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Abstract 

     Let R be a prime ring and δ a right (σ,τ)-derivation on R. In the present paper we 

will prove the following results:  

     First, suppose that R is a prime ring and I a non-zero ideal of R if δ acts as a 

homomorphism on I then δ=0 on R, and if δ acts an anti- homomorphism on I then 

either δ=0 on R or R is commutative.  

     Second, suppose that R is 2-torsion-free prime ring and J a non-zero Jordan ideal 

and a subring of R, if δ acts as a homomorphism on J then δ=0 on J, and if δ acts an 

anti- homomorphism on J then either δ=0 on J or J  Z(R). 
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 اليمنى على الحلقات الاولية ( σ,τ) -مشتقات
 
 و اساور دريد حمدي  *عبدالرحمن حميد مجيد
  .، بغداد، العراقجامعة بغداد قسم الرياضيات، كلية العلوم،
 

 :الخلاصة
  :تية في بحثنا هذا سوف نبرهن النتائج الا.  Rالايمن على ( σ,τ) -اققالاشت δحلقة اولية و  R  لتكن    
ذا ا  و  δ=0فأن  I هو تشاكل على δذا كانت إ ، Rمثالي غير صفري على  I حلقة اولية و Rافرض انه : اولا

 .حلقة ابدالية Rاو  Rعلى  δ=0فانه اما  Iتشاكل ضد على  δكانت 
هو  δذا كانت إ،  Rمثالي جوردان غير صفري وحلقة جزئية من  Jو  2-حلقة الالتواء Rافرض انه :  ثانيا

 .  Z(R)مجموعة جزئية من   Jاو  Jعلى  δ=0فانه اما  Jتشاكل او تشاكل ضد على 
 .اليمنى( σ,τ) -مشتقات،(σ,τ) -مشتقات، الحلقات الاولية: المفاتيح

 

 

1. Introduction  

Throughout the present paper, R will denote an 

associative ring with center Z(R). We will write 

for x, y  R, [x, y]=xy-yx and for x y=xy+yx for 

Lie product and Jordan product, respectively. 

Recall that R is a prime if aRb={0} implies that 

a=0 or b=0.  A ring said to be a 2-torsion-free if 

whenever 2a=0, with a  R then a=0. An 

additive subgroup J of R is said to be a Jordan 

ideal of R if u r J   for all u J and r R. An 

additive mapping d: R → R is called derivation 

(resp., Jordan derivation) if d(xy)= d(x)y+xd(y) 

(resp., d(x
2
)= d(x)x+ xd(x)) holds, for all x, y  

R. Let σ, τ are two mappings of R. An additive 

mapping d: R → R is called a (σ, τ)-derivation 

(resp., Jordan (σ, τ)-derivation) on R if d(xy)= 

d(x)σ(y)+τ(x)d(y) (resp., d(x
2
)= 

d(x)σ(x)+τ(x)d(x)) holds, for all x, y  R, of 

course  every (1,1)-derivation (resp., Jordan 

(1,1)-derivation), where 1 is the identity 

mapping on R is derivation (resp., Jordan 

derivation) on R. An additive mapping δ: R → R 

is called a left derivation (resp., Jordan left 

derivation) on R if δ(xy)=xδ(y)+y δ(x) (resp., 

δ(x
2
)= 2x δ(x)) holds, for all x, y  R. An 

additive mapping δ: R → R is called a right 
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derivation (resp., Jordan right derivation) on R if 

δ(xy)=δ(y)x+δ(x)y (resp., δ(x
2
)= 2δ(x)x) holds, 

for all x, y  R. 

 In view of the definition of a  (σ, τ)-

derivation the notation of left (σ, τ)-derivation 

and right (σ, τ)-derivation can be extended as 

follows: An additive mapping δ: R → R is called 

a left (σ, τ)-derivation (resp., Jordan left (σ, τ)-

derivation) on R if δ(xy)=σ(x)δ(y)+τ(y)δ(x)(resp., 

δ(x
2
)= σ(x)δ(x)+τ(x)δ(x)) holds, for all x, y  R. 

Clearly every left (1, 1)-derivation (resp., Jordan 

left (1,1)-derivation) on R.  

An additive mapping δ: R → R is called a right 

(σ, τ)-derivation (resp., Jordan right (σ, τ)-

derivation) on R if δ(xy)= δ(y)σ(x) + δ(x)τ(y) 

(resp., δ(x
2
)= δ(x)σ(x) + δ(x)τ(x)) holds, for all x, 

y  R. Clearly every right (1, 1)-derivation 

(resp., Jordan right (1,1)-derivation) on R.  

