

On Right (σ, τ) - Derivation of Prime Rings

A. H. Majeed* and Asawer D. Hamdi,

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

Let *R* be a prime ring and δ a right (σ , τ)-derivation on *R*. In the present paper we will prove the following results:

First, suppose that *R* is a prime ring and *I* a non-zero ideal of *R* if δ acts as a homomorphism on *I* then $\delta=0$ on *R*, and if δ acts an anti-homomorphism on *I* then either $\delta=0$ on *R* or *R* is commutative.

Second, suppose that *R* is 2-torsion-free prime ring and *J* a non-zero Jordan ideal and a subring of *R*, if δ acts as a homomorphism on *J* then $\delta=0$ on *J*, and if δ acts an anti-homomorphism on *J* then either $\delta=0$ on *J* or $J \subseteq Z(R)$.

Keywords: prime rings, (σ, τ) - derivations, right (σ, τ) -derivations.

مشتقات - (ح.م) اليمنى على الحلقات الاولية

عبدالرحمن حميد مجيد* و اساور دريد حمدي

قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق.

الخلاصة:

لتكن
$$R$$
 حلقة اولية و δ الاشتقاق – (σ , σ) الايمن على R . في بحثنا هذا سوف نبرهن النتائج الاتية :
ا**ولا**: افرض انه R حلقة اولية و/ مثالي غير صفري على R ، إذا كانت δ هو تشاكل على / فأن $0=\delta$ وإذا
كانت δ تشاكل ضد على / فانه اما $\delta=\delta$ على R او R حلقة ابدالية.
ثانيا: افرض انه R حلقة الالتواء – 2 و δ مثالي جوردان غير صفري وحلقة جزئية من R ، إذا كانت δ هو
تشاكل او تشاكل ضد على δ فانه اما $\delta=\delta$ على δ او K محموعة جزئية من R ، إذا كانت δ هو
المفاتيح: الحلقات الاولية، مشتقات – (σ , σ)، مشتقات – (σ , σ) اليمنى.

1. Introduction

Throughout the present paper, *R* will denote an associative ring with center *Z*(*R*). We will write for *x*, $y \in R$, [*x*, *y*]=*xy*-*yx* and for $x \circ y=xy+yx$ for Lie product and Jordan product, respectively.

Recall that *R* is a prime if $aRb = \{0\}$ implies that a=0 or b=0. A ring said to be a 2-torsion-free if whenever 2a=0, with $a \in R$ then a=0. An additive subgroup *J* of *R* is said to be a Jordan ideal of *R* if $u \circ r \in J$ for all $u \in J$ and $r \in R$. An additive mapping $d: R \to R$ is called derivation (resp., Jordan derivation) if d(xy)=d(x)y+xd(y) (resp., $d(x^2)=d(x)x+xd(x)$) holds, for all $x, y \in I$

R. Let σ , τ are two mappings of *R*. An additive mapping d: $R \rightarrow R$ is called a (σ, τ) -derivation (resp., Jordan (σ , τ)-derivation) on R if d(xy)= $d(x)\sigma(y)+\tau(x)d(y)$ (resp., $d(x^2) =$ $d(x)\sigma(x)+\tau(x)d(x)$ holds, for all x, y $\in R$, of course every (1,1)-derivation (resp., Jordan (1,1)-derivation), where 1 is the identity mapping on R is derivation (resp., Jordan derivation) on R. An additive mapping $\delta: R \to R$ is called a left derivation (resp., Jordan left derivation) on R if $\delta(xy)=x\delta(y)+y \delta(x)$ (resp., $\delta(x^2) = 2x \ \delta(x)$ holds, for all $x, y \in R$. An additive mapping $\delta: R \to R$ is called a right derivation (resp., Jordan right derivation) on *R* if $\delta(xy) = \delta(y)x + \delta(x)y$ (resp., $\delta(x^2) = 2\delta(x)x$) holds, for all *x*, $y \in R$.

In view of the definition of a (σ, τ) derivation the notation of left (σ, τ) -derivation and right (σ, τ) -derivation can be extended as follows: An additive mapping $\delta: R \to R$ is called a left (σ, τ) -derivation (resp., Jordan left (σ, τ) derivation) on *R* if $\delta(xy)=\sigma(x)\delta(y)+\tau(y)\delta(x)$ (resp., $\delta(x^2)=\sigma(x)\delta(x)+\tau(x)\delta(x)$) holds, for all $x, y \in R$. Clearly every left (1, 1)-derivation (resp., Jordan left (1,1)-derivation) on *R*.

