
Ismail Iraqi Journal of Science, 2013, Vol 54, Supplement No.4, pp:1176-1182

*Email: reemaljanabi@yahoo.com

1176

A Secure Session Management Based on Threat Modeling

Reem Jafar Ismail*
Departement of Computer Science, University of Technology, Baghdad, Iraq.

Abstract

 A session is a period of time linked to a user, which is initiated when he/she

arrives at a web application and it ends when his/her browser is closed or after a

certain time of inactivity. Attackers can hijack a user's session by exploiting session

management vulnerabilities by means of session fixation and cross-site request

forgery attacks.

 Very often, session IDs are not only identification tokens, but also authenticators.

This means that upon login, users are authenticated based on their credentials (e.g.,

usernames/passwords or digital certificates) and issued session IDs that will

effectively serve as temporary static passwords for accessing their sessions. This

makes session IDs a very appealing target for attackers. In many cases, an attacker

who manages to obtain a valid ID of user’s session can use it to directly enter that

session – often without arising user’s suspicion. A secure session management must

be implemented in the development phase of web applications because it is the

responsibility of the web application, and not the underlying web server.

 Threat modeling is a systematic process that is used to identify threats and

vulnerabilities in software and has become popular technique to help system

designers think about the security threats that their system might face.

 In this paper we design the threat modeling for session’s ID threat by using

SeaMonster security modeling software, and then propose a secure session

management that avoids the vulnerabilities. The proposed secure session

management is designed to give trust authentication between the client and the

server to avoid session hijacing attack by using both: server session’s ID and MAC

address of the client.Visual Studio. Net 2008 is used in implementing the proposed

system.

Keywords: Session management, Hijacking session, Threat modeling, Attack tree,

SeaMonster Security Modeling Software.

 اتلسة بالاعتماد على نموذج التهديدنظام أمن لادارة الج

 ريم جعفر اسماعيل
 ، بغداد، العراقالجامعة التكنولوجية، قسم علوم الحاسوب

 :الخلاصة

رة من الوقت تبدأ مع دخول المستخدم عندما يتصفح المستخدم شبكة الانترنت فان هنالك جلسة تستمر لفت
ان هذه الجلسة ستكون معرضة الى الهجوم عن . الى الموقع وتنتهي هذه الجلسة عندما يغلق المستخدم الموقع

 .طريق السرقة او التزوير
تخدم لتحديدها وكذلك يستخدم للتخويل ايضا، وهذا يعني عند التحقق سن لكل جلسة رقم معين سياحيث

ان . تخدم عن طريق اسم المستخدم او كلمة السر فان الجلسة ستكون محددة لذلك المستخدم المخولمن المس

Ismail Iraqi Journal of Science, 2013, Vol 54, Supplement No.4, pp:1176-1182

1177

والدخول الى الجلسة بدون رقم الجلسة سيكون عرضة للهجوم عن طريق الحصول على هذا الرقم واستخدامه
 .ان يشك المستخدم بذلك

يذه في مرحلة تصميم تطبيق الانترنت وليس لذا يجب ان يكون هنالك اسلوب امن في ادارة الجلسة يتم تنف
ان نموذج التهديد سوف يحدد جميع التهديدات التي تتعرض لها البرامج مما .بالاعتماد على مزود الخدمة فقط

 .يساعد المصممين عند التصميم على بناء نظام امن خالي من التهديدات
ة ــم الجلســــلى رقــرة عــــــــاص بالتهديدات المؤثـــــــموذج التهديدات الخـــــصميم نـــم تــــحث تــذا البهـــــــــــي ــــف

ان نظام ادارة .لتصميم نماذج امنه، ثم اقتراح نظام امن لادارة الجلسة SeaMonster ح ـــــامـــــرنــــــــباستخدام ب
خدمة لتجنب الهجوم عن طريق استخدام الجلسة الامن تم تصميمه لاعطاء ثقة وتخويل بين المستخدم ومزود ال

 2008تم استخدام برنامج حيث عنوان جهاز مستخدم الانترنت عن طريق الاعتماد علىوذلك رقم الجلسة
Visual Studio.Net لتنفيذ النظام المقترح.

1. Intoduction:

 Security is an important property of any

software. Many applications are outsourced,

where the application development lacks strong

integration of software security. The growing

need to address software security measures

across development life cycle is important. So

Software Development Lifecycle requires

transformation at various phases to support

application security [1].

 The session management mechanism is a

fundamental security component in the majority

of web applications. It is what enables the

application to uniquely identify a given user

across a number of different requests and to

handle the data that it accumulates about the

state of that user's interaction with the

application. Where an application implements

login functionality, session management is of

particular importance, because it is what enables

the application to persist its assurance of any

given user's identity beyond the request in which

he supplies his credentials.

