

Reverse *-Centralizers on *-Lie Ideals

A.A.Altay
Department of mathematics, College of Science, University of Baghdad, Iraq

Abstract

The purpose of this paper is to prove the following result : Let R be a 2-torsion free prime *-ring, U a square closed ${ }^{*}$-Lie ideal, and let $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ be an additive mapping. Suppose that $3 T(x y x)=T(x) y^{*} x^{*}+x * T(y) x^{*}+x * y * T(x)$ and $x * T(x y+y x) x^{*}=x * T(y) x^{* 2}+x^{* 2} T(y) x^{*}$ holds for all pairs $x, y \in U$, and $T(u) \in U$, for all $u \in U$, then T is a reverse *-centralizer.

Keywords: Prime *-Ring, Semiprime *-Ring, *-Lie Ideal, Reverse *-Centralizer.

الخلاصة:
الهدف من البحث هو برهان النتيجة الآتية : لنكن R *--حقة أولية طليقة الالتواء من الدرجة الثانية و U
 , $3 T(x y x)=T(x) y^{*} x^{*}+x^{*} T(y) x^{*}+x^{*} y^{*} T(x)$
$x^{*} T(x y+y x) x^{*}=x^{*} T(y) x^{* 2}+x^{* 2} T(y) x^{*}$
اذا كان U

1.Introduction

Throughout, R will represent an associative ring with center $\mathrm{Z}(\mathrm{R})$. A ring R is n-torsion free, if $n x=0, x \in \mathrm{R}$ implies $x=0$, where n is a positive integer. Recall that R is prime if $a \mathrm{R} b=$ (0) implies $a=0$ or $b=0$, and semiprime if $a \mathrm{R} a$ $=(0)$ implies $a=0$. An additive mapping $x \rightarrow x^{*}$ on a ring R is called an involution if $(x y)^{*}=y^{*}$ x^{*} and $(x)^{* *}=x$ for all $x, y \in \mathrm{R}$. A ring equipped with an involution is called $*$-ring (see [1]). As usual the commutator $x y-y x$ will be denoted by $[x, y]$. We shall use basic commutator identities $[x y, z]=[x, z] y+x[y, z]$ and $[x, y z]=$ $[x, y] z+y[x, z]$ for all $x, y, z \in \mathrm{R}$. Also we write $x \mathrm{o} y=x y+y x$ for all $x, y \in \mathrm{R}$ (see [2]). An additive subgroup U of R is said to be a Lie-ideal if [u, r] $\in U$ for all $u \in U$ and $r \in R$. A Lie-ideal U on a
-ring R, which satisfies $U^{}=U$ is called a *-Lie ideal [3]. If U is a Lie (resp.*-Lie) ideal of a *ring R, then U is called a square closed Lie (resp. *-Lie) ideal if $u^{2} \in U$ for all $u \in U$ [3]. A left (right) centralizer of R is an additive mapping $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ which satisfies $\mathrm{T}(x y)=\mathrm{T}(x) y$ ($\mathrm{T}(x y)=x \mathrm{~T}(y))$ for all $x, y \in \mathrm{R}$. A centralizer of R is an additive mapping which is both left and right centralizer. A left (right) Jordan centralizer of R is an additive mapping $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ which satisfies $\mathrm{T}\left(x^{2}\right)=\mathrm{T}(x) x\left(\mathrm{~T}\left(x^{2}\right)=x \mathrm{~T}(x)\right)$ for all $x \in$ R . A Jordan centralizer of R is an additive mapping which is both left and right Jordan centralizer (see [4-7]). Every centralizer is a Jordan centralizer. B. Zalar [4] proved the converse when R is 2 - torsion free semiprime ring. Inspired by the above definition Majeed
and Altay [8] define, a left (right) reverse *centralizer of a *-ring R is an additive mapping $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ which satisfies $\mathrm{T}(y x)=\mathrm{T}(x) y^{*}(\mathrm{~T}(y x)$ $=x * \mathrm{~T}(y))$ for all $x, y \in \mathrm{R}$. A reverse $*$-centralizer of R is an additive mapping which is both left and right reverse ${ }^{*}$-centralizer. A left (right) Jordan *-centralizer of R is an additive mapping $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ which satisfies $\mathrm{T}\left(x^{2}\right)=\mathrm{T}(x) x^{*}\left(\mathrm{~T}\left(x^{2}\right)=\right.$ $x * \mathrm{~T}(x)$) for all $x \in \mathrm{R}$. A Jordan $*$-centralizer of R is an additive mapping which is both left and right Jordan *-centralizer. Every reverse *centralizer is a Jordan *-centralizer. Majeed and Altay [8] proved the converse when R is 2torsion free semiprime *-ring. In this work we will study an Identity on a reverse *-centralizers of a 2-torsion free prime ${ }^{*}$-ring, U a square closed *-Lie ideal. We will prove in case T : $R \rightarrow R$ be an additive mapping, satisfies $3 T(x y x)$ $=T(x) y^{*} x^{*}+x * T(y) x^{*}+x^{*} y^{*} T(x)$ and $x^{*} T(x y+y x) x^{*}=x^{*} T(y) x^{* 2}+x^{* 2} T(y) x^{*}$ holds for all pairs $x, y \in U$, and $T(u) \in U$, for all $u \in U$, then $T(y x)=T(x) y^{*}=x^{*} T(y)$ for all $x, y \in U$.