An additive mapping $\delta: R \to R$ is called a right (σ, τ) -derivation (resp., Jordan right (σ, τ) -derivation) on R if $\delta(xy) = \delta(y)\sigma(x) + \delta(x)\tau(y)$ (resp., $\delta(x^2) = \delta(x)\sigma(x) + \delta(x)\tau(x)$) holds, for all x, $y \in R$. Clearly every right (1, 1)-derivation (resp., Jordan right (1, 1)-derivation) on R.

Bell and Kappe [1] proved that if d is a derivation of a prime ring R which acts as a homomorphism or as an anti- homomorphism on a nonzero right ideal I of R, then d=0 on R, further Yenigul and Arac [2] obtained the above result for α -derivation in prime rings. Recently M. Ashraf [3] extended the result for (σ, τ) derivation in prime and semiprime ring. In [4] the authors extended the above results for (σ, σ) derivation which acts as a homomorphism or as an anti- homomorphism on a nonzero Jordan ideal and a subring J of a 2-torsion -free prime ring R, then they generalized the above extension for generalized (σ , σ)-derivation. Also they proved that if $d: R \to R$ is a (σ, τ) -derivation which acts as a homomorphism on a nonzero Jordan ideal and a subring J of a 2-torsion-free prime ring R, then either d=0 on R or $J \subset Z(R)$.

In [5] M. Ashraf proved that if *R* is a 2torsion-free prime ring, *J* a nonzero Jordan ideal and a subring of *R* and *d* is a left (σ , σ)derivation of *R*, which acts as a homomorphism or as an anti- homomorphism on *R*, then d=0 on *R*, the authors in [6] extended this result to a left (σ , τ)- derivation which acts as a homomorphism or as an anti- homomorphism on a nonzero Jordan ideal and a subring *J* of *R*, for more details and fundamental results used in this paper without mention we refer to [7-13]).

In the present paper our objective is to extend the above results for a right (σ, τ) -derivation which acts as a homomorphism or as an antihomomorphism on a nonzero ideal *I* of prime ring *R*, and on a nonzero Jordan ideal and a subring *J* of a 2-torsion-free prime ring *R*.

2. Right (σ, τ) -derivation as a homomorphism or as anti- homomorphism on ideals.

Let *R* be a ring and *d* a derivation of *R*. If d(xy)=d(x)d(y) (resp., $d(x^2)=d(x)d(x)$) holds, for all $x, y \in R$, then we say that *d* acts as a homomorphism (resp., anti-homomorphism) on *R*.

Bell and Kappe [1] proved that if *d* is a derivation of a prime ring *R* which acts as homomorphism or anti- homomorphism on a nonzero right ideal *I* of *R*; then d=0 on *R*. This result was extended for (σ, τ) by M. Asheraf [3] as follows:

Theorem (2.1): [3]

Let *R* be a prime ring and *I* a nonzero ideal of *R*. Suppose σ , τ are automorphism of *R* and *d*:*R* \rightarrow *R* is a (σ , τ)-derivation of *R*.

(i) If d acts as homomorphism on I, then d=0 on R.

(ii) If d acts as anti-homomorphism on I, then d=0 on R.

M. Ashraf in [5] was extended the above results for a left (σ, σ) -derivation and recently the authors in [6] extend this results to a left (σ, τ) derivation which acts as a homomorphism or as an anti- homomorphism on a nonzero Jordan ideal and a subring *J* of a 2-torsion-free prime ring *R* as follows:

Theorem (2.2):[6]

Let *R* be a 2-torsion-free prime ring, *J* a nonzero Jordan ideal and a subring of *R* suppose that σ , τ are automorphism of *R* and $\delta: R \to R$ is a left (σ, τ) -derivation of *R*.

(i) If δ acts as homomorphism on *J*, then either $\delta = 0$ on *R* or

 $J \subseteq Z(R).$

(ii) If δ acts as anti-homomorphism on *J*, then either $\delta = 0$ on *R* or $J \subseteq Z(R)$.

In the present paper first we will extend the above result to a right (σ, τ) -derivation which acts as a homomorphism or as an antihomomorphism on a nonzero ideal *I* of a prime ring *R*. Secondly, we will extend the above result to a right (σ, τ) -derivation which acts as a homomorphism or as an anti- homomorphism or as an anti- homomorphism on a nonzero ideal and Jordan ideal and a subring *J* of a 2-torsion-free prime ring *R*. To proof the first theorem we begin with the following Lemmas.

