

On the Size of Complete Arcs in Projective Space of Order 17

N.A.M. Al-Seraji*
Department of Mathematics, College of Science, University of Al-Mustansiriya, Baghdad, Iraq.

Abstract

The main goal of this paper is to show that a q-arc in $P G(3, q)$ and $q=17$ is subset of a twisted cubic, that is, a normal rational curve. The maximum size of an arc in a projective space or equivalently the maximum length of a maximum distance separable linear code are classified. It is then shown that this maximum is $q+1$ for all dimensions up to q.

Keyword: Arc, MDS code, normal rational curve, main conjecture.
حول حجم الأقواس التامة في الفضاء ألإسقاطي من الرتبة 17

قسم الرياضيات، كلية العلوم، الجامعة المستتصرية، بغداد، العراق

> الخلاصة:
> الههف الرئيسي من هذا البحث هو نوضيح بان القوس في فضاء الإسقاط ثلاثي الإبعاد من الرتبة السابعة
> عشر هو مجموعة جزئية من المنحني النسبي الطبيعي. أن حجم النهاية العظمى للقوس في فضاء إسقاطي أو مكافئا لطول النهاية العظمى ذات الشفرة الخطية مفصولة المسافة تم تصنيفها. كما تم توضيح بان هذه النهاية العظمى هي q+1 لكل الإبعاد حتى q.

1. Introduction

The subject of this paper is suggested by Prof. J.W.P Hirschfeld in 2008. The main conjecture $\mathrm{M} C_{k}$ for codes, always taking $q>k$, is the following:
$m(k-1, q)=\left\{\begin{array}{l}q+2, \text { q even for } k=q-1 \\ q+1, \text { other wise }\end{array}\right.$
such that the value $q+2$ for $k=q-1$ both with q even, and $q+1$, in all other cases. Also

$$
\begin{equation*}
m(k, q)=k+1, \text { for } q \leq k \tag{2}
\end{equation*}
$$

Establish this for 6-dimensional code and small values of q. In projective space of $k-1$ dimensions over the finite field of $q=p^{h}$ elements, p prime \mathbb{F}_{q}, the following three notions are equivalent for $n \geq k$:

1) An n-arc in $P G(k-1, q)$, that is, a set of n points with at most $k-1$ in any hyperplane;
2) A set of n vectors in $V(k, q)$ with any k linearly independent;
3) A maximum distance separable linear code of length n, dimension k, and hence minimum distance $d=n-k+1$, that is, an $[n, k, n-k+1]$ code.
For more details see [1-6].

2. Previous Results

Definition (1)[3]:For any given q, the set \mathbb{F}_{q} satisfies the following properties:
i. The set \mathbb{F}_{q}, where $q=p^{h}$, is a field of characteristic p;

[^0]ii. The elements x of \mathbb{F}_{q} satisfy $x^{q}-x=0 ;$
iii. \quad There exists δ in \mathbb{F}_{q} such that $\delta^{q-1}=1$ and $\mathbb{F}_{q}=\left\{0,1, \delta, \ldots \delta^{q-2}\right\}$; such an δ is called a primitive.

Definition (2)[3]: Let $V=V(n+1, K)$ be $(n+1)$-dimensional vector space over the field K with origin O. Then consider the equivalence relation on the points of $V \backslash\{O\}$ whose equivalence classes are one-dimensional subspaces of V with the origin deleted; that is, if $X, Y \in V \backslash\{O\}$ and for some basis $X=\left(x_{0}, \ldots, x_{n}\right), Y=\left(y_{0}, \ldots, y_{n}\right), \quad X \quad$ is equivalent to Y if, for some t in $K_{0}, y_{i}=t x_{i}$. For all i.
Then the set of equivalence classes is the ndimensional projective space over K and is denoted by $P G(n, K)$ or; if $K=G F(q)$, by $P G(n, q)$. The elements of $P G(n, q)$ are called points.

