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Abstract: 
  Sufficient conditions for boundary controllability of nonlinear system in quasi-

Banach spaces are established. The results are obtained by using the strongly 

continuous semigroup theory and some techniques of nonlinear functional analysis, 

such as, fixed point theorem and quasi-Banach contraction principle theorem. 

Moreover, we given an example which is provided to illustrate the theory.  

Keywords : Boundary controllability, quasi-Banach spaces, semigroup theory, fixed 

point theorem.  

  

 غير الخطية ذات الشرط الحدودي في فضاءات شبه بناخالقابلية على السيطرة لمسألة السيطرة 
 

 *عبد الوهاب عبد الرزاق طه
 قسم الهندسة الميكانيكية، كلية الهندسة، الجامعة المستنصرية، بغداد، العراق

 
 :الخلاصة

ت إثبات المبرهنة التي تتعامل مع الشروط الكافية للقابلية على السيطرة لمسألة السيطرة غير الخطية ذاتم  
ناخ وذلك باستخدام نظرية شبه الزمرة المستمرة بقوة وبعض الطرائق التقنية ب شبه الشرط الحدودي في فضاءات

علاوة على . ناخبضمن التحليل الدالي غير الخطي مثل نظرية النقطة الصامدة ومبدأ التقليص لشبه فضاء 
 . تم اعطاء مثال يوضح قيمة النظرية أعلاه، ذلك

 

1. Introduction: 
  Many scientific and engineering problems can 

by modeled by partial differential equations, 

integral equations, or coupled ordinary and 

partial differential equations that can be 

described as differential equations in infinite-

dimensional spaces using semigroups. So, the 

study of controllability results of such problems 

in infinite-dimensional spaces is important. For 

the motivation of abstract system and the 

controllability of linear system, one can refer to 

[1,2]. Controllability of nonlinear system 

represented by ordinary differential equations in 

Banach spaces has been extensively studied by 

several authors. Han in [3] studied the boundary 

controllability of differential equations with 

nonlocal condition. Al-Moosawy [4] discussed 

the controllability and optimality of the mild 

solution for semilinear problems in Banach 

spaces, by using semigroup theory and Banach 

contraction principle theorem. In [5] studied the 

boundary controllability of integrodifferential 

system in Banach space. The controllability for 

some control problems in quasi-Banach spaces 

has been studied in [6] by using semigroup 

theory an some techniques of nonlinear 

functional analysis.  

  Since every Banach space is quasi-Banach 

spaces, but the converse is not true [7]. One 

could find a reasonable justification to 

accomplish the study of this paper. The purpose 

of this paper is to extend the study of the 

boundary controllability of nonlinear system in 

any quasi-Banach spaces by using the quasi-

Banach fixed point theorem.  

2. Definitions and theorems :  

  This section contains some definitions and 

theorems that will be used in the sequel.  
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Definition 2.1 [8] : let . Then the 

collection of all measurable functions for 

which  is integrable will be denoted by 

. For each , let       

 . The number  is 

called the  norm of .  

Note 2.1 [7] : The space  for  is 

a vector space, but not a normed space (thus not 

a Banach space ).  

Definition 2.2 [7] : A real-valued function  

defined on a vector space over a field  is 

called a quasi-norm if it satisfies the following 

properties :  

1.  and 

.  

2. .  

3. , 

where  is a constant.  

The pair  is called a quasi-normed 

space.  

Definition 2.3 [7] : Let  be a quasi-

normed space, then  

(a) A sequence  in  is called convergent to 

the limit if, for , there exists a 

positive integer  such that 

 (or 

).  

(b) A sequence  in is called a Cauchy 

sequence if, for  such that 

 (or, 

.  

(c)  is called a complete quasi-normed space 

(or quasi-Banaed space) if every Cauchy 

sequence in  is convergent.  

Definition 2.4 [7] : For , 

let us define the quasi-norm of  which is 

denoted by  as follows :- 

, where  as defined 

in Definition 2.1.  

Theorem 2.1 [7] : The space  for 

, with the quasi-norm given in 

Definition 2.4 is a quasi-Banach space.  

Definition 2.5 [9] : Let  be a mapping of a 

quasi-normed space  into itself, then  is 

called a quasi-contraction mapping if there 

exists a constant  such that       

.  