Lemma (2.3): [14]

Let *R* be a semiprime ring, *I* a right ideal of *R*, then $Z(I) \subset Z(R)$. Lemma (2.4): [14] Let *R* be a semiprime ring, *I* a nonzero right ideal of *R*. If *I* is a commutative as a ring, then $I \subset Z(R)$. In addition if *R* is a prime then *R* must be commutative.

Now, we will prove the first main theorem of this paper.

Theorem(2.5):

Let *R* be a prime ring, *I* a nonzero ideal of *R*. Suppose σ , τ are automorphisms of *R* and $\delta: R \rightarrow R$ is a right (σ, τ) - derivation of *R*.

(i) If δ acts as a homomorphism on *I*, then $\delta = 0$ on *R*.

(ii) If δ acts as an anti- homomorphism on *I*, then either $\delta = 0$ on *R* or *R* is commutative.

Proof:

(i) If δ acts as a homomorphism on *I*, then we have

 $\begin{aligned} \delta(uv) &= \ \delta(v)\sigma(u) + \ \delta(u)\tau(v) = \ \delta(u) \ \delta(v), \ \text{for all} \\ u,v \in I & \dots (2.1) \end{aligned}$

Replacing *u* by *ut*, $t \in I$ in (2.1), we get

 $[\delta(v)\sigma(u) - \delta(u) \ \delta(v)] \ \sigma(t) = 0, \text{ for all } u, v, t \in I$... (2.2)

In (2.2) Replacing t by rt, $r \in R$ we get $[\delta(v)\sigma(u) - \delta(u) \quad \delta(v)] \quad \sigma(rt) = 0$, for all $u, v, t \in I, r \in R$ $\sigma^{-1}([\delta(v)\sigma(u)$ i.e.. $\sigma^{-1}([\delta(v)\sigma(u) \delta(u)\delta(v)$])*rt*=0 and hence $\delta(u)\delta(v)$])*RI*={0}, for $u, v \in R$. Since *R* is a prime ring and I a nonzero ideal of R, we have $\delta(v)\sigma(u) - \delta(u) \delta(v) = 0$, for all $u, v \in I$. Since δ acts as a homomorphism on I, the last equation yields that $\delta(u)\tau(v)=0$ for all $u, v \in I$. Replacing *v* by rv, $r \in R$, we get $\delta(u)\tau(rv)=0$ for all $u, v \in I$, $r \in R$. Since τ is an automorphisms of *R*, we have $\delta(u)RI$, for all $u \in I$. Since *R* is prime ring and I a nonzero ideal of R, we get $\delta(u)=0$, for all $u \in I$. Replacing u by ur, $r \in R$, in the last relation to get $0 = \delta(ur) = \delta(ur)$ $\delta(r)\sigma(u) + \delta(u)\tau(r) =$ $\delta(r)\sigma(u)$, for all $u \in I$, $r \in R$. Since R is a prime ring and I is a nonzero ideal of *R*, we get $\delta = 0$ on *R*.

(ii) If δ acts as an anti- homomorphism on *I*, we have

 $\delta(uv) = \delta(v)\sigma(u) + \delta(u)\tau(v) = \delta(v) \ \delta(u), \text{ for all} u, v \in I \qquad \dots (2.3)$

Replacing u by uv in (2.3), we get

$$\delta(v)\sigma(u)\sigma(v) = \delta(v) \ \delta(v)\sigma(u), \text{ for all } u, v \in I$$
...(2.4)

Replacing *u* by *ut*, $t \in I$ in (2.4), then we get

 $\begin{array}{ll} \delta(v)\sigma(u)\sigma(t)\sigma(v)=\delta(v)\delta(v)\sigma(u)\sigma(t) & \dots (2.5) \\ \text{In view of (2.4), the relation (2.5) yields that} \\ \delta(v)\sigma(u)[\ \sigma(v),\ \sigma(t)] = 0, \text{ for all } u,v,t \in I \text{ i.e.,} \end{array}$

 $\sigma^{-1}(\delta(v)) u[v,t] = 0$, for all $u, v, t \in I$. Replacing u by ru, $r \in R$ in the last relation to get $\sigma^{-1}(\delta(v))$ ru [v,t]=0, for all $u, v, t \in I$, this implies that $\sigma^{-1}(\delta(v)) RI [v,t] = \{0\}$, for all $v, t \in I$. Since *R* is a prime ring and *I* a nonzero ideal of R, we have either $\delta(v)=0$ or [v,t]=0, for all $v, t \in I$. If $\delta(v)=0$, for all $v \in I$, replace v by *vr*, $r \in R$ to get $\theta = \delta(vr) = \delta(r)\sigma(v) + \delta(v)\tau(r) =$ $\delta(r)\sigma(v)$, for all $v \in I$, $r \in R$. Since *I* is ideal of *R* and σ is automorphisms of *R*, we get $\delta=0$ on *R*. If [v,t]=0, for all $v,t \in I$, this implies that *I* is commutative, i.e. I=Z(I) by Lemma (2.1), we have $Z(I) \subset Z(R)$. Now since I = Z(I) and $Z(I) \subset Z(R)$ we have $I \subset Z(R)$, thus by Lemma(2.2) R is commutative.

