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Abstract:

Sufficient conditions for boundary controllability of nonlinear system in quasi-
Banach spaces are established. The results are obtained by using the strongly
continuous semigroup theory and some techniques of nonlinear functional analysis,
such as, fixed point theorem and quasi-Banach contraction principle theorem.
Moreover, we given an example which is provided to illustrate the theory.
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1. Introduction:

Many scientific and engineering problems can
by modeled by partial differential equations,
integral equations, or coupled ordinary and
partial differential equations that can be
described as differential equations in infinite-
dimensional spaces using semigroups. So, the
study of controllability results of such problems
in infinite-dimensional spaces is important. For
the motivation of abstract system and the
controllability of linear system, one can refer to
[1,2]. Controllability of nonlinear system
represented by ordinary differential equations in
Banach spaces has been extensively studied by
several authors. Han in [3] studied the boundary
controllability of differential equations with
nonlocal condition. Al-Moosawy [4] discussed
the controllability and optimality of the mild
solution for semilinear problems in Banach
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spaces, by using semigroup theory and Banach
contraction principle theorem. In [5] studied the
boundary controllability of integrodifferential
system in Banach space. The controllability for
some control problems in quasi-Banach spaces
has been studied in [6] by using semigroup
theory an some techniques of nonlinear
functional analysis.

Since every Banach space is quasi-Banach
spaces, but the converse is not true [7]. One
could find a reasonable justification to
accomplish the study of this paper. The purpose
of this paper is to extend the study of the
boundary controllability of nonlinear system in
any quasi-Banach spaces by using the quasi-
Banach fixed point theorem.

2. Definitions and theorems :

This section contains some definitions and

theorems that will be used in the sequel.
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Definition 2.1 [8] : let 0 << p <X Then the
collection of all measurable functions f for
which |f|¥ is integrable will be denoted by
L,{w). Foreach f € L,{u), let

Ifll, = (fIf17dw™". The number [IFll, is
called the Ly —norm of 1.

Note 2.1 [7] : The space Ly () for 0 < p < 11is
a vector space, but not a normed space (thus not
a Banach space ).

Definition 2.2 [7] : A real-valued function _|. ||
defined on a vector space V over a field F is
called a quasi-norm if it satisfies the following

properties :

1. glzll =0 Vxev and
Jlzl=0 =x=0.

2. gllox|l = lalgllzll ¥x €V, a€F,

3. glx+y Ec':::x + gy ) vy eV,

where ¢ = 1 is a constant.

The pair (V, .|} is called a quasi-normed
space.

Definition 2.3 [7] : Let (V, Il ]I} be a quasi-
normed space, then

(a) A sequence {x,}in V is called convergent to
the limit x € Vif, for €= 0, there exists a
positive integer N(€E) such that
Y n=N (or

- —

gllzn —xll =€
gllz; —xll = 0as n— =),

(b) A sequence {x,} in Vis called a Cauchy
sequence if, for €= 0,3 N(g) =0 such that
allZm—x,ll <€ ¥n,m =N (or,
allZm =%, = 0 as n,m — =),

(c) V is called a complete quasi-normed space

(or quasi-Banaed space) if every Cauchy
sequence in V' is convergent.

Definition 2.4 [7] : For f €L, (u) , 0<<p <1,
let us define the quasi-norm of f which is
by  gllfll
SlIEll = I£lI5 = [If[7dy, where lIfll, as defined

in Definition 2.1.
Theorem 2.1 [7]

0="p =1 with the quasi-norm given
Definition 2.4 is a quasi-Banach space.

Definition 2.5 [9] : Let T be a mapping of a
quasi-normed space X into itself, then T is

denoted as follows -

The space L,(u) for
in
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called a quasi-contraction mapping if there
exists a constant k,0=k=1 such that
JTE =TEII =k Gllx—yll vx,y €X
Remark 2.1 : It is clear from the above
definition that every quasi-contraction mapping
is uniformly continuous.

Theorem 2.2 [6] : (Quasi-Banach contraction
principle)

Every quasi-contraction mapping T defined on a
quasi-Banach space X into itself has a unique
fixed point x* € X. Moreover, if x; is any point
in X and the sequence {x,} is defined by
% =Tixg), %X =T, oo, Xy = T(Xq—q)
then and
gl — 27|l = (ck®/1 —k) gllx —xll, where

limyex, =x°

c = 1is aconstant.