Definition (3)[3]: A subspace of dimension r of $P G(n, q)$ will be called an r-space and is denoted by π_{r}. It is a set of points represented by vectors which form (with the origin) a subspace of $V(n+1, q)$ of dimension $r+1$. When $r=0$ then π_{0} is exactly a point of $P G(n, q)$. When $r=1, \pi_{1}$ is called a line and, when $r=2, \pi_{2}$ is called a plane. π_{n-1} is called a prime or a hyperplane.

Definition (4)[3]:

i. A linear code C is a subspace of $V(n, q)$.
ii. If $\operatorname{dim}(C)=k$, then C is an $[n, k]$ code.

Theorem (5)[3]:The space $P G(r-1, q)$ contains
i. $\quad\left(q^{r}-1\right) /(q-1)$ points,
ii. $\quad \frac{\left(q^{r}-1\right)\left(q^{r-1}-1\right)}{\left(q^{2}-1\right)(q-1)}$ lines,
iii. $\quad q+1$ points on a line,
iv. $\left(q^{r-1}-1\right) /(q-1)$ lines through a point.

Definition (6)[3]:An n-arc is complete if it is maximal with respect to inclusion; that is, it is not contained in an $(n+1)$-arc.

Definition (7)[4]:A normal rational curve in $P G(r, q)$ is any subset of $\operatorname{PG}(r, q)$ which is
projectively equivalent to
$\left\{\left(t^{r}, t^{r-1}, \cdots, t, 1\right) \in P G(r, q) \mid t \in \mathbb{F}_{q} \cup\{\infty\}\right\}$.
For $r=2$, it is a conic; for $r=3$, it is a twisted cubic.

Definition (8)[4]:Let $m(r, q)$ be the maximum size of an arc in $P G(r, q)$; also, let $m^{\prime}(r, q)$ denote the size of the second largest complete arc in $P G(r, q)$. Then an n-arc with $n>m^{\prime}(r, q)$ is contained in an $m(r, q)$-arc.

Theorem (9)[5]:

i. The dual code of a linear MDS code is also MDS.
ii. An n-arc exists in $P G(k-1, q)$ if and only if an n-arc exists in $P G(n-k-1, q)$.

Corollary (10)[4]:

i. $\quad \mathrm{A}(q+1)$-arc exists in $P G(k-1, q)$ if and only if a $(q+1)$-arc exists in $P G(q-k, q)$.
ii. $\quad \mathrm{A}(q+2)$-arc exists in $P G(k-1, q)$ if and only if a $(q+2)$-arc exists in $P G(q-k+1, q) ; \quad$ hence if $m(k-1, q)=q+1$ so also $m(q-k+1, q)=q+1$.
iii. $\quad \mathrm{A}(q+3)$-arc exists in $P G(k-1, q)$ if and only if a $(q+3)$-arc exists in $P G(q-k+2, q)$.

Theorem (11)[3]: In $P G(2, q), q$ odd, a q-arc lies on a conic.

Theorem (12)[4]: In $P G(3, q), \quad q$ odd, a $(q+1)-\operatorname{arc}$ is a twisted cubic.

Theorem (13)[4]: Let K be a k-arc in $P G(r, q)$ with $q+1 \geq k \geq r+3 \geq 6$ and suppose there exist $P_{0}, P_{1} \in K$ and a hyperplane π containing neither P_{0} nor P_{1} such that, for $i=0,1$, each projection K_{i} of K into π is rational in π. Then the arc K is contained in one and only one normal rational curve in $P G(r, q)$.

Theorem (14)[4]:Let K be a $(q+2)$-arc in $P G(r, q)$ with $q+1 \geq r+3 \geq 6$. If a hyperplane π of $P G(r, q)$ contains neither of the points P_{0}, P_{1} of K, then it cannot happen that both projections K_{i} of K from $P_{i}, i=0,1$, onto π are rational in π. In particular, if every $(q+1)$-arc in $P G(r-1, q)$ is rational, then $m(r, q)=q+1$.