Bell and Kappe [1] proved that if d is a 

derivation of a prime ring R which acts as a 

homomorphism or as an anti- homomorphism 

on a nonzero right ideal I of R, then d=0 on R, 

further Yenigul and Arac [2] obtained the above 

result for α-derivation in prime rings. Recently 

M. Ashraf [3] extended the result for (σ,τ)-

derivation in prime and semiprime ring. In [4] 

the authors extended the above results for (σ, σ)-

derivation which acts as a homomorphism or as 

an anti- homomorphism on a nonzero Jordan 

ideal and a subring J of a 2-torsion -free prime 

ring R, then they generalized the above 

extension for generalized (σ, σ)-derivation. Also 

they proved that if  d:R → R is a (σ,τ)-derivation 

which acts as a homomorphism on a nonzero 

Jordan ideal and a subring J of a 2-torsion-free 

prime ring R, then either d=0 on R or 

)(RZJ  . 

    In [5] M. Ashraf  proved that if R is a 2-

torsion-free prime ring, J a nonzero Jordan ideal 

and a subring of R and d is a left (σ, σ)-

derivation of R, which acts as a homomorphism 

or as an anti- homomorphism on R, then d=0 on 

R, the authors in [6] extended this result to a left 

(σ,τ)- derivation which acts as a homomorphism 

or as an anti- homomorphism on a nonzero 

Jordan ideal and a subring J of  R, for more 

details and fundamental results used in this 

paper without mention we refer to [7-13]). 

    In the present paper our objective is to extend 

the above results for a right (σ,τ)-derivation 

which acts as a homomorphism or as an anti- 

homomorphism on  a nonzero  ideal I of  prime 

ring R, and on a nonzero Jordan ideal and a 

subring J of a 2-torsion-free prime ring R. 

2. Right (σ,τ)-derivation as a homomorphism 

or as anti- homomorphism on ideals. 

Let R be a ring and d a derivation of R. If 

d(xy)=d(x)d(y) (resp., d(x
2
)=d(x)d(x)) holds, for 

all x, y  R, then we say that d acts as a 

homomorphism (resp., anti- homomorphism) on 

R. 

     Bell and Kappe [1] proved that if d is a 

derivation of a prime ring R which acts as 

homomorphism or anti- homomorphism on a 

nonzero right ideal I of R; then d=0 on R. This 

result was extended for (σ,τ) by M. Asheraf [3] 

as follows:  

Theorem (2.1): [3] 

     Let R be a prime ring and I a nonzero ideal of 

R. Suppose σ, τ are automorphism of R and d:R 

→ R is a (σ,τ)-derivation of R.  

(i) If d acts as homomorphism on I, then 

d=0 on R. 

(ii) If d acts as anti-homomorphism on I, 

then d=0 on R. 

M. Ashraf in [5] was extended the above results 

for a left (σ,σ)-derivation and recently the 

authors in [6] extend this results to a left (σ,τ)-

derivation which acts as a homomorphism or as 

an anti- homomorphism on a nonzero Jordan 

ideal and a subring J of a 2-torsion-free prime 

ring R as follows:  

 

Theorem (2.2):[6] 

    Let R be a 2-torsion-free prime ring, J a 

nonzero Jordan ideal and a subring of R suppose 

that σ, τ are automorphism of R and δ:R → R is 

a  left (σ,τ)-derivation of R.  

(i) If δ acts as homomorphism on J, then 

either δ =0 on R or  

 J  Z(R). 

(ii) If δ acts as anti-homomorphism on J, 

then either δ =0 on R or J  Z(R). 

In the present paper first we will extend the 

above result to a right (σ,τ)-derivation which 

acts as a homomorphism or as an anti- 

homomorphism on a nonzero ideal I of a prime 

ring R. Secondly, we will extend the above 

result to a right (σ, τ)-derivation which acts as a 

homomorphism or as an anti- homomorphism 

on a nonzero ideal and Jordan ideal and a 

subring J of a 2-torsion-free prime ring R. To 

proof the first theorem we begin with the 

following Lemmas.  

 

Lemma (2.3): [14] 

    Let R be a semiprime ring, I a right ideal of R, 

then Z(I) Z(R).  

Lemma (2.4): [14] 
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    Let R be a semiprime ring, I a nonzero right 

ideal of  R. If I is a commutative as a ring, then 

I Z(R). In addition if R is a prime then R must 

be commutative. 

    Now, we will prove the first main theorem of 

this paper. 

Theorem(2.5): 

    Let R be a prime ring, I a nonzero ideal of R. 

Suppose σ, τ are automorphisms of R and δ:R → 

R is a right (σ,τ)- derivation of R. 