3. Right (σ, τ) -derivation as a homomorphism or as anti- homomorphism on Jordan ideals.

The following Lemmas which are essential to proof the second main theorem of our paper.

Lemma (3.1): [5]

Let *R* be a prime ring and *J* a nonzero Jordan ideal of *R*. If $a \in R$ and $aJ = \{0\}$ (or $Ja = \{0\}$), then a=0.

Lemma (3.2): [5]

Let *R* be a 2-torsion-free prime ring and *J* a nonzero Jordan ideal of *R*. $aJb=\{0\}$ then a=0 or b=0.

Lemma (3.3): [5]

Let *R* be a 2-torsion-free prime ring and *J* a nonzero Jordan ideal of *R*. If *J* is a commutative Jordan ideal, then $J \subseteq Z(R)$.

Now, we obtained the following theorem which also includes the main results:

Theorem (3.4):

Let *R* be a 2-torsion-free prime ring and *J* a nonzero Jordan and subring of *R*. Suppose that σ , τ are automorphisms of *R* and $\delta: R \to R$ is a right (σ, τ) - derivation of *R*.

(i) If δ acts as a homomorphism on *J*, then either $\delta = 0$ on *R* or $J \subseteq Z(R)$.

(ii) If δ acts as an anti-homomorphism on *J*, then either $\delta = 0$ on *R* or $J \subseteq Z(R)$.

Proof: suppose that $J \not\subseteq Z(R)$

(i) If δ acts as a homomorphism on *J*, then we have $\delta(uv) = \delta(u)\delta(v) = \delta(v)\sigma(u) + \delta(u)\tau(v)$ holds, for all $u, v \in J$...(3.1)

replacing *u* by *ut*, $t \in J$ in (3.1), we get $\delta(v)\sigma(ut) + \delta(ut)\tau(v) = \delta(ut)\delta(v) = \delta(u)\delta(tv) = \delta(u)(\delta(v))\sigma(t) + \delta(t)\tau(v) = \delta(u)\delta(v)\sigma(t) + \delta(u)\delta(t)\tau(v)$, for

 $\delta(u)\delta(v)]\sigma(J)=\{0\}$, for all $u,v \in J$. Since σ is an automorphisms of R and J a nonzero Jordan ideal of R, $\sigma(J)$ is also a nonzero Jordan ideal of R. Application of Lemma (3.1) yields that $0=\delta(v)\sigma(u)-\delta(u)\delta(v)$, for all $u,v \in J$. Since δ is a homomorphism right (σ, τ) derivation we have, $0=\delta(v)\sigma(u)-\delta(uv)=\delta(v)\sigma(u)-\delta(v)\sigma(u)$

 $\delta(u)\tau(v) = \delta(u)\tau(v)$, for all $u, v \in J$. Since τ is an automorphism of *R* and by Lemma (3.1), we get $\delta(u)=0$, for all $u \in J$. Replacing *u* by $u \circ r$, $r \in R$, we have

 $\theta = \delta(u \circ r) = \delta(ur + ru) = \delta(ur) + \delta(ru)$

 $= \delta(r)\sigma(u) + \delta(u)\tau(r) + \delta(u)\sigma(r) + \delta(r)\tau(u)$

 $= \delta(r)\sigma(u) + \delta(r)\tau(u) = \delta(r)[\sigma(u) + \tau(u)], \text{ for all } r \in R, u \in J.$

Hence we get $\delta(r)[\sigma(J)+\tau(J)]=\{0\}$, for all $r \in R$. Since σ , τ are automorphism of R and J is a nonzero Jordan ideal of R, we get $\sigma(J)$ and $\tau(J)$ are a nonzero Jordan ideals of R and hence we get $\sigma(J)+\tau(J)$ is a nonzero Jordan ideal of R, then by Lemma (3.1) we get $\delta(r)=0$ for all $r \in R$, this implies that $\delta=0$ on R.