Rationality of $(q-3)$-arcs in $P G(3, q)$ for $q=17$
Throughout this section let $q=17$ and $\delta=3$, a primitive element of \mathbb{F}_{17}. Arcs in $\operatorname{PG}(2,17)$ have been classified [1]. In particular, there exists a complete 14 -arc, unique up to projectivity. A construction will now be given of such a complete 14 -arc. The following formulas are useful for addition in \mathbb{F}_{17} :
$1-\delta=\delta^{6}, \quad 1-\delta^{2}=\delta^{2}, \quad 1-\delta^{3}=\delta^{10}$,
$1-\delta^{4}=\delta^{5}, \quad 1-\delta^{7}=\delta^{11}, \quad 1-\delta^{8}=\delta^{14}$,
$1-\delta^{9}=\delta^{12}, \quad 1-\delta^{13}=\delta^{15}$.
Let
$P_{1}=(1,0,0), \quad P_{2}=(0,1,0)$,
$P_{3}=(0,0,1), \quad P_{4}=(1,1,1)$,
$\left.P_{5}=\left(\delta, \delta^{10}, 1\right), \quad P_{6}=\delta^{12}, \delta^{15}, 1\right)$,
$\left.P_{6}=\delta^{12}, \delta^{15}, 1\right), \quad P_{7}=\left(\delta^{10}, \delta^{12}, 1\right)$,
$P_{8}=\left(\delta^{2}, \delta^{7}, 1\right), \quad P_{9}=\left(\delta^{3}, \delta^{4}, 1\right)$,
$P_{10}=\left(\delta^{7}, \delta^{11}, 1\right), \quad P_{11}=\left(\delta^{13}, \delta^{8}, 1\right)$,
$P_{12}=\left(\delta^{9}, \delta^{6}, 1\right), \quad P_{13}=\left(\delta^{6}, \delta^{5}, 1\right)$,
$P_{14}=\left(\delta^{8}, \delta^{14}, 1\right)$
Lemma(1)[1]: Let P_{j} be as in (3). Then $K=\left\{P_{j} \mid 1 \leq j \leq q-3\right\}$ is a complete 14 -arc in $P G(2,17)$.

The stabilizer group of K is denoted by $G(K)$ is generated by g_{1}, g_{2} where

$$
\begin{aligned}
& g_{1}=\left(\begin{array}{ccc}
0 & \delta^{15} & 0 \\
\delta & 0 & 0 \\
\delta^{14} & \delta^{13} & \delta^{8}
\end{array}\right), \\
& g_{2}=\left(\begin{array}{ccc}
\delta^{7} & 1 & \delta^{6} \\
\delta^{13} & \delta^{13} & \delta^{13} \\
0 & 0 & \delta^{14}
\end{array}\right) .
\end{aligned}
$$

Then $G(K)$ has the following orbits on K : one orbit $O_{4}=\left\{P_{1}, P_{2}, P_{4}, P_{5}, P_{7}, P_{8}, P_{11}, P_{14}\right\}$, one orbit $O_{5}=\left\{P_{6}, P_{9}, P_{10}, P_{12}\right\}$ and one orbit $O_{1}=\left\{P_{3}, P_{13}\right\}$. The group $G(K)$ stabilizes a line $\ell=v(x-3 y)$ containing O_{1} on a conic $\boldsymbol{C}=v(x y-7 x z+6 y z)$, and partitions the line ℓ into three orbits are as following:
$\left\{\left(\delta^{4}, \delta^{3}, 1\right),\left(\delta^{3}, \delta^{2}, 1\right),\left(\delta^{14}, \delta^{13}, 1\right),\left(\delta^{5}, \delta^{4}, 1\right)\right\}$
$\left\{\left(\delta^{11}, \delta^{10}, 1\right),\left(\delta^{10}, \delta^{9}, 1\right),\left(\delta^{9}, \delta^{8}, 1\right),\left(1, \delta^{15}, 1\right)\right\}$
$\left\{\left(\delta^{2}, \delta, 1\right),\left(\delta^{15}, \delta^{14}, 1\right),\left(\delta^{7}, \delta^{6}, 1\right),\left(\delta^{12}, \delta^{11}, 1\right)\right\}$
Also three orbits $O_{1}=\left\{P_{3}, P_{13}\right\}$, $O_{2}=\left\{(\delta, 1,1),\left(\delta^{13}, \delta^{12}, 1\right)\right\}$,
$O_{3}=\left\{(\delta, 1,0),\left(\delta^{8}, \delta^{7}, 1\right)\right\}$. Then K consists of ten points $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{7}, P_{8}, P_{11}, P_{13}, P_{14}$ on a conic \boldsymbol{C}, two of them P_{2}, P_{13} on ℓ, and eight points in O_{4} on \boldsymbol{C}. The points in O_{5} not on \boldsymbol{C}. The points in O_{2} and O_{3} on ℓ, where