(i)    If δ acts as a homomorphism on I, then δ= 

0 on R. 

(ii)   If δ acts as an anti- homomorphism on I, 

then either δ = 0 on R or R      is commutative. 

Proof: 
(i) If δ acts as a homomorphism on I, then we 

have 

δ(uv)= δ(v)σ(u)+ δ(u)τ(v)= δ(u) δ(v), for all 

Ivu ,                                        ... (2.1) 

     Replacing u by  ut , It in (2.1), we get 

    [δ(v)σ(u)- δ(u) δ(v)] σ(t)= 0, for all Itvu ,,                                          

... (2.2) 

    In (2.2) Replacing t  by  rt , Rr  we get 

[δ(v)σ(u)- δ(u) δ(v)] σ(rt) = 0,for all 

RrItvu  ,,,   i.e., σ
-1

([δ(v)σ(u)-

δ(u)δ(v)])rt=0 and hence            σ 
-1

([δ(v)σ(u)- 

δ(u)δ(v)])RI={0}, for Rvu , . Since R is a 

prime ring and I a nonzero ideal of R, we have  

δ(v)σ(u)- δ(u) δ(v)=0, for all Ivu , . Since δ 

acts as a homomorphism on I, the last equation 

yields that δ(u)τ(v)=0 for all Ivu , . Replacing 

v by  rv , Rr , we get δ(u)τ(rv)=0 for all 

Ivu , , Rr .  Since τ is an automorphisms of 

R, we have δ(u)RI, for all Iu . Since R is 

prime ring and I a nonzero ideal of R, we get 

δ(u)=0, for all Iu . Replacing u by  ur , 

Rr , in the last relation to get 0= δ(ur)= 

δ(r)σ(u)+ δ(u)τ(r)= δ(r)σ(u) , for all 

Iu , Rr . Since R is a prime ring and I is a 

nonzero ideal of R, we get δ=0 on R. 

(ii) If δ acts as an anti- homomorphism on I, 

we have 

       δ(uv)=δ(v)σ(u)+δ(u)τ(v)= δ(v) δ(u), for all 

Ivu ,                                                   ... (2.3)  

Replacing u by  uv in (2.3), we get 

       δ(v)σ(u)σ(v)= δ(v) δ(v)σ(u), for all 
 

Ivu ,
 

.                                 ...(2.4) 

Replacing u by ut, It in (2.4), then we get 

       δ(v)σ(u)σ(t)σ(v)=δ(v)δ(v)σ(u)σ(t)     ... (2.5) 

In view of (2.4), the relation (2.5) yields  that 

δ(v)σ(u)[ σ(v), σ(t)] = 0, for all Itvu ,,  i.e.,    

σ 
-1

(δ(v)) u [v,t]= 0, for all Itvu ,, . Replacing 

u  by  ru, Rr  in the last relation to get           

σ 
-1

(δ(v)) ru [v,t]=0, for all Itvu ,, , this 

implies that σ 
-1

(δ(v)) RI [v,t]={0}, for all 

Itv , . Since R is a prime ring and I a nonzero 

ideal of R, we have either δ(v)=0  or [v,t]=0,  for 

all Itv , . If δ(v)=0, for all Iv , replace v by 

vr, Rr  to get 0= δ(vr)= δ(r)σ(v)+ δ(v)τ(r)= 

δ(r)σ(v), for all Iv , Rr . Since I is ideal of 

R and σ is automorphisms of R, we get δ=0 on 

R. If  [v,t]=0,  for all Itv , , this implies that I 

is commutative, i.e. I=Z(I) by Lemma (2.1), we 

have Z(I) Z(R). Now since I=Z(I) and 

Z(I) Z(R) we have  I Z(R), thus by 

Lemma(2.2) R is commutative. 

3. Right (σ,τ)-derivation as a 

homomorphism or as anti- homomorphism 

on Jordan ideals. 

   The following Lemmas which are essential to 

proof the second main theorem of our paper. 

Lemma (3.1): [5] 

    Let R be a prime ring and J a nonzero Jordan 

ideal of R. If a R and aJ={0} (or Ja={0}), then 

a=0. 

Lemma (3.2): [5] 

   Let R be a 2-torsion-free prime ring and J a 

nonzero Jordan ideal of R. aJb={0}  then a=0 

or  b=0. 

Lemma (3.3): [5] 

   Let R be a 2-torsion-free prime ring and J a 

nonzero Jordan ideal of R. If J is a commutative 

Jordan ideal, then J  Z(R). 