2. The Main Result

We now give the main result of this paper.

Theorem 2.1: Let R be a 2-torsion free prime *ring, U a square closed Lie ideal, such that $\mathrm{U}=\mathrm{U}^{*}$ and let $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ are additive mappings. Suppose that $3 T(x y x)=T(x) y^{*} x^{*}+x^{*} T(y) x^{*}+$ $x^{*} y^{*} T(x)$ and $x^{*} T(x y+y x) x^{*}=x^{*} T(y) x^{* 2}+$ $x^{* 2} T(y) x^{*}$ holds for all pairs $x, y \in U$, and $T(u)$ $\in U$, for all $u \in U$, then T is a reverse $*_{-}$ centralizers.

To proof the above theorem we need the following lemmas.

Lemma 2.2.[9]:If $U \not \subset Z$ is a Lie ideal of a 2tortion free prime ring R and $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ such that $a U b=\{0\}$, then either $a=0$ or $b=0$.

Lemma 2.3:Let R be a 2-tortion free prime ring , U be a square closed *-Lie ideal of R. Suppose that the relation $a x b+b x c=0$ holds for all $x \in$ U and some $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{U}$. In this case $(\mathrm{a}+\mathrm{c}) \mathrm{xb}=$ 0 is satisfied for all $x \in U$.

Proof: If $\mathrm{U} \subset \mathrm{Z}$ the prove is clear, so assume that $U \not \subset Z$, putting (4xby) for x in the relation $a x b+b x c=0$ for all $x \in U$,
we obtain,
axbyb + bxbyc $=0$ for all $x, y \in U$,
On the other hand right multiplication the first relation by yb gives
axbyb + bxcyb $=0$ for all $x, y \in U$,

Subtracting the above relation, we obtain $\mathrm{bx}(\mathrm{byc}-\mathrm{cyb})=0 \quad$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$,
from above relation we can get two relation, first come by substitution (4ycx) for x and second by left multiplication by cy, so we obtain bycx $($ byc $-c y b)=0$ for all $x y \in U$,
And,
cybx (byc - cyb) $=0$ for all x y $\in U$,
Subtracting the two above relation, we get
(byc -cyb) $x(b y c-c y b)=0$ for all $x, y \in U$,
which gives by Lemma2.2, byc $=c y b, y \in U$. Therefore bxc can be replaced by cxb in first relation which gives $(a+c) x b=0, x \in U$.

Lemma 2.4.[8.Corollary (1.2.4)]: Let R be a 2torsion free prime ${ }^{*}$-ring and let $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ be an additive mapping such that $2 \mathrm{~T}\left(x^{2}\right)=\mathrm{T}(x) x^{*}+$ $x * \mathrm{~T}(x)$ holds for all $x \in \mathrm{R}$. In this case, T is a reverse $*$-centralizer.

Now will give the prove of theorem 2.1. Proof. of Theorem (2.1):
$3 \mathrm{~T}(\mathrm{xyx})=\mathrm{T}(\mathrm{x}) \mathrm{y}^{*} \mathrm{x}^{*}+\mathrm{x}^{*} \mathrm{~T}(\mathrm{y}) \mathrm{x}^{*}+\mathrm{x}^{*} \mathrm{y}^{*} \mathrm{~T}(\mathrm{x})$ for all $x, y \in U$
And,
$x^{*} \mathrm{~T}(\mathrm{xy}+\mathrm{yx}) \mathrm{x}^{*}=\mathrm{x}^{*} \mathrm{~T}(\mathrm{y}) \mathrm{x}^{*^{2}}+\mathrm{x}^{* 2} \mathrm{~T}(\mathrm{y}) \mathrm{x}^{*}$
for all $x, y \in U$
(i) If $U \not \subset Z(R)$

