), V(t), I(t), R(t) ) be any 

solution of the system (3) with non-negative 

initial condition  ( S(0), V(0), I(0), R(0) ), 

since  N(t)= S(t)+V(t)+I(t)+R(t), then : 

dt

dR

dt

dI

dt

dV

dt

dS

dt

dN
                              

 Which gives  

 AN
dt

dN
   

Now, by solving the above linear differential 

equation, we get that the total population is 

asymptotically constant by: 

 


A
tN


)(  

Hence all the solutions of system (3) that 

initiate in 4
 , are confined in the region: 

 











  0;:),,,( 4 



A

NRIVS                                                        

which is complete the proof.                         ■ 

 

3. Existence of Equilibrium points of 

system(3) 

     

     In this section, the existence of all 

possible equilibrium points of system (3) is 

discussed. Clearly, if ,0I  then the system 

(3) has an equilibrium point called a disease 

free equilibrium point and denoted by  

)0,0,,(  VSE   where: 

 

 























)(

)(

)(

))((









A
V

A
S





                              (4) 

 

However, if 0I  then the system (3) has an 

endemic equilibrium point denoted by  

),,,( 11111 RIVSE   where 111 ,, IVS  and 1R  

represent the positive solution of the 

following set of equations: 
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0)(

0)()()(

0)()(

0)()()1(









RI

IVISIpA

VVIS

RVSSIAp















  

(5) 

 

Straightforward computation to solve the 

above system of equations gives that: 

 


































1
1

1

1
1

)]()([

I
R

Z

L
V

Z

LI
S 

               (6) 

here : 

L= 1])1()[( IAp    

Z=  
])()[(

)(])()[()(

1

11









I

II



  

While 1I  is a positive root for the following 

third order equation: 

 0413
2
12

3
11  DIDIDID                  (7) 

here: 

 

 


 

   0)1(

)())((

))((4

)]]()())[(()([

)2()([)(

)(])()[(3

)2())((

]2[

)](2)[(2

0)(2
1

























































Ap

pA

pAD

pA

ApA

pAD

AD

D

 

Clearly, equation (7) has a unique positive 

root given by 1I  and then 1E  exists uniquely 

in Int. 4
  if and only if at least one of the 

following two conditions hold. 

 

 )2(

))((]2[(

)](2)[(

















A

 (8a) 

)](

))([()(

)()]2)(([

















 pAApA

     (8b) 

 

4. Local stability analysis of system (3) 
     

    In this section, the local stability analysis 

of the equilibrium points E  and 1E  of the 

system (3) is studied as shown in the 

following theorems. 

 

Theorem (2): The disease free equilibrium 

point )0,0,,(  VSE   of system (3) is 

locally asymptotically stable if the following 

sufficient condition is satisfied: 

   )(  VS                                (9) 

Proof:    The Jacobian matrix of system (3) 

at )( E  can be written as: 

 

 
44

)(00

0)()(00

0)(

)(

)(


































ija

VS

V

S

EJ

















 

Clearly, )( EJ  has the following 

eigenvalues: 

 

)(

)()(

)(4)2(
2

1

2

)2( 2
,



















R

I

VS

VS   

here RIVSkk ,,,,   represents the 

eigenvalue in k-direction. 

Obviously, S  and V  have negative real 

parts, while 0R . Therefore E  is locally 

asymptotically stable if and only if the 

eigenvalue 0I , which is satisfied 

provided that condition (9) holds and hence 

the proof is complete.                                   ■ 

 

Theorem (3): Assume that, the endemic 

equilibrium point ),,,( 11111 RIVSE   of 

system (3) exists in the Int. 4
 . Then it is 

locally asymptotically stable if the following 

condition is satisfied: 

 

 )(2 11 VS                                     (10) 

 

Proof: The Jacobian matrix of system (3) at 

the endemic equilibrium point 1E  that 

denoted by )( 1EJ  can be written: 

 
44

)(00

0)()11()1(1

01)1(

1)()1(
































ijb

VSII

VI

SI















 

Now, according to Gersgorin theorem if the 

following condition holds: 

 





4

1
ji

i

ijii bb  
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Then all eigenvalues of  )( 1EJ  exists in the 

region: 

 

























 




4

1

:

ji
i

ijii bbUCU  

Therefore, according to the given condition 

(10) all the eigenvalues of )( 1EJ  exists in 

the left half plane and hence, 1E  is locally 

asymptotically stable.                                   ■ 

 

5. Global stability analysis of system (3) 

 

     In this section, the global dynamics of 

system (3) is studied with the help of  

Lyapunov function as shown in the 

following theorems. 