Now, we obtained the following theorem which 

also includes the main results:  

Theorem (3.4): 

   Let R be a 2-torsion-free prime ring and J a 

nonzero Jordan and subring of R. Suppose that 

σ, τ are automorphisms of R and δ:R → R is a 

right (σ,τ)- derivation of R. 

(i) If δ acts as a homomorphism on J, then 

either δ = 0 on R or J  Z(R). 

(ii) If δ acts as an anti-homomorphism on J, 

then either δ = 0 on R or J  Z(R). 

Proof: suppose that J  Z(R) 

(i) If δ acts as a homomorphism on J, then 

we have  δ(uv)=δ(u)δ(v)=δ(v)σ(u)+δ(u)τ(v) 

holds, for all u, v  J                            …(3.1) 

replacing u by ut, t  J in (3.1), we get 

δ(v)σ(ut)+δ(ut)τ(v)=δ(ut)δ(v)=δ(u)δ(tv)=δ(u)(δ(v

)σ(t)+δ(t)τ(v)) = δ(u)δ(v)σ(t)+ δ(u)δ(t)τ(v), for 

all u,v,t  J 

This implies that [δ(v)σ(u)-δ(u)δ(v)]σ(t)={0}, for 

all u,v,t  J and hence [δ(v)σ(u)-
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δ(u)δ(v)]σ(J)={0}, for all u,v  J. Since σ is an 

automorphisms of R and J a nonzero Jordan 

ideal of R, σ(J) is also a nonzero Jordan ideal of 

R. Application of Lemma (3.1) yields that 

0=δ(v)σ(u)-δ(u)δ(v), for all u,v  J. Since δ is a 

homomorphism right (σ, τ) derivation we have, 

0=δ(v)σ(u)-δ(uv)=δ(v)σ(u)-δ(v)σ(u) 

δ(u)τ(v)=δ(u)τ(v), for all u,v  J. Since τ is an 

automorphism of R and by Lemma (3.1), we get 

δ(u)=0, for all u  J. Replacing u by u r, r  R, 

we have 

0=δ(u r)=δ(ur+ru)=δ(ur)+δ(ru) 

 =δ(r)σ(u)+δ(u)τ(r)+ δ(u)σ(r)+δ(r)τ(u) 

= δ(r)σ(u)+δ(r)τ(u)=δ(r)[σ(u)+τ(u)], for all r  

R, u  J. 

Hence we get δ(r)[σ(J)+τ(J)]={0}, for all r  R. 

Since σ, τ are automorphism of R and J is a 

nonzero Jordan ideal of R, we get σ(J) and τ(J) 

are a nonzero Jordan ideals of R and hence we 

get σ(J)+τ(J) is a nonzero Jordan ideal of R, then 

by Lemma (3.1) we get δ(r)=0 for all r  R, this 

implies that δ=0 on R. 

(ii) If δ acts as an anti- homomorphism on 

J, then we have  

δ(uv)=δ(v)δ(u)=δ(v)σ(u)+δ(u)τ(v)    holds, for all 

u, v  J……….                                       …(3.2) 

replacing u by uv  in (3.2), we get 

δ(v)δ(uv)=δ(v)δ(v)σ(u)+δ(v)δ(u)τ(v) 

      =δ(v)σ(u)σ(v)+δ(v)δ(u)τ(v)    for all u, v  J 

or equivalently,  

δ(v)δ(v)σ(u)=δ(v)σ(u)σ(v), for all u, v  J (3.3) 

replacing u by ut, t  J in (3.3), we get 

δ(v)δ(v)σ(u)σ(t)=δ(v)σ(u)σ(t)σ(v), for all u, v  J 

…………………………………………….(3.4) 

In view of (3.3), the relation (3.4) yields that  

δ(v)σ(u)[ σ(v)σ(t)-σ(t)σ(v)]=0, for all u, v  J, 

this implies that 

σ
-1

(δ(v)) J [vt-tv]={0}, for all v, t  J by Lemma 

(3.2), we get either  δ(v)=0 or [v, t]=0, for all v, t 

 J. 

Now, let J1={v J |[v, t]=0, for all t  J } and 

J2={v  J | δ(v)=0}. Clearly, J1 and J2 are 

additive proper subgroups of J whose union in J. 

Hence by Brauer's trick, either J=J1 or J=J2. 

If J=J1 then [v, t]=0, for all v, t  J,  it follows 

that J is commutative, hence by Lemma (3.3), 

we get J  Z(R), a contradiction. Hence, we have 

remaining possibility that δ(v)=0, for all u  J. 

Replacing v by v r, r  R in the above relation 

to get δ(r)[σ(v)+τ(v)]={0}, for all v  J, r  R. 

By similar manner in part (i), we can get our 

result.  
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