$$
\begin{gathered}
\left(\delta^{13}, \delta^{12}, 1\right)=P_{6} P_{9} \cap \ell=P_{10} P_{12} \cap \ell \\
(\delta, 1,1)=P_{6} P_{10} \cap \ell=P_{9} P_{12} \cap \ell
\end{gathered}
$$

$$
(\delta, 1,0)=P_{6} P_{12} \cap \ell,\left(\delta^{8}, \delta^{7}, 1\right)=P_{9} P_{10} \cap \ell .
$$

The tangents at P_{3} and P_{13} to \boldsymbol{C} meet at R. The lines
$P_{1} R, P_{2} R, P_{3} R, P_{4} R, P_{5} R, P_{7} R, P_{8} R, P_{11} R, P_{13} R, P_{14} R ;$
Are part of a pencil. However $\mathrm{O}_{4}{ }^{\prime}=\mathrm{C}-\left\{\mathrm{O}_{2} \cup \mathrm{O}_{4}\right\}$ is inequivalent to O_{4}. The other eight lines of the pencil meet C in O_{4}.

Theorem (2): Let G be the projective automorphism group of the complete ($q-3$)$\operatorname{arc} K$ in Lemma 1. Then
i. $\quad G$ acts transitively on K;
ii. The stabilizer G_{3} of P_{3} in G acts 3transitively and faithfully on the set of five unisecants of K through P_{3};
iii. $\quad\left|G_{3}\right|=4$ and $|G|=8$.

Proof: Let $\left(t_{i}, 1,0\right)$ be the projection of P_{i} from P_{3} to the line $v(z)$ for $i \in\{1,2, \ldots, q-3\}-\{3\}$. Then t_{i} takes the respective values $\infty, 0,1, \delta^{7}, \delta^{13}, \delta^{14}, \delta^{11}, \delta^{15}, \delta^{12}, \delta^{5}, \delta^{3}, \delta, \delta^{10}$. Therefore, the unisecant ℓ_{i} of K through P_{3} takes the form
$v(X+3 Y), v(X+2 Y), v(X+4 Y), v(X+8 Y)$, $v(X+Y)$.

We identify a line ℓ through P_{3} with $x \in \mathbb{F}_{q} \cup\{\infty\}$ satisfying $\ell \cap v(Z)=(x, 1,0)$. Now, a projectivity $g \in G_{3}$ induced by a 3×3 matrix $\left[a_{i j}\right]$ maps a line x to

$$
\left(a_{11} x+a_{21}\right) /\left(a_{12} x+a_{22}\right)
$$

Let $\sigma \in Z_{4}$. We shall show that there exists a unique projectivity $g \in G_{3}$ such that $g\left(\ell_{i}\right)=\ell_{\sigma(i)}$.
Suppose a matrix $A=\left[a_{i j}\right]$ induces such a projectivity g. Since the linear fractional transformation

$$
\left(a_{11} x+a_{21}\right) /\left(a_{12} x+a_{22}\right)
$$

Maps $\delta^{2}, \delta^{4}, \delta^{6}, \delta^{8}, \delta^{9}$ to
$\delta^{6}, \delta^{4}, \delta^{8}, \delta^{9}, \delta^{2}$ respectively, A takes the form

$$
A=\left(\begin{array}{ccc}
\delta^{7} & 1 & \delta^{6} \\
\delta^{13} & \delta^{13} & \delta^{13} \\
\alpha & \beta & \gamma
\end{array}\right)
$$