 

Theorem (4): Assume that, the disease free 

equilibrium point E  of system (3) is locally 

asymptotically stable. Then the basin of 

attraction of E , say  4)( EB , satisfy 

the following conditions: 

 






 







 











VSVS


4

2

            (11a) 

 IR
S

S
VSI

S

pAS



 








 


 ))(( (11b) 

Proof: Consider the following positive 

definite function: 

 

RI
V

V
VVV

S

S
SSSW 

































 lnln1   

Clearly, RRW 
4

1 :  is a continuously 

differentiable function such that 

,0)0,0,,(1  VSW and 0),,,(1 RIVSW   

)0,0,,(),,,(  VSRIVS  . Further we 

 have: 

 
dt

dR

dt

dI

dt

dV

V

VV

dt

dS

S

SS

dt

dW








 








 
 1  

By simplifying this equation we get: 
 

 






































IR
S

S

VSI
S

pAS
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V

VVSS
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SS
Sdt

dW


















))((2)(

))((2)(1

  

Therefore, according to condition (11a) it is 

obtain that: 

 









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






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













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
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
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


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2
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Obviously 01 
dt

dW
  for every initial points 

satisfying condition (11b) and then 1W  is a 

Lyapunov function provided that conditions 

(11a)-(11b) hold. Thus E  is globally 

asymptotically stable in the interior of  

),( EB  which means that  )( EB  is the basin 

of attraction and that complete the proof.     ■ 

  

Theorem (5):Let the endemic equilibrium 

point 1E  of system (3) is locally 

asymptotically stable. Then it is globally 

asymptotically stable provided that: 

 

   )( 11 VS                             (12a) 

   

 )11(

9

42)11(

VS

IIS







      (12b) 

    )(
3

22 II     (12c) 

    I
3

22                (12d) 

   
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)(
3

22))11((
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IVI


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

   (12e) 

    )(
3

2
11

2 VS          (12h) 

Proof: Consider the following positive 

definite function: 

 
       

2222

2
1

2
1

2
1

2
1

2

RRIIVVSS
W











  

Clearly, RRW 
4

2 :  is a continuously 

differentiable function such that 

0),,,( 11112 RIVSW , and 0),,,(2 RIVSW  

 ),,,(),,,( 1111 RIVSRIVS  . Further, we 

 have: 

 

dt

dR
RR

dt

dI
II

dt

dV
VV

dt

dS
SS

dt

dW
)1()1()1()1(2   

By simplifying this equation we get: 
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Therefore, according to the conditions (12a)-

(12h) we obtain that: 
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Clearly, 02 
dt

dW
, and then 2W  is a 

Lyapunov function provided that the given 

conditions hold. Therefore, 1E   is globally 

asymptotically stable.                                   ■ 

 

 

6. The local bifurcation analysis of system (3) 

 

     In this section, the occurrence of local 

bifurcations (such as saddle-node, 

transcritical and pitchfork) near the 

equilibrium points of system (3) is studied in 

the following theorem. 

 

Theorem (6): System (3) has a transcritical 

bifurcation near the disease free equilibrium 

point E , but neither saddle-node 

bifurcation, nor pitchfork bifurcation can 

accrue at the parameter 

  

   )(  VS                            (13) 

Proof: It is easy to verify that the Jacobian 

matrix of system (3) at ),(  E  can be 

written as: 
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Clearly, the third eigenvalue I  in I-

direction is zero )0( I , further the 

eigenvector (say TkkkkK ),,,( 4321 ) 

corresponding to  0I  satisfy the  

following: 

 

 KKJ  


  then  0KJ


From which 

we get that: 

 0)( 4321  kkSkk       (14a) 

 0)( 321  kVkk                (14b) 

0)( 43  kk                             (14c) 

So by solving the above system of equations 

we get: 

 343231 ;; zkkykkxkk   

Where: 

 
  

   

)(

)(2

2)()()(

2

)()()(


































z

VSV
y

SV
x

 

Here  3k   be any non zero real number. Thus 
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Similarly the eigenvector 

 TwwwwW 4321 ,,,  that corresponding 

to 0I  of  TJ


  can be written: 
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This gives: 
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Here 3w  is any non-zero real number. Now 

rewrite system (3) in a vector form as: 

 )(Xf
dt

dX
  

Where  TRIVSX ),,,(   and  

Tfffff ),,,( 4321  with  4,3,2,1, ifi  are 

given in system (3), and then determine 




f
d

df
   we get that: 
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Therefore: 

 0),(    EfWT  

Consequently, according to Sotomayor 

Theorem [10] the system (3) has no saddle-

node bifurcation near E  at   . 