After replacing x by $x+z$ in (1), we obtain
$3 T(x y z+z y x)=T(x) y^{*} z^{*}+T(z) y^{*} x^{*}+$ $\mathrm{x}^{*} \mathrm{~T}(\mathrm{y}) \mathrm{z}^{*}+\mathrm{z}^{*} \mathrm{~T}(\mathrm{y}) \mathrm{x}^{*}+\mathrm{z}^{*} \mathrm{y}^{*} \mathrm{~T}(\mathrm{x})+\mathrm{x}^{*} \mathrm{y}^{*} \mathrm{~T}(\mathrm{z})$,
for all $x, y, z \in U$
Letting $y=x$ and $z=y$ in (3) gives
$3 T\left(x^{2} y+y x^{2}\right)=T(x) x^{*} y^{*}+T(y) x^{* 2}+x^{*} T(x) y^{*}+$ $y^{*} T(x) x^{*}+y^{*} x^{*} T(x)+x^{* 2} T(y)$
for all $x, y \in U$
After replacing x by $3 x$ and z by $2 x^{3}$ in (3) and using (1), we obtain
$9 \mathrm{~T}\left(\mathrm{xyx}^{3}+\mathrm{x}^{3} \mathrm{yx}\right)=3 \mathrm{~T}(\mathrm{x}) \mathrm{y}^{*} \mathrm{x}^{* 3}+3 \mathrm{~T}\left(\mathrm{x}^{3}\right) \mathrm{y}^{*} \mathrm{x}^{*}+$ $3 x^{*} \mathrm{~T}(\mathrm{y}) \mathrm{x}^{*^{3}}+3 \mathrm{x}^{* 3} \mathrm{~T}(\mathrm{y}) \mathrm{x}^{*}+3 \mathrm{x}^{*} \mathrm{y}^{*} \mathrm{~T}(\mathrm{x})+$ $3 x^{*} y * T\left(x^{* 3}\right)=3 T(x) y{ }^{*} x^{* 3}+\mathrm{T}(\mathrm{x}) \mathrm{x}^{*}{ }^{2} \mathrm{y}^{*} \mathrm{x}^{*}+$ $\mathrm{x} * \mathrm{~T}(\mathrm{x}) \mathrm{x} * \mathrm{y}^{*} \mathrm{x}^{*}+\mathrm{x}^{* 2} \mathrm{~T}(\mathrm{x}) \mathrm{y}^{*} \mathrm{x} *+3 \mathrm{x} * \mathrm{~T}(\mathrm{y}) \mathrm{x}^{* 3}+$ $3 \mathrm{x}^{* 3} \mathrm{~T}(\mathrm{y}) \mathrm{x}^{*}+\mathrm{x} * \mathrm{y} * \mathrm{~T}(\mathrm{x}) \mathrm{x}^{* 2}+\mathrm{x}^{*} \mathrm{y}^{*} \mathrm{x}^{*} \mathrm{~T}(\mathrm{x}) \mathrm{x}^{*}+$ $x^{*} y * x^{*} \mathrm{~T}(\mathrm{x})+3 \mathrm{x}{ }^{3} \mathrm{y} \mathrm{T}(\mathrm{x})$
for all $x, y \in U$
Replacing y by $3\left(x^{2} y+y x^{2}\right)$ in (1) and using (4), we obtain
$9 \mathrm{~T}\left(\mathrm{xyx}^{3}+\mathrm{x}^{3} \mathrm{yx}\right)=3 \mathrm{~T}(\mathrm{x}) \mathrm{x}^{*}{ }^{2} \mathrm{y}^{*} \mathrm{x}^{*}+3 \mathrm{~T}(\mathrm{x}) \mathrm{y}^{*} \mathrm{x}^{* 3}$ $\left.+x^{*} \mathrm{~T}(\mathrm{x}) \mathrm{x}^{*} \mathrm{y}^{*} \mathrm{x}^{*}+\mathrm{x}^{*} \mathrm{~T}(\mathrm{y}) \mathrm{x}^{* 3}+\mathrm{x}^{* 2}\right) \mathrm{T}(\mathrm{x}) \mathrm{y}^{*} \mathrm{x}^{*}+$ $x^{*} y^{*} T(x) x^{* 2}+x^{* 3} T(y) x^{*}+x^{*} y^{*} x^{*} T(x) x^{*}+3$ $\left.x^{* 3} y^{*}\right) T(x)+3 x^{*} y^{*} x^{* 2} T(x)$
for all $x, y \in U$
Subtracting (6) from (5), we obtain
$\mathrm{T}(\mathrm{x}) \mathrm{x}^{*}{ }^{2} \mathrm{y}^{*} \mathrm{x}^{*}+\mathrm{x}^{*} \mathrm{y}^{*} \mathrm{x}^{* 2} \mathrm{~T}(\mathrm{x})-\mathrm{x}^{*^{3}} \mathrm{~T}(\mathrm{y}) \mathrm{x}^{*}-$ $x^{*} T(y) x^{* 3}=0$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$
Replacing y by 6xyx in (4), we obtain
$9 \mathrm{~T}\left(\mathrm{x}^{3} \mathrm{yx}+\mathrm{xyx} \mathrm{x}^{3}\right)=3 \mathrm{~T}(\mathrm{x}) \mathrm{x}^{* 2} \mathrm{y}^{*} \mathrm{x}^{*}+\mathrm{T}(\mathrm{x}) \mathrm{y}^{*} \mathrm{x}^{* 3}+$ $\mathrm{x}^{*} \mathrm{~T}(\mathrm{y}) \mathrm{x}^{* 3}+\mathrm{x}^{*} \mathrm{y}^{*} \mathrm{~T}(\mathrm{x}) \mathrm{x}^{* 2}+3 \mathrm{x} * \mathrm{~T}(\mathrm{x}) \mathrm{x}^{*} \mathrm{y}^{*} \mathrm{x}^{*}+3$
$\mathrm{x}^{*} \mathrm{y}^{*} \mathrm{x}^{*} \mathrm{~T}(\mathrm{x}) \mathrm{x}^{*}+\mathrm{x}^{* 2} \mathrm{~T}(\mathrm{x}) \mathrm{y}^{*} \mathrm{x}^{*}+\mathrm{x}^{* 3} \mathrm{~T}(\mathrm{y}) \mathrm{x}^{*}+$
$\left.x^{* 3} \mathrm{y} * \mathrm{~T}(\mathrm{x})+3 \mathrm{x} * \mathrm{y}^{*} \mathrm{x}^{* 2}\right) \mathrm{T}(\mathrm{x})$
for all $x, y \in U$
On the other hand by replacing z by $6 x^{3}$ in (3), we obtain
$9 \mathrm{~T}\left(\mathrm{x}^{3} \mathrm{yx}+\mathrm{xyx} \mathrm{x}^{3}\right)=3 \mathrm{~T}(\mathrm{x}) \mathrm{y}^{*} \mathrm{x}^{*^{3}}+\mathrm{T}(\mathrm{x}) \mathrm{x}^{* 2} \mathrm{y}^{*} \mathrm{x}^{*}+$ $\mathrm{x}^{*} \mathrm{~T}(\mathrm{x}) \mathrm{x}^{*} \mathrm{y}^{*} \mathrm{x}^{*}+\mathrm{x}^{* 2} \mathrm{~T}(\mathrm{x}) \mathrm{y}^{*} \mathrm{x}^{*}+3 \mathrm{x}^{*} \mathrm{~T}(\mathrm{y}) \mathrm{x}^{* 3}+$ $3 x^{* 3} \mathrm{~T}(\mathrm{y}) \mathrm{x}^{*}+\mathrm{x} * \mathrm{y}^{*} \mathrm{~T}(\mathrm{x}) \mathrm{x}^{* 2}+\mathrm{x}^{*} \mathrm{y}^{*} \mathrm{x}^{*} \mathrm{~T}(\mathrm{x}) \mathrm{x}^{*}+$ $x^{*} y^{*} x^{*}{ }^{2} \mathrm{~T}(\mathrm{x})+\mathrm{x}^{* 3} \mathrm{y}^{*} \mathrm{~T}(\mathrm{x})$
for all $x, y \in U$
Comparing (8) and (9), we arrive at
$\mathrm{T}(\mathrm{x}) \mathrm{y}^{*} \mathrm{x}^{* 3}-\mathrm{T}(\mathrm{x}) \mathrm{x}^{* 2} \mathrm{y}^{*} \mathrm{x}^{*}+\mathrm{x} * \mathrm{~T}(\mathrm{y}) \mathrm{x}^{* 3}-$ $x^{*} T(x) x^{*} y^{*} x^{*}-x^{*} y^{*} x^{* 2} T(x)+x^{* 3} y^{*} T(x)-$ $\mathrm{x}^{*} \mathrm{y}^{*} \mathrm{x} * \mathrm{~T}(\mathrm{x}) \mathrm{x}^{*}+\mathrm{x}^{* 3} \mathrm{~T}(\mathrm{y}) \mathrm{x}^{*}=0$
for all $x, y \in U$
From (7) and (10), we obtain $\mathrm{T}(\mathrm{x}) \mathrm{y}^{*} \mathrm{x}^{* 3}-\mathrm{x}^{*} \mathrm{~T}(\mathrm{x}) \mathrm{x} * \mathrm{y}^{*} \mathrm{x}^{*}+\mathrm{x}{ }^{* 3} \mathrm{y}^{*} \mathrm{~T}(\mathrm{x})-$ $x^{*} y^{*} x^{*} T(x) x *=0, \quad$ for all $x, y \in U$
Replacing y by $2 x y$ in the above relation gives