Because of the key role played by session

management mechanisms, they are a prime

target for malicious attacks against the

application. If attackers can break an

application's session management, they can

effectively bypass its authentication controls and

masquerade as other application users without

knowing their credentials. If an attacker

compromises an administrative user in this way,

the attacker can own the entire application [2].

Several models have been used for secure

session management; some of the related works

are listed below:

- In [3] the authors propose a secure cookie

mechanism that implements an intermediary

reverse Proxy patterns to ensure users' sessions

management and to provide the following

security services: source authentication, integrity

control and no-replay attacks.

- In [4] the authors propose “One-Time

Cookies” (OTC), an HTTP session

authentication protocol that is efficient, easy to

deploy and resistant to session hijacking. OTC’s

security relies on the use of disposable

credentials based on a modified hash chain

construction.

- In [5] the authors present SessionShield, a

lightweight client-side protection mechanism

against session hijacking that allows users to

protect themselves even if a vulnerable website's

operator neglects to mitigate existing Cross-site

Scripting (XSS) problems. SessionShield is

based on the observation that session identifier

values are not used by legitimate client- side

scripts and, thus, need not to be available to the

scripting languages running in the browser. This

system requires no training period and imposes

negligible overhead to the browser, therefore,

making it ideal for desktop and mobile systems.

2. Secure Session Management:

 In web applications, sessions are what allow

users to use the application while only

authenticating themselves once at the beginning

of the session. Once a user is authenticated, the

application issues a Session ID to ensure that all

actions during the session are being performed

by the user who originally supplied their

authentication information. Attackers often

manipulate the Session ID to steal a valid

session from an authenticated user. Defense

against such attacks include changing a user’s

Session ID by asking the user to re-authenticate

when the session has timed out or when the user

attempts to use a functionality that is designated

as sensitive. Examples of these attacks and the

design principles are listed in Table 1-, [6].

Ismail Iraqi Journal of Science, 2013, Vol 54, Supplement No.4, pp:1176-1182

1178

Table 1- Session management solutions

Session

Management Issue

How to Avoid It

Attacker guessing the

user’s Session ID

Session IDs should be created with the same standards as passwords. This

means that the Session ID should be of considerable length and complexity.

There should not be any noticeable pattern in the Session IDs that could be

used to predict the next ID to be issued.

Attacker stealing the

user’s Session ID

Session IDs, like all sensitive data, should be transmitted by secure means

(such as HTTPS) and stored in a secure location (not publically readable).

Attacker setting a

user’s Session ID

(session fixation)

The application should check that all Session IDs being used were

originally distributed by the application server.

3. Session Hijacking:

 A typical session hijacking is a well-known

man-in-the-middle attack in the world of

network security and its one of the favorite

attack for the attackers because of the nature of

the attack. A user who is already logged in

(authenticated) to a web server and has a valid

session existing between the user and the server,

the attacker takes control over such a session,

basically hijacks the session from the user and

continues the connection to the server

pretending to be the user. This has become

increasingly common because the attackers are

in a great advantage of not having to waste

hours and hours to crack a password, or to try

and conduct a dictionary attack against the

server, since the user has already been

authenticated and in active session it makes it so

much easier to just listen to the traffic on the

network without the knowledge of the user [7].

 Table 2- presents the session hijacking

vulnerabilities in terms of attack timing, impact

duration, and attack target area [8].

Table 2 – Session hijacking attacking features

Feature How the attacks is done

Timing

of Attack

Attacker attacks the user’s

browser after he logs in to the

target server.

Impact

Duration

Attacker usually gains one-time

access to the user’s session and

has to repeat the attack in order to

gain access to another one.

Attack

Target

Area

Communication link, target web

server.

 Figure 1- shows an example of session

hijacking attack, as we can see, first the attacker

uses a sniffer to capture a valid token session

called “Session ID”, then he uses the valid token

session to gain unauthorized access to the Web

Server.

Figure 1 – Session hijacking attack

4. Threat Modeling from the Attacker’s

Perspective [6]:

 A threat is a potential occurrence, malicious

or otherwise, that might damage or compromise

system resources. Threat modeling is a

systematic process that is used to identify threats

and vulnerabilities in software and has become

popular technique to help system designers think

about the security threats that their system might

face. Therefore, threat modeling can be seen as

risk assessment for software development. It

enables the designer to develop mitigation

strategies for potential vulnerabilities and helps

them focus their limited resources and attention

on the parts of the system most “at risk”. These

are many threat models that are used, namely:

Ismail Iraqi Journal of Science, 2013, Vol 54, Supplement No.4, pp:1176-1182

1179

4.1 Use case diagrams - describe an

application in action. The emphasis is on what a

system does rather than how. Use cases can be

represented either in text or graphics, and there

is no restriction on what the use case diagrams

should include or look like.