Now in order to investigate the accruing of 

other types of bifurcation, the derivative of  

f  with respect to vector X, say  

),,(   EDf  is computed 
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So 

   0),( 33  wkKEDfWT
   

Again, according to Sotomayor theorem, if 

in addition to the above, the following holds 

   0),(),(2  KKEfDWT
   

here ),(  EDf  is the Jacobian matrix at 

E  and  , then the system (3) possesses a 

transcritical bifurcation but no pitch-fork 

bifurcation can occur. Now since we have 

that: 
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Therefore: 
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
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Then the system (3) has a transcritical 

bifurcation at E  when the parameter   

passes through the bifurcation value  .     ■ 

 

7.  Numerical analysis of system (3): 

 

      In this section, the global dynamics of 

system (3) is studied numerically. The 

objectives of this study are confirming our 

obtained analytical results and understand the 

effects of immigration, existence of vaccine 

and existence of the external sources for 

disease on the dynamic of SVIRS epidemic 

model. Consequently, first system (3) is 

solved numerically for different sets of initial 

conditions and for different sets of 

parameters. It is observed that, for the 

following set of hypothetical parameters that 

satisfies stability condition (9) of disease free 

equilibrium point, system (3) has a globally 

asymptotically stable disease free 

equilibrium point as shown in following 

figure. 

 

 

5.0,8.0,01.0

,05.0,5.0,1.0,0

,0005.0,0,100,400















pA

  (15)  

 
Figure 2- Time series of the solution of 
system (3). (a) trajectories of  S, (b) 
trajectories of V, (c) trajectories of  I  and (d) 
trajectories of  R. The solid line refers to the 
trajectory started at (1500,1200,1500,1500) 
while dotted line refers to trajectory started 
at (500,400,500,900). 
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  Clearly, Figure (2) show that the solution of 

system (3) approaches asymptotically to the 

disease free equilibrium point 

)0,0,3846,1153(E  starting from two 

different initial points and this is confirming 

our obtained analytical results. However, for 

the data given by equation (15) with 

001.0 . The trajectories of system (3) 

starting from different sets of initial data are 

drawn in Figures(3a)-(3d).   

 
Figure 3-Time series of the solution of 

system (3). (a) trajectories of S , (b) 

trajectories of  V, (c) trajectories of I and (d) 

trajectories of  R. the solid line refers to the 

trajectory started at (1500,1200,1000,900) 

while the dotted line refers to the trajectory 

started at (700,800,500,100). 

 

Obviously, Figure (3) Show clearly the 

convergence of system (3) to the endemic 

equilibrium point )758,568,2800,871(1 E  

asymptotically from two different initial 

points. This is indicates to occurrence of a 

transcritical bifurcation near the disease free 

equilibrium point at a specific value of 

)001.0,0005.0( , so E  became unstable 

and the solution of system (3) approaches to 

1E . In addition to that, the above two 

figures refer to that increasing the contact 

rate between S  and I  causes destabilizing 

to disease free equilibrium point and the 

system approaches instead to the endemic 

point.  

   Now the effect of increasing the incidence 

rate of disease resulting from external 

sources in the environment on the dynamics 

of system (3) is studied by solving the 

system numerically for the parameters values 

1,5.0,1.00   respectively, keeping other 

parameters fixed as given in equation (15), 

and then the trajectories of system (3) are 

drawn in Figures (4a)-(4c) respectively. 

 

Note that, in the next figures (4-9), we will 

use the following representations: Solid line 

for describing trajectory of  S; dashed line 

for describing trajectory of  V; dash dot line 

for describing trajectory of  I; dotted line for 

describing trajectory  of R and starting at 

(2000, 1500, 1000, 1250). 

 

 

 
 

Figure 4- Time series of the solution of 

system (3). (a) for 1.00  , (b) for 

5.00  , (c) for 10   . 

 

According to Figure (4), as the incidence rate 

of disease resulting from external sources 

increases (through increasing 0 ), the 

disease free equilibrium point of system (3) 

becomes unstable point and the trajectory of 

system (3) approaches asymptotically to the 

endemic equilibrium point. In fact as 0   

increases it is observed that the number of 

susceptible and vaccinated individuals 

decrease and the number of recover and 

infected individuals increases.  

Similar results are obtained, as those shown 

in case of increasing 0 , in case of 

increasing the density of arriving infected 

immigrant individuals, that is means 
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increasing  p and keeping other parameters 

fixed as given in (15).  

The effect of varying the vaccine coverage 

rate on the dynamical behavior of system (3) 

is studied too. The system is solved 

numerically for different values of 

9.0,2.0,01.0 , keeping other parameters 

fixed as given in equation (15) and then the 

trajectories of system (3) are drawn in 

Figures (5a)-(5c) respectively. 

 

 

 

 
Figure 5- Time series of the solution of 

system (3). (a) for 01.0 , (b) for 2.0 , 

(c) for 9.0 . 

  

  From the above figure it is clear that as the 

rate of vaccine coverage increases the 

endemic equilibrium point of system (3) 

becomes unstable point and the trajectory of 

the system approaches asymptotically to the 

disease free equilibrium point attendant that 

increasing in vaccined individuals and 

decreasing in susceptible individuals. 