$\mathrm{T}(\mathrm{x}) \mathrm{y} * \mathrm{x}^{*}{ }^{4}-\mathrm{x} * \mathrm{~T}(\mathrm{x}) \mathrm{x} * \mathrm{y} \mathrm{x}^{*}{ }^{2}+\mathrm{x} *^{3} \mathrm{y}^{*} \mathrm{x}^{*} \mathrm{~T}(\mathrm{x})-$
$x^{*} y^{*} x^{*}{ }^{2} T(x) x^{*}=0, \quad$ for all $x, y \in U$
On the other hand right multiplication of (11) by x^{*} gives
$\mathrm{T}(\mathrm{x}) \mathrm{y}^{*} \mathrm{x}^{*}{ }^{4}-\mathrm{x} * \mathrm{~T}(\mathrm{x}) \mathrm{X}^{*} \mathrm{y}^{*} \mathrm{x}^{* 2}+\mathrm{x}^{* 3} \mathrm{y} * \mathrm{~T}(\mathrm{x}) \mathrm{x} *-\mathrm{x} * \mathrm{y} * \mathrm{x}$
$* \mathrm{~T}(\mathrm{x}) \mathrm{x}^{* 2}=0, \quad$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$
Subtracting (13) from (12) gives
$x^{* 3} y^{*}\left[T(x), x^{*}\right]-x^{*} y * x *\left[T(x), x^{*}\right] x^{*}=0$,
for all $x, y \in U$
Left multiplication of (14) by $T(x)$ gives
$\mathrm{T}(\mathrm{x}) \mathrm{x}^{*} \mathrm{y}^{*}[\mathrm{~T}(\mathrm{x}), \mathrm{x} *]-\mathrm{T}(\mathrm{x}) \mathrm{x}^{*} \mathrm{y}^{*} \mathrm{x} *[\mathrm{~T}(\mathrm{x}), \mathrm{x} * \mathrm{x} *=0$
for all $x, y \in U$.
Replacing y by $2 \mathrm{yT}(\mathrm{x})^{*}$ in (14) gives,
$x^{* 3} T(x) y^{*}\left[T(x), x^{*}\right]-x^{*} T(x) y^{*} x^{*}\left[T(x), x^{*}\right] x *=0$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$
After subtracting (15) from (16), we arrive at
$\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{* 3}\right] \mathrm{y}^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]-\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{y}^{*} \mathrm{x}^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]$
$x^{*}=0 \quad$ for all $x, y \in U$
In the above relation let
$\left.\mathrm{a}=\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{* 3}\right)\right], \mathrm{b}=\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{*}\right]$,
$c=-x *\left[T(x), x^{*}\right] x^{*}$ and $z=y^{*}$
From the above substitutions, we have
$a z b+b z c=0$.
We apply Lemma 2.3 to the above relation to obtain
$\left\{\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{*}{ }^{3}\right]-\mathrm{x}^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{*}\right\} \mathrm{y}^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]=0$,
for all $x, y \in U$,
this reduces to
$\left\{\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{X}^{* 2}+\mathrm{x}^{* 2}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]\right\} \mathrm{y}^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]=0$,
for all $x, y \in U$
Right multiplication of the above relation by $x^{* 2}$ gives
$\left\{[\mathrm{T}(\mathrm{x}), \mathrm{x} *] \mathrm{x}^{* 2}+\mathrm{x}^{*^{2}}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]\right\} \mathrm{y}^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{* 2}=0$
for all $x, y \in U$
After replacing y by $2 x^{2} y$ in (18), we get
$\left\{\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{* 2}+\mathrm{x}^{*}[\mathrm{~T}(\mathrm{x}), \mathrm{x} *]\right\} \mathrm{y}^{*} \mathrm{x}^{* 2}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]=0$
for all $x, y \in U$
Adding (19) to (20), we obtain
$\left\{\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{* 2}+\mathrm{x}^{* 2}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]\right\} \mathrm{y}^{*}\left\{\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{* 2}\right.$
$\left.+x^{* 2}\left[T(x), x^{*}\right]\right\}=0 \quad$ for all $x, y \in U$
Using Lemma 2.2, we get
$\left[T(x), x^{*}\right] x^{* 2}+x^{* 2}[T(x), x *]=0$, for all $x \in U$
Replacing y by $2 x y$ in (14) gives
$x^{* 3} y^{*} x *\left[T(x), x^{*}\right]-x^{*} y^{*} x^{2} *\left[T(x), x^{*}\right] x^{*}=0$
for all $x, y \in U$
Replacing y^{*} by $2\left[T(x), x^{*}\right] y^{*}$ in the above relation gives
$\mathrm{x}^{* 3}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{y}^{*} \mathrm{x} *\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]-\mathrm{x} *\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]$ $y^{*} \mathrm{x}^{2} *\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{*}=0 \quad$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$
In the above relation let
$\mathrm{a}=\mathrm{x}^{*}{ }^{3}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right], \mathrm{b}=\mathrm{x}^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]$,
$\mathrm{c}=-\mathrm{x}^{* 2}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{*}$ and $\mathrm{z}=\mathrm{y}^{*}$
From the above substitutions, we have
$a z b+b z c=0$.
We apply Lemma 2.3 to the above relation to obtain
$\left\{\mathrm{x}^{* 3}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]-\mathrm{x}^{* 2}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x} *\right\} \mathrm{y}^{*} \mathrm{x}^{*}[\mathrm{~T}(\mathrm{x}), \mathrm{x} *]=0$ for all $x, y \in U$
Replacing y by $2 x^{2} y$ in the above relation gives
$\left\{\mathrm{x}^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]-\mathrm{x}^{* 2}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{*}\right\} \mathrm{y}^{*} \mathrm{x}^{* 3}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]=0$
for all $x, y \in U$
(25)