Remark 2.2 [6] :

1. Theorem 2.2 is valid for complete quasi-
metric space [6] (the proof is similar).

2. Since, every closed subset ¥ of a quasi-

Banach space X is itself a complete quasi-metri

space [6.Theorem2.2.7]. Therefor theorem 2.2 is
valid for a quasi-contraction mapping defined
on ¥ into itself.

3. By theorem 2.1, the space L,(u) for
0=p =1 is a quasi-Banach space, thus the
special case of theorem 2.2 is when we take
X=L,{u)for0=p=1[9]

Theorem 2.3 [6, theorem 2.2.6] : Let X and ¥
be a quasi-normed spaces and L be a linear
transformation of X onto ¥. Then the inverse
L™? exists and is continuous on its domain of
definition if and only if there exists a constant
M =0, such that M .llx|l= [IL(x)]l, for all
xEX

Definition 2.6 [9] : A family T{(f),0 =t < =
of bounded linear operators on a quasi-Banach
space X is called a (one-parameter) semigroup
on X if it satisfies the following conditions :

1. T(0) = I (I is the identity operator on X ).
2.T(t +5s) =T{t)T(s), foreach t,s = 0,
Definition 2.7 [9] : The infinitesimal generator
A of the semigroup T{t) on a quasi-Banach

space X is defined by
Ax = lim,_(1/)(T{t)x — x), where the limit
exists and the domain of A s

DA ={x € X: lim_p+ {1/t N(T{t)x — x)
exists }.
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Definition 2.8 [9] A semigroup
T{t),0 =t = = of bounded linear operator on a

quasi-Banach space X is said to be strongly
continuous semigroup (or ' - semigroup ) if :
JTEx—x[| = 0as ¢t — 07 forallx =X
Theorem 2.4 [6] : Let X be a quasi-Banach
space and T(t) be a Cy-semigroup generated by
A. Then the following hold :
(i): For each xy € D(A],
D{A)(domain  of
T(t)Ax,, vt = 0.

and

.
~

Ti{tixg €
AT(t)x, =
(ii): For each xy, € D{A) and T{t)xy € D{A),
T(t)A x,.
xpEX

(iii): For each

]imh_..;.::l;’ .:E:l fl._‘

1
"Tis)xods = T{t)x,

(iv): For each xg € X, [ T(s)xyds €D (4)

and A (J, T(s)xpds ) = T(£)xy — xp.

(v): For each xy € DA},
TII:IX.; - T:E:‘ Xp = __r:: T::T:'J"'IIXE. dT =

I AT(t)x dr

For more details about semigroup and Cg-

semigroup on a Banach space see [2, 10].
3. Controllability of Nonlinear System in
Quasi-Banach Spaces :

In this section we will study the existence
theorem of the controllability of the mild
solution to the nonlinear boundary-value control
problem in appropriate quasi-Banach spaces, by
using strongly continuous semigroup theory and
guasi-Banach contraction principle theorem.

3.1. Preliminaries

Let (. GlI.ID) . (U,

Banach spaces, and A be a linear closed bounded
and densely operator with
D(A) S E, 4l = €y, where Cy is a constant

g/l 1) be a real quasi-

and let T be a linear operator with D{7) < E and
range (T) =X, where X is a quasi-Banach

space.
Consider the boundary control nonlinear system
of the form
Zlxled +glexied )| = axie) + Bule) + Fienle, :I:._-_'-_I_'-]
rlxle)+ gloxin))) = Baulehe 2 = [0.8] Fo(1)
0= x. J
Where EB;:U —=X is a linear continuous

operator, the control function u{.) € U a quasi-
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Banach space of admissible control functions.
Let 4;: £ — E be the linear operator defined by
: Ajx = Ax,x € DUA4,), where
D (A;) ={xeD(A):Tx =0

LetB,.={x€E: _|lx[|=r, forsomer = ol
We shall make the following hypotheses:

(i): D{A) = D(r) and the restriction of 7 to
D{A) is continuous relative to graph norm of
D(A1).

(if): The operator A; is the infinitesimal
generator of a Cg-semigroup T{f) and there exist
aconstant M = 0, such that [|T(£)|| = M.

(iii): There exist a linear continuous operator

B, :U —E, such that AB; € L,{(U, E) where
0=p=<1,7(B,U)=5Byu for all u<Ualso
B,u(t) is continuously differentiable.