The effect of varying the lifetime of vaccine 

immunity, on the dynamical behavior of 

system (3) is investigated. The system (3) is 

solved numerically for the values  1.0 , 

0.2, 1, keeping the rest of parameters fixed as 

given in equation (15), and then the 

trajectories of system (3) are drawn in 

Figures (6a)-(6c). In this case, it is observed 

that increasing   (that is decreasing the 

lifetime of vaccine immunity) destabilizes 

the disease free equilibrium point and then 

the solution of system (3) approaches to 

endemic equilibrium point attended that 

increasing in the susceptible, infected and 

recover individuals while the number of 

vaccinated individuals decreases.  

 

 

 
Figure 6-Time series of the solution of 

system (3). (a) for 1.0  , (b) for 2.0 , 

(c) for 1 . 

 

  In the following, system (3) is solved 

numerically for the following values of 

recovery rates 6.0,3.0,1.0 , keeping 

other parameters fixed as given in equation 

(15), and then the trajectories of system (3) 

are drawn in Figures (8a)-(8c) respectively. 
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Figure 7- Time series of the solution of  

system (3). (a) for 1.0 , (b) for 3.0 ,  

(c) for 6.0 .  

 

  It is obvious from Figure (7) that, as the 

recovery rate increases from 0.1 to 0.6 the 

endemic equilibrium point of system (3) 

becomes unstable point and the trajectory of 

system (3) approaches asymptotically to the 

disease free equilibrium point. But the 

number of susceptible and vaccinated 

individuals increases while the number of the 

infected and recover individuals decreases. 

Now the effect of changing the lifetime of 

removal individual's immunity on the 

dynamical behavior of system (3) is also 

studied by changing the value of parameter 

  at different values while the other 

parameters sill fixed. It is observed that 

changing the parameter   has no effect on 

the dynamical behavior of system (3).  

Finally, the effect of the natural death rate on 

the dynamics of system (3) is investigated 

numerically. It is observed that, decreases 

the parameter   less than 0.1 keeping other 

parameters fixed as in (15) causes 

transferring in the stability of system (3) 

from disease free equilibrium point to 

endemic equilibrium point as shown in 

Figure (8). However, , increases the 

parameter   more than 0.1 keeping other 

parameters fixed as in (15) with 001.0  

causes transferring in the stability of system 

(3) from endemic equilibrium point to 

disease free equilibrium point as shown in 

Figure (9). Therefore, the death rate due to 

the disease plays a vital role as bifurcation 

parameter of system (3).  

 
Figure 8- Time series of the solution of 

system (3) for the data given by (15) with 

varying  . (a) for 05.0 , (b) for 

01.0 . 

 
Figure 9- Time series of the solution of 

system (3) for the data given by (15) with 

001.0  and varying   . (a) for 15.0 , 

(b) for 2.0 . 

 

8. Conclusion and discussion: 

    In this paper, mathematical model has 

been proposed and analyzed. The objective is 

to study the effect of immigrants, existence 

and nonexistence vaccine, and then existence 
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of external sources of the disease in the 

environment on the dynamical behavior of 

SVIRS epidemic model. The existence and 

the stability analysis of all possible 

equilibrium points are studied analytically as 

well as numerically. It is observed that 

system (3) has transcritical bifurcation near 

the disease free equilibrium point, but neither 

saddle node nor pitchfork bifurcation can 

accrue. Further the system (3) do not has 

Hopf bifurcation near the endemic 

equilibrium point. Finally according to the 

numerically simulation the following results 

are obtained: 

 

1. The system (3) do not has periodic 

dynamic, instead it they approach either 

to the disease free equilibrium point or 

else to endemic equilibrium point. 

2. As the number of the infected immigrant 

individuals and the incidence rate of 

disease (external incidence rate or 

contact incidence rate) increase, the 

asymptotic behavior of the system (3) 

transfer from approaching to disease free 

equilibrium point to the endemic 

equilibrium point. 

3. As the lifetime of vaccine immunity 

decreases (the losing vaccine immunity 

rate )(  increases), then the disease free 

equilibrium point of system (3) becomes 

unstable and the solution will approaches 

to the endemic equilibrium point. 

Further, similar result is obtained in 

system (3) when the natural death rate 

decreases. 

4. As the recovery rates in the system (3) 

increase then the solution in the system 

will be transfer from stability at endemic 

equilibrium point to stability at disease 

free equilibrium point. Further, similar 

result is obtained in case of system (3) 

when the vaccine coverage rate 

increases.  

5. Finally, changing the lifetime of removal 

individual's immunity in the system (3) 

do not has vital effect on the dynamical 

behavior of this. 
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