On the other hand replacing y by $2 x y$ in relation
(24) and right multiplying of this relation by x^{*} gives
$\left\{x^{* 3}\left[T(x), x^{*}\right]-x^{* 2}\left[T(x), x^{*}\right] x^{*}\right\} y^{*} x^{*}{ }^{2}[T(x), x *] x^{*}=0$ for all $x, y \in U$.
Subtracting (26) from (25) gives
$\left\{x^{* 3}\left[T(x), x^{*}\right]-x^{* 2}\left[T(x), x^{*}\right] x^{*}\right\} y^{*}\left\{x^{*}{ }^{3}\left[T(x), x^{*}\right]\right.$
$\left.-x^{* 2}\left[T(x), x^{*}\right] x^{*}\right\}=0 \quad$ for all $x, y \in U$
Also by using Lemma 2.2, we get
$x^{* 3}\left[T(x), x^{*}\right]-x^{* 2}\left[T(x), x^{*}\right] x^{*}=0$
for all $x \in U$
Right multiplication of (21) by x^{*} gives
$\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{* 3}+\mathrm{x}^{*^{2}}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{*}=0$
for all $x \in U$
According to (27) and (28), we have
$\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{*^{3}}+\mathrm{x}^{* 3}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]=0$
for all $x \in U$
Left multiplication of (22) by [T(x), x^{*}] gives
$\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{* 3} \mathrm{y}^{*} \mathrm{x} *\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]-\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{*}\right]$
$x^{*} y^{*} x^{2} *\left[T(x), x^{*}\right] x^{*}=0$
for all $x, y \in U$