Remark 2.1 : It is clear from the above 

definition that every quasi-contraction mapping 

is uniformly continuous.  
Theorem 2.2 [6] : (Quasi-Banach contraction 

principle)     

Every quasi-contraction mapping  defined on a 

quasi-Banach space  into itself has a unique 

fixed point . Moreover, if is any point 

in  and the sequence  is defined by 

 

then  and    

, where 

 is a constant.  

Remark 2.2 [6] :  

1. Theorem 2.2 is valid for complete quasi-

metric space [6] (the proof is similar).  

2. Since, every closed subset  of a quasi-

Banach space  is itself a complete quasi-metri  

space [6.Theorem2.2.7]. Therefor theorem 2.2 is 

valid for a quasi-contraction mapping defined  

on  into itself.   

3. By theorem 2.1, the space  for 

 is a quasi-Banach space, thus the    

special case of theorem 2.2 is when we take 

 for  [9].  

Theorem 2.3 [6, theorem 2.2.6] : Let  and  

be a quasi-normed spaces and  be a linear 

transformation of  onto . Then the inverse 

 exists and is continuous on its domain of 

definition if and only if there exists a constant 

, such that , for all 

.  

Definition 2.6 [9] : A family  

of bounded linear operators on a quasi-Banach 

space  is called a (one-parameter) semigroup 

on  if it satisfies the following conditions :  

1. (  is the identity operator on  ).  

2. , for each .  

Definition 2.7 [9] : The infinitesimal generator 

 of the semigroup  on a quasi-Banach 

space  is defined by 

, where the limit 

exists and the domain of  is 

 

exists }.  
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Definition 2.8 [9] : A semigroup 

 of bounded linear operator on a 

quasi-Banach space  is said to be strongly 

continuous semigroup (or  - semigroup ) if : 

  for all .  

Theorem 2.4 [6] : Let  be a quasi-Banach 

space and  be a -semigroup generated by 

. Then the following hold :  

(i): For each ,  

(domain of  ) and 

.  

(ii): For each  and , 

.  

(iii): For each , 

.  

(iv): For each ,  

and .  

(v): For each , 

.  

 For more details about semigroup and -

semigroup on a Banach space see [2, 10].  

3. Controllability of Nonlinear System in 

Quasi-Banach Spaces :  

  In this section we will study the existence 

theorem of the controllability of the mild 

solution to the nonlinear boundary-value control 

problem in appropriate quasi-Banach spaces, by 

using strongly continuous semigroup theory and 

quasi-Banach contraction principle theorem.  

3.1. Preliminaries  

  Let (E,  be a real quasi-

Banach spaces, and  be a linear closed bounded 

and densely operator with 

, where  is a constant 

and let  be a linear operator with  and 

range , where  is a quasi-Banach 

space.  

 Consider the boundary control nonlinear system 

of the form               

 Where  is a linear continuous 

operator, the control function  a quasi-

Banach space of admissible control functions. 

Let  be the linear operator defined by 

: where 

.  

Let , for some . 

We shall make the following hypotheses: 

(i):  and the restriction of  to 

 is continuous relative to graph norm of 

.  

(ii): The operator  is the infinitesimal 

generator of a -semigroup  and there exist 

a constant , such that .  

(iii): There exist a linear continuous operator 

, such that  where 

 for all ,also 

 is continuously differentiable.  

(iv): For all  and 

, moreover there exist 

a positive function , such that 

 almost everywhere 

.  

(v): The nonlinear operator  is 

continuous and satisfies Lipschitz condition on 

the second argument, such that for all 

, and a positive constant , we 

have: 

.  

(vi): The nonlinear operator  is 

continuous and satisfies Lipschitz condition on 

the second argument, for  and the 

positive constants  and , we have: 

 
and .  

(vii):  is bounded linear operator, 

, where  is a positive constant.  

(viii): The nonlinear operator , 

satisfy Lipschitz condition on the second 

argument, let  be constants, such that 

for all  we have: 

, and 

.  

The main aim of this section is to find the mild 

solution of (1).  
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Now let  be the solution of (1). Then we can 

define a function 

  

From our assumption we want to show that 

, by (2) :  

  

 

By condition (iii) and equation (1) we have 

  

So, by definition of , we have 

, and .        

Therefore, from (2), (1) can be written in term 

 and  as : 

  

since  is linear operator, then :       

             

,   Thus we have :  

 

 

 
               (3)  

By condition (iii),  is continuously 

differentiable, if  is continuously differentiable 

on [0,b], then  can define as a mild solution 

to the Cauchy problem :         

, by 

equation (3), we get :  

 

 
     (4) 

Since in condition (ii), we have  is 

a -semigroup generated by the linear operator 

 and  is a solution of (4), then by theorem 

2.4, the function  is 

differentiable for , and 

, 

thus by (4) and theorem 2.4 (ii), we have : 

    

 

 

 
and by integration from 0 to t, yield.  