(ii) If δ acts as an anti- homomorphism on J, then we have

replacing u by uv in (3.2), we get

 $\delta(v)\delta(uv) = \delta(v)\delta(v)\sigma(u) + \delta(v)\delta(u)\tau(v)$

 $= \delta(v)\sigma(u)\sigma(v) + \delta(v)\delta(u)\tau(v) \text{ for all } u, v \in J$ or equivalently,

 $\delta(v)\overline{\delta}(v)\sigma(u) = \delta(v)\sigma(u)\sigma(v)$, for all $u, v \in J$ (3.3) replacing u by $ut, t \in J$ in (3.3), we get

 $\delta(v)\delta(v)\sigma(u)\sigma(t)=\delta(v)\sigma(u)\sigma(t)\sigma(v)$, for all $u, v \in J$

In view of (3.3), the relation (3.4) yields that

In view of (3.3), the relation (3.4) yields that $\delta(v)\sigma(u)[\sigma(v)\sigma(t)-\sigma(t)\sigma(v)]=0$, for all $u, v \in J$, this implies that

 $\sigma^{-1}(\delta(v)) J [vt-tv] = \{0\}$, for all $v, t \in J$ by Lemma (3.2), we get either $\delta(v) = 0$ or [v, t] = 0, for all $v, t \in J$.

Now, let $J_1 = \{v \in J \mid [v, t] = 0, \text{ for all } t \in J \}$ and $J_2 = \{v \in J \mid \delta(v) = 0\}$. Clearly, J_1 and J_2 are additive proper subgroups of *J* whose union in *J*. Hence by Brauer's trick, either $J = J_1$ or $J = J_2$.

If $J=J_1$ then [v, t]=0, for all $v, t \in J$, it follows that J is commutative, hence by Lemma (3.3), we get $J \subseteq Z(R)$, a contradiction. Hence, we have remaining possibility that $\delta(v)=0$, for all $u \in J$. Replacing v by $v \circ r$, $r \in R$ in the above relation to get $\delta(r)[\sigma(v)+\tau(v)]=\{0\}$, for all $v \in J$, $r \in R$. By similar manner in part (i), we can get our result.

References

- 1. Bell, H. E., and Kappe, L. C.**1989**. Rings in which derivations satisfy certain algebraic conditions, *Acta Math. Hunger*, 53, pp:339–346.
- 2. Yenigul and Aragac, 1994. On prime and semiprime rings with α derivations, *Turkish J. Math.*, 18, pp:208 284.
- **3.** Ashraf, M., Rehman N. and Quadri, M. A. **1999**. On (σ, τ) derivations in certain classes of rings, *Rad Math.*, **9**, pp:187–192.
- 4. Majeed, A.H., and Hamdi Asawer, D. 2009. (σ , τ)- derivations on Jordan ideals, *Scientia Magna*, 5(3), pp:111-116.
- 5. Zaidi, S. M. A., Ashraf, M. and Ali, S. 2004. On Jordan ideals and left (θ, θ) -derivations in prime rings, *IJMMS*, 37, pp:1957 1964.
- 6. Hamdi, A. D. 2007. (σ, τ) derivations on prime rings. M.Sc., University of Baghdad, college of Science, Iraq, Baghdad.
- 7. Ali, A. and Kumar, D. 2007. Derivation which acts as a homomorphism or as an anti-homomorphism in a prime ring, *International Mathematical Forum*,2, pp:1105–1110.
- 8. Ashraf, M. and Rehman N. 2000. On Lie ideals and Jordan left derivation of prime rings, *Arch. Math.*(*Brno*), 36, pp:201 206.
- Ashraf M. 2005. On left (Θ,Φ)- derivations of prime rings, *Archivum Mathematicum* (*Brno*), *Tomus*, 41, pp:157-166.
- 10. Golbasi, Ö. and Aydin, N. 2002. Some results on endomorphisms of prime ring which are (σ, τ) derivation, *East Asian Math. J.*, 18, pp:33 41.
- **11.** Herestein, I. N. **1965.** *Topics in ring theory*, The University of Chicago Press, Chicago.
- 12. Jung, Y.S. and Park, K.H. 2006. On generalized (α,β) derivations and commutivity in prime rings, *Bull. Korean Math.Soc.*, 43, pp:101-106.
- **13.** Sheya Farhan, D. **2004.** *Lie Ideal on prime rings with higher derivations and Jordan right derivations*, M.Sc., University of Al-Mustansiriyah, college of Education.
- 14. Herestein, I. N. 1976. *Rings with involution*, The University of Chicago Press Chicago.