Adding relations (23) and (30) and using (29), we obtain
$\left\{\left[\mathrm{T}(\mathrm{x}), \mathrm{x} * \mathrm{x}^{*}+\mathrm{x} *[\mathrm{~T}(\mathrm{x}), \mathrm{x} *]\right\} \mathrm{y}^{*} \mathrm{x}^{* 2}[\mathrm{~T}(\mathrm{x}), \mathrm{x} *] \mathrm{x} *=0\right.$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$
Using (27) we obtain from the above relation
$\left\{\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x} *+\mathrm{x} *\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]\right\} \mathrm{y}^{*} \mathrm{x}^{*}{ }^{3}[\mathrm{~T}(\mathrm{x}), \mathrm{x} *]=0$
for all $x, y \in U$
Left multiplication of (32) by $x^{* 2}$ gives
$\left\{x^{* 2}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{*}+\mathrm{x}^{* 3}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]\right\} \mathrm{y}^{*} \mathrm{x}^{* 3}[\mathrm{~T}(\mathrm{x}), \mathrm{x} *]=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$
According to (27) one can replace $x^{* 2}\left[T(x), x^{*}\right] x^{*}$ by $x^{* 3}\left[T(x), x^{*}\right]$ in the above relation. Thus, we have
$x^{* 3}\left[T(x), x^{*}\right] y^{*} x^{* 3}\left[T(x), x^{*}\right]=0$, for all $x, y \in U$ Hence, we obtain
$x^{*}{ }^{3}\left[T(x), x^{*}\right]=0 \quad$ for all $x \in U$
Because of (29), we have
$\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{* 3}=0, \quad$ for all $\mathrm{x} \in \mathrm{U}$
Replacing y^{*} by $2\left[T(x), x^{*}\right] y^{*}$ in (14) gives $x^{* 3}\left[T(x), x^{*}\right] y^{*}\left[T(x), x^{*}\right]-x^{*}\left[T(x), x^{*}\right] y^{*}$ $x^{*}\left[T(x), x^{*}\right] x^{*}=0$
for all $x, y \in U$
Using (33) the above relation reduces to
$x^{*}\left[T(x), x^{*}\right] y^{*} x^{*}\left[T(x), x^{*}\right] x^{*}=0$
for all $x, y \in U$
Replacing y^{*} by $2 x^{*} y^{*}$ in (36) gives
$x^{*}\left[T(x), x^{*}\right] x^{*} y^{*} x^{*}\left[T(x), x^{*}\right] x^{*}=0$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$
Therefore,
$\mathrm{x}^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{*}=0$, for all $\mathrm{x} \in \mathrm{U}$
Putting $x+y$ for x in (37), we obtain
$x^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{y}^{*}+\mathrm{x}^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{y}^{*}\right] \mathrm{x}^{*}+\mathrm{x} *[\mathrm{~T}(\mathrm{y})$, $\left.x^{*}\right] x^{*}+y^{*}\left[T(x), x^{*}\right] x^{*}+x^{*}\left[T(x), y^{*}\right] y^{*}+$ $x^{*}\left[\mathrm{~T}(\mathrm{y}), \mathrm{x}^{*}\right] \mathrm{y}^{*}+\mathrm{y}^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{y}^{*}+\mathrm{x}^{*}\left[\mathrm{~T}(\mathrm{y}), \mathrm{y}^{*}\right] \mathrm{x}^{*}$ $+y^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{y}^{*}\right] \mathrm{x}^{*}+\mathrm{y}^{*}\left[\mathrm{~T}(\mathrm{y}), \mathrm{x}^{*}\right] \mathrm{x}^{*}+\mathrm{x}^{*}[\mathrm{~T}(\mathrm{y})$, $\left.y^{*}\right] y^{*}+y^{*}\left[T(x), y^{*}\right] y^{*}+y^{*}\left[T(y), x^{*}\right] y^{*}+$ $y^{*}\left[T(y), y^{*}\right] x^{*}=0$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$
Putting -x for x in the above relation and combining the relation so obtained with (38), we obtain
$x^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{y}^{*}\right] \mathrm{y}^{*}+\mathrm{x} *\left[\mathrm{~T}(\mathrm{y}), \mathrm{x}^{*}\right] \mathrm{y}^{*}+\mathrm{y}^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{y}^{*}+$ $x^{*}\left[T(y), y^{*}\right] x^{*}+y^{*}\left[T(x), y^{*}\right] x^{*}+y^{*}\left[T(y), x^{*}\right] x^{*}=0$ for all $x, y \in U$
After comparing (38) and (39), we have
$x^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{y}^{*}+\mathrm{x} *\left[\mathrm{~T}(\mathrm{x}), \mathrm{y}^{*}\right] \mathrm{x}^{*}+\mathrm{x} *[\mathrm{~T}(\mathrm{y})$, $\left.x^{*}\right] x^{*}+y^{*}\left[T(x), x^{*}\right] x^{*}+x^{*}\left[T(y), y^{*}\right] y^{*}+$ $\mathrm{y}^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{y}^{*}\right] \mathrm{y}^{*}+\mathrm{y}^{*}\left[\mathrm{~T}(\mathrm{y}), \mathrm{x}^{*}\right] \mathrm{y}^{*}+\mathrm{y}^{*}[\mathrm{~T}(\mathrm{y})$, $\left.y^{*}\right] x^{*}=0$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$
Replacing x by 2 x in the above relation and subtracting the relation so obtained from the above relation multiplied by 8 , we obtain
$x^{*}\left[T(y), y^{*}\right] y^{*}+y^{*}\left[T(x), y^{*}\right] y^{*}+y^{*}\left[T(y), x^{*}\right] y^{*}+$ $y^{*}\left[\mathrm{~T}(\mathrm{y}), \mathrm{y}^{*}\right] \mathrm{x}^{*}=0$
for all $x, y \in$ Ufor all $x, y \in U$
Comparing (40) and (41), we obtain
$x^{*}\left[T(x), x^{*}\right] y^{*}+x^{*}\left[T(x), y^{*}\right] x^{*}+x^{*}\left[T(y), x^{*}\right] x^{*}$
$+y^{*}\left[T(x), x^{*}\right] x^{*}=0$
for all $x, y \in U$
Right multiplication of (42) by $x^{* 2}\left[T(x), x^{*}\right]$ and using (33) gives
$x^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{y}^{*} \mathrm{x}^{* 2}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]=0$
for all $x, y \in U$
Left multiplication of (43) by x * gives
$x^{* 2}\left[T(x), x^{*}\right] y^{*} x^{*^{2}}\left[T(x), x^{*}\right]=0$ for all $x, y \in U$ Hence,
$\mathrm{X}^{*}{ }^{2}\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]=0, \quad$ for all $\mathrm{x} \in \mathrm{U}$
Because of (21), we also have
$\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{* 2}=0, \quad$ for all $\mathrm{x} \in \mathrm{U}$
Right multiplication of (42) by $x^{*}\left[T(x), x^{*}\right]$ gives because of (44)
$\mathrm{x} *\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{y}^{*} \mathrm{x} *\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right]=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$ Therefore,
$x^{*}\left[T(x), x^{*}\right]=0, \quad$ for all $x \in U$
Left multiplication of (42) by $\left[T(x), x^{*}\right] x^{*}$ and use of (45) gives
$\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{*} \mathrm{y} *\left[\mathrm{~T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x} *=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$ Hence, we get
$\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{x}^{*}=0 \quad$ for all $\mathrm{x} \in \mathrm{U}$
From (47) one obtains (see the proof of (39))
$\left[\mathrm{T}(\mathrm{x}), \mathrm{y}^{*}\right] \mathrm{x}^{*}+\left[\mathrm{T}(\mathrm{y}), \mathrm{x}^{*}\right] \mathrm{x}^{*}+\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{*}\right] \mathrm{y}^{*}=0$
for all $x, y \in U$
Right multiplication of the above relation by [T(x), $\left.x^{*}\right]$ use of (46) gives
$\left[T(x), x^{*}\right] y^{*}\left[T(x), x^{*}\right]=0 \quad$ for all $x, y \in U$ Therefore, we obtain
$\left[\mathrm{T}(\mathrm{x}), \mathrm{x}^{*}\right]=0, \quad$ for all $\mathrm{x} \in \mathrm{U}$
Now, we will prove that
$\mathrm{T}(\mathrm{xy}+\mathrm{yx})=\mathrm{T}(\mathrm{y}) \mathrm{x}^{*}+\mathrm{x} * \mathrm{~T}(\mathrm{y})$
for all $x, y \in U$
In order to prove the above relation, we need to prove the following relation
$\left[A(x, y), x^{*}\right]=0 \quad$ for all $x, y \in U$
where $A(x, y)$ stands for $T(x y+y x)-T(y) x^{*}-$ $x^{*} T(y)$. With respect to this notation equation (2) can be rewritten as,
$x^{*} A(x, y) x^{*}=0 \quad$ for all $x, y \in U$
Replacing x by $x+y$ in relation (49) gives
$\left[T(x), y^{*}\right]+\left[T(y), x^{*}\right]=0$ for all $x, y \in U$
After replacing y by $2(x y+y x)$ in (53) and using (49), we obtain
$x^{*}\left[\mathrm{~T}(\mathrm{x}), \mathrm{y}^{*}\right]+\left[\mathrm{T}(\mathrm{x}), \mathrm{y}^{*}\right] \mathrm{x}^{*}+\left[\mathrm{T}(\mathrm{xy}+\mathrm{yx}), \mathrm{x}^{*}\right]=0$ for all $x, y \in U$
According to (53) we can replace in the above relation $\left[T(x), y^{*}\right]$ by $-\left[T(y), x^{*}\right]$. We then have
$\left[\mathrm{T}(\mathrm{xy}+\mathrm{yx}), \mathrm{x}^{*}\right]-\mathrm{x}^{*}\left[\mathrm{~T}(\mathrm{y}), \mathrm{x}^{*}\right]-\left[\mathrm{T}(\mathrm{y}), \mathrm{x}^{*}\right] \mathrm{x}^{*}=0$
for all $x, y \in U$
This can be written in the form
$\left[T(x y+y x)-T(y) x^{*}-x^{*} T(y), x^{*}\right]=0$,
for all $x, y \in U$
The proof of relation (51) is therefore complete.
Replacing x by $\mathrm{x}+\mathrm{z}$ in (52) and using (52) gives
$x^{*} \mathrm{~A}(\mathrm{x}, \mathrm{y}) \mathrm{z}^{*}+\mathrm{x}^{*} \mathrm{~A}(\mathrm{z}, \mathrm{y}) \mathrm{x}^{*}+\mathrm{z}^{*} \mathrm{~A}(\mathrm{x}, \mathrm{y}) \mathrm{x}^{*}+$ $z^{*} A(z, y) x^{*}+z^{*} A(x, y) z^{*}+x^{*} A(z, y) z^{*}=0$
for all $x, y, z \in U$
After replacing x for -x in the above relation and adding the relation so obtained to the above relation, we arrive at:
$x^{*} A(x, y) z^{*}+x^{*} A(z, y) x^{*}+z^{*} A(x, y) x^{*}=0$
for all $x, y, z \in U$
Right multiplication of the above relation by $A(x, y) x^{*}$ and using (52) gives
$x^{*} A(x, y) z^{*} A(x, y) x^{*}=0$, for all $x, y, z \in U$ (54)
Using (54), the above relation can be written in the form
$x^{*} A(x, y) z^{*} x^{*} A(x, y)=0$, for all $x, y, z \in U(55)$
Therefore, we obtain
$x^{*} A(x, y)=0 \quad$ for all $x, y \in U$
From (51) and (56), we also get
$A(x, y) x^{*}=0 \quad$ for all $x, y \in U$
Replacing x by $x+z$ in (57) gives
$A(x, y) z^{*}+A(z, y) x^{*}=0$ for all $x, y, z \in U$
Right multiplication of the above relation by
$A(x, y)$ and using (56) gives
$A(x, y) z^{*} A(x, y)=0 \quad$ for all $x, y, z \in U$
Therefore,
$A(x, y)=0$ for all $x, y \in U$
The proof of (50) is therefore complete.
(ii) If $U \subset Z(R)$