(iv): For all t €(0,b] and

u €U,T(t)B,u € D(4,), moreover there exist
a positive function v, & L*{0,5), such that
A T(0)Ba|l = vp(t) almost  everywhere
t €(0,b).

(v): The nonlinear operator V: ] x E —=E is
continuous and satisfies Lipschitz condition on
the second argument, such that for aII
¥1,%; € B,, and a positive constant Mz, w
have:

V(2 x1) — N(E,x5) gl —
(vi): The nonlinear operator F :] = E— E'is
continuous and satisfies Lipschitz condition on
the second argument, for x;,x; € B, and the

positive constants M; and M;, we have:

|_,-r1

xa|l.

F'. t =

-

N(t,x,)) — F(t. Ni(t,x,)) My ey — x;
and M; = max,.; .|| F(t, N (£, 0))].

(vii): B:U—E is bounded linear operator,
z|Bll = C, where Cis a positive constant.

(viii): The nonlinear operator g:] = E — E,
satisfy Lipschitz condition on the second
argument, let Ly, L; == 0 be constants, such that
for all xy,%: €5, we have:
gt xe) — gt x2)ll = Ly gllxg —x4]l,  and
Ly = max.e; ol g(£,0)].

The main aim of this section is to find the mild
solution of (1).



Taha

Now let x(t) be the solution of (1). Then we can
define a function

Z(t) = x(t) + g(t,x(t)) — By ult) (2)
From our assumption we want to show that
Z(t) € D(A4), by (2):

t(z(0) = 7(x(®) + g(t,x(8)) — Bu(0))

=71 (xi:t} +g(t,x(t)) — (B, ui:t}ﬂ

By condition (iii) and equation (1) we have
1(z(1)) = Byu(t) — Byu(t) = 0
So, by definition of D{A,),
Z(t) € D(4;), and
Therefore, from (2), (1) can be written in term
Aqand 5; as:

= (x:__t,l + gl x:__t,l]’jl =4 (Z:__t,l —

g(t,x()) + Boul)) + Bult) +

we have
AZ(t) = A Z(1).

F(tn(6x®))

since A is linear then

el P - PR k'
= (:f:._t) +g(tx()) =
AZ(t) — Ag(t,x(t)) + AB,ult) + Bult) +

operator,

F(tn(6x(®))

= A, Z2(t) — Ag(tx(t)) + AByult) + Bult) +
F(tN(tx(0))

, Thus we have :

d P T P £t P
= (x (t)+glt, x-._r,l]fj = A, Z(t) — Agl(t,x(1))
+AByult) + Bu(t) + F (£, N(t,x(8)) )

x(t) + gI::!:, x[:t}] = Z(t) + B,ult)

3)

By condition (iii), EF,u{t) is continuously
differentiable, if x is continuously differentiable
on [0,b], then Z{z) can define as a mild solution
to the Cauchy problem
£2(8) == (x(8) + g(£,x(8)) — B ~u(t), b
<l =—lxit) + glfxit) 2 uir), by

X:CI:I =Xy

equation (3), we get :
o

= o) . ."+ e 3 . 7S
——&lt) = A8 — Agl it xlEh) —.—13:14'\..}

dt
o o o ,_l" . PERA
+Bult) — B, —ult) + Fle, Nt =0t )]

- _a'r o l" . ol |

Since in condition (ii), we have T{f),¥t = 0 is
a Cg-semigroup generated by the linear operator

P . . o
0 =x,+ 50 xy) — By ulll)
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Ay and Z(t) is a solution of (4), then by theorem

2.4, the function Hi{s)=T{t—=s)Z(s) is

differentiable for 0<s=t, and

LH(s) =Tt —s)Lz(s) + Z(s)LT(t - 5),

thus by (4) and theorem 2.4 (ii), we have :

i H(s) =Tt —s)[4:Z(5) — Ag(s,x(s)) +

AByu(s) + Bu(s) — Bo2u(s) +

Fs,N(5x(s)))] + Z(5)[—A,T(t — 5)]

=T(t —5)4,2(s) = T(t — s)Ag(s,x(s))
+T(t— s)ABuls) +

T{t —s)Bu(s)—T{t — 5}5:%11::5}

+T(t —s)F (5, .-"EI:L xfs}]\]

~T(t — 5)4, Z(s) '

and by integration from 0 to t, yield.