4.2 Misuse/Abuse Cases - Like use cases,

misuse cases require understanding the services

that are present in the system. A use case

generally describes behavior that the system

owner wants the system to implement. Misuse

cases apply the concept of a negative scenario—

that is, a situation that the system's owner does

not want to occur.

4.3 Attack Trees – Attack trees provide a

formal, methodical technique for describing the

security of systems, based on varying attacks.

Attacks against a system are represented in a

tree structure, with the goal as the root node and

the different routes of achieving that goal as the

leaf nodes.

 SeaMonster is a security modelling tool

continuously being developed by an open source

community lead by SINTEF. The unique feature

of SeaMonster is that it supports notations and

modelling techniques that security experts and

analysers are already familiar with, like: misuse

cases and attack trees threat models [10].

5. The Proposed Secure Session

Manaemengnt:

 The proposed secure session management

solve the problem of session hijacking for

session ID as follows:

5.1 Design and implementation of session ID

threat model

 Figure 2- shows the attack tree for session ID

threat by using SeaMonster Security Modeling

Software. The root of the tree represents the

name of the threat which is “Session ID threat”

and the attacks are represented as nodes in the

tree. This threat model is important and useful in

our proposed secure session management to

identify threats and vulnerabilities.

Figure 2 – Attack tree for session ID threat

5.2 Propsed Secure Session Management

 As we see in the threat model of figure 2-, the

problem is in attacked Session ID so the

proposed secure session management algorithm

will not depend only on the user’s session ID as

an authentcation because it may be attcked by

gessing or stealing or setting it as explained in

attack tree for session ID threat in figure 2-. So

another authentcation must be added to verify

the user and make the session ID not changed

during the session.

 In the proposed algorithm the Media Access

Control address (MAC address) of the

computer that the user has, is used. Since each

computer has a uniqe MAC address that is

attached to it during manufacturing it, we can

use this MAC address in our proposed

authentication.

 MAC address is a unique code assigned to

every piece of hardware that connect to the

Internet. When a manufacturer creates a network

capable piece of hardware they will assign the

MAC address which will usually begin with a

Ismail Iraqi Journal of Science, 2013, Vol 54, Supplement No.4, pp:1176-1182

1180

code that is tied to the manufactuurer. The code

will be unique to every device, even two devices

of the same type. A device’s MAC address is

composed of six pairs of hexadecimal numbers.

The numbers are separated by colons as in the

following example:

6E:51:F5:C1:11:00

5.3 Proposed Secure Session Management

Algorithm

Step 1: Get the session ID from the server

Step2: The server get the MAC address of the

client’s computer

Step3: Register the (session ID, client’s

computer MAC address) on the server as a new

client

Step4: Open a session between server and client

for a period of time

Step5: If a period of time is finished then

Stop the current session

Step6: Re-get the MAC address of the client’s

computer

Step7: Check the current MAC address of the

client’s computer in step6 with

the registered one in step3

If the current MAC address <> registered MAC

address then

The server discover an attacker

Finish the current session and go to step8

Else

 Go to step4

Step8: End

 6. Implementing the Proposed Secure Session

Manaemengnt:

 The proposed secure session management is

implemented by using both: Visual Basic.Net

2008 and ASP.Net programming languages,

which is both available in Visal Studio.Net

2008.

Code 1: It is implemented in Visual Bacic.Net

2008 to get the host name for the computer, to

implement this code creat a “Console

Application” in Visual Basic.Net 2008 and add a

module to run it. The output of this code will

produce the computer name.

Get the MAC address of the client’s computer:

Imports System.IO

Imports System.Net.Sockets

Module Module1

 Sub Main()

Dim myHost As String = System.Net.Dns.GetHostName

 Dim myPCname As System.Net.IPHostEntry =

 System.Net.Dns.GetHostByName(myHost)

 Console.WriteLine("The name of the host is = " & myPCname.HostName)

 End Sub

End Module

Code 2: It is implemented in ASP.Net to manage the session time out, to implement this code create

“ASP.Net Web Site” in ASP.Net under Visual Basic. The peroid of time of a session is set to (60)

seconds.