Right multiplication of relation(2) by $\mathrm{r} \mathrm{A}(\mathrm{x}, \mathrm{y})$, $r \in R$ and by primness of R, we get
$x^{*} A(x, y)=0$ for all $x, y \in U$
Replacing x by $x+z$ in above relation gives
$z^{*} A(x, y)+x^{*} A(z, y)=0$ for all $x, y, z \in U$
Left multiplication of the above relation by $\mathrm{A}(\mathrm{x}$, $y)$, we get
$\mathrm{A}(\mathrm{x}, \mathrm{y}) \mathrm{z}^{*} \mathrm{~A}(\mathrm{x}, \mathrm{y})=0, \quad$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{U}$
Right multiplication of the above relation by r $z^{*}, r \in R$ and by primness of R, we get
$\mathrm{A}(\mathrm{x}, \mathrm{y}) \mathrm{z}^{*}=0, \quad$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{U}$
By the primness of R, we get (50)
In particular when $y=x(50)$ reduces to
$2 \mathrm{~T}\left(\mathrm{x}^{2}\right)=\mathrm{T}(\mathrm{x}) \mathrm{x}^{*}+\mathrm{x}^{*} \mathrm{~T}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{U}$
By Lemma.2.4. We obtain T is a reveres *centralizer, which completes the proof.