H(t) —H(0) = - fl',;i"i:t — 5)Ag(s,x(s))ds+

J3 Tt — s)AByu(s)ds +

I; T{t —s)Buls)ds —

Jo Tt — )Bouls)ds + [{ Tt —

s)F (5, N Iks,x-_,s,l:lfj cis | | .(5)

By integrate the part [, T{t — s)B,fuls)ds in

(5) by part, we get :

x(t) = T(t)xy + T(t)g(0,x5) — g(t, x())

-

—J T::t—s}ﬁglzs,x{:s}]d5+
5

,I:T[:t —s)F (5, N(s, x::E}]jJ ds+ ,I:[I:T::t -

s)A — ATt —5))B, +

T(t —s)Bluls)ds (6)

Definition 3.1: A function x:[0,b] —E

defined by the Integro equation (6) is called a

mild solution of (1) if x is continuously

differentiable on {0, &), continuous on [0, &] and

x(t) EEfor0 <s <t

Definition 3.2 : The boundary value control

problem (1) is said to be controllable on the

interval | = [0, &] if for every xg x4 € E, there

exists a control 1 €U such that the mild

solution (6) satisfied x(b) = x.

Here we further consider

additional conditions :
(ix): There exists a constant & = 0 such that

the following

e P PR
ly voltldt = ky.
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(x): Define the linear continuous operator w
from u onto E as follows
Wi = |Eb[LTJ —s)A— A T(b— 5})5: +

T(b —s)Buls)ds

, and suppose that for every u{.) € U, there
exists a constant A =0 such that
kgllull = gllwaull.

From the above condition (x) and theorem 2.3,
we see that the inverse operator of w exists and
is continuous (bounded). i.e., the operator w1 :
Rang w — U defined by w=(wult)) = u(t)
exists and there exists a positive constant
k2= 0,suchthat [[w=t] = k..

(xi):

CaM Gllxgll + CoMCahy + CoCshy +

CabMCy Cahy + C3bMCshy + (CobM || AB, || +

BMC + ky ko[ gllxg [l + M gllxgll + MC3hy
+C6:.I[.1 I.','”x'l ” + .I[.:::l + EJ:.IrfC-l C;_.:!: +
EJ.'1ffCE.=!3] E T N

where C; =1,i = 2,3,45,6, are constants and

hy =Ly gllxgll + Ly hy = Lyr + L, and
hg = Myr + M.,

(xii): Let
g = C-Ly + C-MbC,L, + C-bMM, +
Co(bkoMCy + koky + bkoMC)

(bMCyL; + bMM,), such that 0=g =1,

where C- = 1 be a constant.

3.2. Main Result

Theorem 3.1 : If the hypotheses (i)-(xii) are
satisfied, then the boundary control nonlinear
system (1) is controllable on /.

Proof. By definition 3.2, and condition (x) we
have _ _ _
xy=x(b) =T(h)xy +T(B)gl0, x,) —

- ~ 3] "1 " a i ™y 4
glb,xy)— |, T(b —s)Ag(s, x:,_s;)a5+
b . Vis 2N d N
,|.;. Tib—5s)F [5, Nis, x-__s,ljj ds +w ulf),
Since w(#) = w~1{w ), then we get that

ult) = wxy — T(B)xy — T(B)gl0, xo) +

i - A
g(b.xg)+ [ T(b — 5)Ag(s,x(s) )ds —

ch T(b—s)F (51 N(s, x{:s}]xj dsl(t) (7)
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Let ¥ = C{J,B,). Using this control (7), we
shall show that the operator @ defined by:
ox(t) = T(t)xo + T(£) g(0,x5) — g (£.x(0) —
vl;T::t — 5};‘1‘5[51 x::s}zlds +

JT(t —s)F [5, N(s, x:ﬁﬁs})] ds+ [S[(T(t -
s)A — A T(t —5))B, +

Tt —s)Blw ™ x, — T(b)xy— T{b) g0, xy) +
g :..;_J_, x'.l:' +

- . . - . . el o
Jo Th —r)Agl(n, x(n }qu_ -, Tb—

n)F (1,8 (1,2 (1)) ) dn](s)ds

has a unique fixed point.
First we show that @ map ¥ into itself, forx € ¥

to show that
ox(O) = Cof GIT(D)xoll +
T g0, x| + Sllgt x(E) +
]

J

-

JF T —s)l . ” F [51 N(s, x{:s}]jl
o

ox(®)l = r.