Open a session between server and client for a period of time:
<%@ Page Language="VB" %>

<script runat="server">

 Sub Page_Load()

 If Not Page.IsPostBack Then

 ResetStartTime()

 End If

 End Sub

 Protected Sub btnAgain_Click(ByVal sender As Object, ByVal e As System.EventArgs)

 ResetStartTime()

 End Sub

 Sub ResetStartTime()

 Session("StartTime") = DateTime.Now

 End Sub

Ismail Iraqi Journal of Science, 2013, Vol 54, Supplement No.4, pp:1176-1182

1181

 Protected Sub valAnswer_ServerValidate(ByVal source As Object, ByVal args As System.Web.UI

.WebControls.ServerValidateEventArgs)

 Dim startTime As DateTime = CType(Session("StartTime"), DateTime)

 If startTime.AddSeconds(60) > DateTime.Now Then

 args.IsValid = True

 Else

 args.IsValid = False

 End If

 End Sub

</script>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head id="Head1" runat="server">

 <title>Timed Test</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <p>

 You have 60 seconds to work with session

 </p>

 <asp:Label

 id="lblQuestion"

 Text="Get some data form user”

 AssociatedControlID="txtAnswer"

 Runat="server" />

 <asp:TextBox

 id="txtAnswer"

 Runat="server" />

 <asp:CustomValidator

 id="valAnswer"

 Text="(You time is finished!)"

 OnServerValidate="valAnswer_ServerValidate"

 Runat="server" />

 <asp:Button

 id="btnSubmit"

 Text="Submit"

 Runat="server" />

 <asp:Button

 id="btnAgain"

 Text="Try Again!"

 CausesValidation="false"

 OnClick="btnAgain_Click"

 Runat="server" />

 </div>

 </form>

</body>

</html>

7.Conclusion and Recomendation:

 First of all, we need to make it clear that

preventing session attacks is mainly the

responsibility of the web application, and not the

underlying web server.

 This paper solves the problem of session

hijacking for session ID by desiging a secure

session management based on session’s ID

thread modelling.

 The proposed secure session management is

designed to give trust authentication between the

client and the server to avoid session hijacing

attack by using both: server session’s ID and

MAC address of the client. Once the session is

setup between the client and the server, the

server will get the MAC address of the client

and setup a session for a peroid of time, when

this time is finished the current session is

stopped to get the MAC address again from the

client to check its authentication.

 The proposed secure session management

algorithm has the following features:

1. Instead of having one long time of

session between the cilent and the server, our

proposed secure session management algorithm

will have many sessions each session will have a

specific period of time when this time is finished

Ismail Iraqi Journal of Science, 2013, Vol 54, Supplement No.4, pp:1176-1182

1182

the session is stopped to check the client’s

physical address.

2. The authentication will depend on a

specific MAC address of the computer and not

on session ID only.

3. The IP Address is not used because it

can be changed during session; an attacker may

change the original IP Address for the client and

use it in his own machine, so MAC address give

more authentication in our proposed algorithm.

 Finally, it is recommended that all software

systems have a threat model developed and

documented. Threat models should be created

and should be revisited as the system evolves

and development progresses.

References:

1. Dharmesh M Mehta. 2010. Effective

Software Security Management. OWASP:

Open Web Application Security Project.

2. Stuttard D. and Pinto M. . 2011. The Web

Application Hacker's Handbook. Second

Edition. John Wiley & Sons Publication.

Canada. p: 205.

3. Pujolle. 2009. Secure Session Management

with Cookies. In 7th International

Conference on Information,

Communications and Signal Processing, 8-

10 Decmber. pp:689.

4. Dacosta I. 2012. One-Time Cookies:

Preventing Session Hijacking Attacks with

Disposable Credentials. ACM Transactions

on Internet Technology (TOIT), 12(1),

pp:1.

5. Nikiforakis N. 2011. SessionShield:

Lightweight Protection Against Session

Hijacking. In 3rd International Symposium

on Engineering Secure Software and

Systems (ESSoS '11). pp: 1.

6. Software Assurance Pocket Guide Series.

2012. Architecture and Design

Considerations for Secure Software.

Version 2.0, Vol. V.

7. Feng X. and Louis J. 2011. Detection of

Session Hijacking. Msc. Thesis.

Department of Computer Security and

Technology, University of Bedfordshire.

Bedfordshire . UK. p.11.

8. Kolšek M. 2002. Session Fixation

Vulnerability in Web-based Applications.

ACROS Security.

http://www.acrossecurity.com/papers/sessio

n_fixation.pdf

9. OWASP: Open Web Application Security

Project. 2011. Session Hijacking

Attack.https://www.owasp.org/index.php/S

ession_hijacking_attack

10. “SeaMonster 5 Inslallation and User

Guide”;http://ftp.jaist.ac.jp/pub/sourceforge

/s/project/se/seamonster/SeaMonster%205/

SeaMonster%20installation%20and%20use

r%20guide.pdf

http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118026470,descCd-authorInfo.html