The following corollary is clear from theorem(2.1).

Corollary 2.5: Let R be a 2-torsion free prime *-ring, and let $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ are additive mappings. Suppose that $3 T(x y x)=T(x) y^{*} x^{*}+x^{*} T(y) x^{*}+$ $x^{*} y^{*} T(x)$ and $x^{*} T(x y+y x) x^{*}=x^{*} T(y) x^{* 2}+$ $x^{* 2} T(y) x^{*}$ holds for all pairs $x, y \in R$, then T is a reveres *-centralizer.

References

1. Herstein, I. N. 1969. Topics in ring theory, University of Chicago Press,3-20.
2. Herstein, I. N. 1976. Rings with involution, University of Chicago press, Chicago, 2-11.
3. Awtar,R. 1973. Lie ideals and Jordan structures in prime rings with derivations, Proc. Amer. Math. Soc. 41, pp:67-74.
4. Zalar,B., 1991. On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32, pp:609- 614.
5. Vukman,J. 1999. An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolinae 40, pp:447-456.
6. Vukman, J. 2001. Centralizers on semiprime rings, Comment. Math. Univ. Carolinae 42, pp:237-245.
7. Vukman, J. and Kosi-Ulbl, I. 2003. On centralizers of semiprime rings, Aequationes Math. 66, pp:277-283.
8. Majeed,A. and Altay,A. 2009. Additive mappings on prime and semiprime ring with involution.Baghdad University (Iraq). Msc. thesis. Advisor: A.H. Majeed,1, pp:19-25.
9. Bergen,J. , Herstein, I.N. and Ker, J.W. 1981.Lie ideals and derivation of prime rings , J. Algebra 71, pp:259-267.