T =) GIANl Gllg (s, x(x)llds +

das +

J[Jﬂrﬂh&ﬂ+dmﬁﬁ—ﬂ&n
|:.

+ IT(E = s)BI[] gllw™2|
[llxall + ST llxgll +

AT Gllg(0x)ll+ g, x Il +
I3 T =)l Al

b

lg(r,x(r))||dn + J AT =7)l
q o

W

E (280 x02))
where C> =1 be a constant. By (ii),(iv), and
Il = €4, we have

GOx(E) = CoM gllxg |l +

CoM 4l1g(0,x5) — g(0,0) + g(0,0)]| +

dn ](s)ds},

i oy & e # "
ght.xit) ) — glE, 0) + git, 0)

c.

952
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- i R i = r " .
+ || C.ME, |g\sxts)) —gls 0+ gls,00)|ds +
J g

p

c.M |([F I: 5Nl s, .‘:':s."_l —Flz, .T'::.C_"_I +F(s Niz0))| ds+
o n oy - S -
|| Ca(M MABL N + vpls) + MOV &, llxgll +
- ° *
M + M (0, xp)— g(0.0) + go.0yl +
M glixg M gl xp)— g(0.0) + g(0.0)
glb.x,)— gl 0) + gib. 00l +
b
- i Aoy - " . .
MCy _lighr xtr) ) — gle, 0) + g(r, O)ljdr +
P |F x())) - F{ )+ F oy | dr,10s)ds
Since x & B, then _[lx||=r. Thus by

conditions (vi),(vii) and (viii) we get that
@Dl = C;M gl +

CoMC3(Ly gllxpll +La) + CoCullyr +Lo) +
C.BMC,Cy(Lyr + L) + C.bMC (M, r + M) +

(C.bM lIAB, Il + BMC + k,)

ol gllxg |l + M llxgll + MCa{Ly gllxgll +L2) +
Colly gllxy |l + Ly) + BMCy CylLyr + L) +
bMC(Myr + M;)], where C; = 1,i = 3,4,5.6,
are constants. By condition (xi)we have
ox(O)ll = CoM llxgll + CoMC3hy +

CoCuhy + CobMC Cohs + CobMCshs +

(C2bM || AB; ||+ BMC + Ky )k o[ gllxg [ +

M gllxgll + MCghy + Co(Ly gllxg [ + L) +
BMCyCohy + BMChg) = r.

Thus @ map Y into itself. Now for x4, 27 € ¥ we
have

ey AT T '-'a. o "y N F o — P
Moz () — 0 ()l = €1 ||gle.x ()] — g (e +
gllB, 1L LR LB = g )
.

1 A
J T =)l gllAll
|:.

i’ I
gtz xis))— gls.xp05) )||es +
f
AT == SF (s Nz x, (200 — Fis Nz x, (300 lds

+ [Tt —)A—A T(t—5)B, +
i § . h .
T(t —s)BIl glw ™ I[J; lITo— o)l gllAI
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-]
. . = } _
LL?:+| :lTIG—?:.ll

"'. ar -'."'\ "-. ar -'."'\
Gl vy x(red) — glry xalryd)
g

Ty

Iy Foe = - PR
WP Xy ) — F LV [ Xy ) ) )
L | ----.-l TR Chl A | ----,l_,-

P [
ary](=)ds]

where - =1 be a constant. By conditions (ii),
(vii)and _[[A][ = C;, we obtain that

gll@x1(t) — Bx (D)l = Crly llxg(t) — x2(DI +

| eMeiL gl () - x2(s)las +
|:.
[ CaM My g (20 — x50 ds +

C-0MCy + vp{s) + MOk, [BMC, Ly ey (83 — o000 +

|
u

BMMy gllxy (£) — x2(8)1 1(s)ds

and by condition (xii) we see
gl1@x4(2) — Bx, (£)|| = [C7Ly + CDMCyLy
+C-bMMy + Co(bkyMCy + kaky +
MCbiks)(bMCyLy + BMM)] llxey (£) — x2(8) |

that

= q gllxq (2] — x2 (2]
Thus @ is a contraction mapping. Hence by

quasi-Banach contraction principle theorem
(theorem 2.2) there exist a unique fixed point
x(t) €Y such that @x(f) =x(t). Any fixed
point is a mild solution of (1) on [ which
satisfies x{b) =xy. Thus the system (1) is
controllable on.