  

  (5)  

By integrate the part  in 

(5) by part, we get :  

 

 

 
          (6) 

Definition 3.1: A function  

defined by the Integro equation (6) is called a 

mild solution of (1) if  is continuously 

differentiable on , continuous on  and 

 for .  

Definition 3.2 : The boundary value control 

problem (1) is said to be controllable on the 

interval  if for every , there 

exists a control  such that the mild 

solution (6) satisfied .  

Here we further consider the following 

additional conditions :  
(ix): There exists a constant  such that 

.  
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(x): Define the linear continuous operator  

from  onto  as follows           

, and suppose that for every , there 

exists a constant  such that 

.  

From the above condition (x) and theorem 2.3, 

we see that the inverse operator of  exists and 

is continuous (bounded). i.e., the operator  : 

Rang  defined by  

exists and there exists a positive constant 

, such that .  

(xi): 

 

  

 

 

 
where , are constants and 

, and   

.  

(xii): Let 

 

, such that , 

where  be a constant.  

3.2. Main Result  
Theorem 3.1 : If the hypotheses (i)-(xii) are 

satisfied, then the boundary control nonlinear 

system (1) is controllable on .  

Proof. By definition 3.2, and condition (x) we 

have 

 

.  

Since , then we get that  

 

    (7) 

Let . Using this control (7), we 

shall show that the operator  defined by:  

 
 

 

 

 

,  

has a unique fixed point.  

First we show that  map  into itself, for  

to show that .       

 

 

 

 

 

 

 

 
  

 

,                     

where  be a constant. By (ii),(iv), and 

, we have 
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Since , then . Thus by 

conditions (vi),(vii) and (viii) we get that  

 

 

  

  

, where , 

are constants. By condition (xi)we have  

 

 
     

 

. 

Thus  map  into itself. Now for  we 

have  

 

 

 

 
 

  

                 

                  

where  be a constant. By conditions (ii), 

(vii) and , we obtain that  

    

 

 
  

 
,  

and by condition (xii) we see that                            

 

 
 

            

Thus  is a contraction mapping. Hence by 

quasi-Banach contraction principle theorem 

 (theorem 2.2) there exist a unique fixed point 

 such that . Any fixed 

point is a mild solution of (1) on  which 

satisfies . Thus the system (1) is 

controllable on.  

3.3 Application  
  The Leslie model [7] is a powerful tool used 

the matrices to determine the growth of a 

population as well as the age distribution within 

a population over certain time interval.  

Definition 3.3 [7] : An infinite matrix  

whose elements satisfy                     

  where   

is the average reproduction of females in the i-th 

age class, and  is the survival rate of 

a females in the i-th age class, is called an 

infinite dimensional Leslie matrix.  

Let  be Leslie matrix whose elements are 

function in the quasi-Banach space      for 

. Then 

Theorem 3.2 [7] : An infinite-dimensional 

Leslie matrix  defines a bounded linear 

operator from  into  when .  
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Theorem 3.3 [7] : An infinite- dimensional 

Leslie matrix  defines a compact linear 

operator from  into  when .  

Now, let  for  be 

real quasi-Banach spaces, and consider the 

problem (1), where  is an infinite- 

dimensional Leslie matrix,  is a matrix whose 

elements are functions in the quasi-Banach 

space  is the identity operator, 

and assume that the operators  and 

 in (1) are identical to zero operator.  

Then by theorems 3.2 and 3.3, the 

matrix  defines a bounded (compact) 

linear operator from  into  for . 

By the same way we see that the operator  is 

bounded.  

Thus the operator  is the infinitesimal 

generator of a -semigroup defined by   

, which is 

bounded [10].  

Therefore it is not difficult to check that all 

assumptions of theorem 3.1, are satisfied for the 

above problem [9].  

4. Conclusions:  

  In this paper we extend the study of 

controllability of control problem in any quasi-

Banach spaces. Thus the concepts of a quasi-

Banach space are introduced, such as a quasi-

Banach contraction principle theorem, strongly 

continuous semigroup and used it to prove 

theorem deals with the controllability for 

nonlinear boundary-value control problem in the  

quasi-Banach spaces.  

5. Future work: 

  The observability and optimality for the 

problem (1) may be considered.  
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