3.3 Application

The Leslie model [7] is a powerful tool used
the matrices to determine the growth of a
population as well as the age distribution within
a population over certain time interval.
Definition 3.3 [7] : An infinite matrix (a; )7

whose elements satisfy
[F; i=landj=1.2..

ag; =B i=23..andj=i—1 WhereF, = 0
‘o ctherwise

is the average reproduction of females in the i-th
age class, and 0 =X P; =2 1 is the survival rate of

a females in the i-th age class, is called an
infinite dimensional Leslie matrix.
Let {@;;)1" be Leslie matrix whose elements are

function in the quasi-Banach space
0<p=<1 Then

Theorem 3.2 [7] : An infinite-dimensional
Leslie matrix {a;;); defines a bounded linear

L, for

operator from L into L, when 0 << p =< 1,
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Theorem 3.3 [7] : An infinite- dimensional
Leslie matrix {a;;); defines a compact linear

operator from L, into L, when 0 << p =< 1,
Now, let E=U=X=L, for 0=<<p =1 be

real quasi-Banach spaces, and consider the
problem (1), where 4 = (a;;); is an infinite-

dimensional Leslie matrix, & is a matrix whose

elements are functions in the quasi-Banach
space L, 0 < p <2 1,5 isthe identity operator,
and assume that the operators g{.,.) and
F{.,.) in (1) are identical to zero operator.

Then by theorems 3.2 and 3.3, the
matrix 4 = {a;;)i defines a bounded (compact)

linear operator from L, into L, for 0 <Zp =< 1.

By the same way we see that the operator & is

bounded.

Thus the operator A is the infinitesimal

generator of a Cgz-semigroup defined by

T(t) = e = NF_ (t¥4%/k!),t = 0, which is

bounded [10].

Therefore it is not difficult to check that all

assumptions of theorem 3.1, are satisfied for the

above problem [9].

4. Conclusions:

In this paper we extend the study of
controllability of control problem in any quasi-
Banach spaces. Thus the concepts of a quasi-
Banach space are introduced, such as a quasi-
Banach contraction principle theorem, strongly
continuous semigroup and used it to prove
theorem deals with the controllability for
nonlinear boundary-value control problem in the
guasi-Banach spaces.

5. Future work:

The observability and optimality for the
problem (1) may be considered.

References

1. Curtain, R.E. and Pritchard, A.J. 1977.
Functional Analysis in Modern Applied
Mathematics, Academic Press, New York
and London.

2. Engel KJ. and Nagel R. 2000. One-
Parameter ~ Semigroups  for  Linear
Evolution Equation, Springer-Verlag, New
York, Berlin, Inc.

3. Han, H.K. and Park, J.Y. 1999. Boundary
Controllability of Differential Equations
with Nonlocal Condition, Journal of Math.
Anal. Appl. 230, pp:242-250.

4. Al-Moosawy, A.G. 2007. The
Controllability and Optimality of the Mild

954

10.

Iragi Journal of Science, 2013, Vol 54, No.4, pp:948-954

Solution for some Control Problems in
Infinite Dimensional Spaces, Ph.D. Thesis,
Department of Math's.,, College of
Eduction, Al-Mustansiriyah  University,
Iraq.

Balachandran, k. and Anandhi, E.R. 2001.
Boundary Controllability of
Integrodifferential System in Banach space,
Proc. Indian Acad.sci. (math.Sci.), 111 (1).
Ibrahim, A.H. 2012. the controllability for
Some Control Problems in Quasi-Banach

Spaces, M.Sc. Thesis, Department of
Math's, College of Science Al-
Mustansiriyah University, Irag.

Al-Janabi, A.S., Al-Jawari, N.J., Al-

Ehemdi, M. 2008. The Quasi-Banach Space
L, for 0 ==p =1 and its Application on

Infinite-Dimensional Leslie matrix, Al-
Mustansiriyah J.Sci., 19(8), pp:111-126.
Aliprantis, C.D. and Burkinshaw, O. 1998.
Principle of Real Analysis, Third Edition,
Academic Press, new York and London.
Al-Jawari, N.J. 2011. The Quasi-
Controllability for Control Problems in
Infinite  Dimensional ~ Spaces,  Al-
Mustansiriah J.Sci., 22(3), pp:39-50.

Pazy A. 1983. Semigroup of Linear
Operator and Applications to Partial
Differential Equations, Springer-Verlag,
New York, Inc.