Since $g(K)=K$, so $g P_{1}=P_{5}$ and $g P_{2}=P_{4}$; hence $\alpha=\beta=0$. Similarly, $g P_{4}=P_{8}$ yields $\gamma=\delta^{14}$. Note that $A^{4}=I_{3}$. It can be verified that g sends P_{1}, \ldots, P_{14} to $P_{5}, P_{4}, P_{3}, P_{8}, P_{14}, P_{9}, P_{2}, P_{7}, P_{12}, P_{6}, P_{1}, P_{10}, P_{13}$, P_{11}, respectively.

Let ϑ be a group homomorphism from G_{3} to $\boldsymbol{Z}_{\mathbf{4}}$ such that $g\left(\ell_{i}\right)=\ell_{\vartheta(g)(i)}$. Since g generate \boldsymbol{Z}_{4}, so ϑ is surjective. Finally $\left|\vartheta^{-1}(\sigma)\right|=1$, which implies that ϑ is injective.

Lemma(3)[1]: An 13-arc in $P G(2,17)$ is projectively isomorphic to either $\left\{\left(t^{2}, t, 1\right) \mid t \in \mathbb{F}_{17}-\{0,1\}\right\}$ or $K-\left\{P_{14}\right\}$.

Theorem (4): Let $Q_{i}, 1 \leq i \leq 14$, be points in $P G(2,17)$ with the following coordinates:
$Q_{1}=\left(1,0, a_{1}\right), \quad Q_{2}=\left(0,1, a_{2}\right)$,
$Q_{3}=(0,0,1), \quad Q_{4}=\left(1,1, a_{4}\right)$,
$Q_{5}=\left(\delta, \delta^{10}, a_{5}\right), \quad Q_{6}=\left(\delta^{12}, \delta^{15}, a_{6}\right)$,
$Q_{7}=\left(\delta^{10}, \delta^{12}, a_{7}\right), \quad Q_{8}=\left(\delta^{2}, \delta^{7}, a_{8}\right)$,
$Q_{9}=\left(\delta^{3}, \delta^{4}, a_{9}\right), \quad Q_{10}=\left(\delta^{7}, \delta^{11}, a_{10}\right)$,
$Q_{11}=\left(\delta^{13}, \delta^{8}, a_{11}\right), Q_{12}=\left(\delta^{9}, \delta^{6}, a_{12}\right)$,
$Q_{13}=\left(\delta^{6}, \delta^{5}, a_{13}\right), \quad Q_{14}=\left(x, 1, a_{14}\right)$.
Then

$$
K^{\prime}=\left\{Q_{i} \mid 1 \leq i \leq 13\right\}
$$

Is an 13-arc isomorphic to $K-\left\{P_{14}\right\}$ under a projectivity g with $Q_{14}=g P_{14}$ if and only if there exist constants $\alpha, \beta, \gamma \in \mathbb{F}_{17}$ with $\gamma \neq 0$ such that one of the following six conditions holds:

1. $a_{i}=1,1 \leq i \leq 14$, and $x=\delta$.
2. $a_{1}=(\alpha+\beta+\gamma) \delta^{2}$,
$a_{2}=\alpha \delta^{11}+\beta \delta^{2}+\gamma$,
$x=\delta^{2}$,
$a_{4}=\alpha \delta^{6}+\beta+\gamma$,
$a_{5}=\alpha \delta^{13}+\beta \delta^{9}+\gamma \delta^{3}$,
$a_{6}=\alpha \delta^{15}+\beta \delta^{5}+\gamma \delta^{15}$,
$a_{7}=\alpha \delta^{11}+\beta \delta^{15}+\gamma \delta^{12}$,
$a_{8}=\alpha \delta^{4}+\beta \delta^{3}+\gamma \delta^{7}$,
$a_{9}=\alpha+\beta \delta+\gamma \delta^{4}$,
$a_{10}=\alpha+\beta \delta^{2}+\gamma \delta^{11}$,
$a_{11}=\alpha \delta^{12}+\beta \delta^{9}+\gamma \delta^{8}$,
$a_{12}=\alpha \delta^{4}+\beta \delta^{15}+\gamma \delta^{6}$,
$a_{13}=\alpha \delta^{14}+\beta \delta^{3}+\gamma \delta^{5}$,
$a_{14}=\alpha \delta^{15}+\beta \delta^{2}+\gamma \delta^{14}$.
3. $a_{1}=\alpha+\beta \delta^{5}+\gamma \delta^{2}$,
$a_{2}=\beta \delta$,
$x=\delta^{4}$,
$a_{4}=\alpha+\beta \delta^{12}+\gamma \delta^{13}$,
$a_{5}=\alpha \delta+\beta \delta^{11}+\gamma \delta^{3}$,
$a_{6}=\alpha \delta^{12}+\beta \delta^{9}+\gamma \delta^{8}$,
$a_{7}=\alpha \delta^{10}+\beta \delta^{14}+\gamma \delta^{11}$,
$a_{8}=\alpha \delta^{2}$,
$a_{9}=\alpha \delta^{3}+\beta \delta+\gamma \delta^{12}$,
$a_{10}=\alpha \delta^{7}+\beta \delta^{9}+\gamma \delta^{2}$,
$a_{11}=\alpha \delta^{13}+\beta \delta^{3}+\gamma \delta^{13}$,
$a_{12}=\alpha \delta^{9}+\beta \delta^{12}+\gamma \delta^{8}$,
$a_{13}=\alpha \delta^{6}+\beta \delta^{14}+\gamma$,
$a_{14}=\alpha \delta^{8}+\beta \delta^{3}+\gamma \delta^{10}$.
4. $a_{1}=\beta$,
$a_{2}=\alpha \delta^{6}$,
$x=\delta^{6}$,
$a_{4}=\alpha \delta^{6}+\beta+\gamma$,
$a_{5}=\alpha+\beta \delta+\gamma \delta^{4}$,
$a_{6}=\alpha \delta^{5}+\beta \delta^{12}+\gamma \delta^{10}$,
$a_{7}=\alpha \delta^{2}+\beta \delta^{10}+\gamma$,
$a_{8}=\alpha \delta^{13}+\beta \delta^{2}+\gamma \delta^{4}$,
$a_{9}=\alpha \delta^{10}+\beta \delta^{3}+\gamma$,
$a_{10}=\alpha \delta+\beta \delta^{7}+\gamma \delta$,
$a_{11}=\alpha \delta^{14}+\beta \delta^{13}+\gamma \delta$,
$a_{12}=\alpha \delta^{12}+\beta \delta^{9}+\gamma$,
$a_{13}=\alpha \delta^{11}+\beta \delta^{6}+\gamma \delta^{13}$,
$a_{14}=\alpha \delta^{4}+\beta \delta^{8}+\gamma \delta^{5}$.
5. $a_{1}=\alpha \delta^{3}+\beta \delta^{5}+\gamma \delta^{14}$,
$a_{2}=\alpha \delta^{3}+\beta \delta^{6}+\gamma \delta^{2}$,
$x=\delta^{8}$,
$a_{4}=(\alpha+\beta+\gamma) \delta$,
$a_{5}=\alpha \delta^{10}+\beta \delta^{8}+\gamma \delta^{3}$,
$a_{6}=\alpha \delta^{2}+\beta \delta^{10}+\gamma \delta^{7}$,
$a_{7}=\alpha+\beta \delta^{6}+\gamma$,
$a_{8}=\alpha \delta^{4}+\beta \delta^{15}+\gamma \delta^{6}$,
$a_{9}=\alpha \delta^{2}+\beta \delta^{11}+\gamma$,
$a_{10}=\alpha \delta^{3}+\beta \delta^{11}+\gamma$,
$a_{11}=\alpha \delta^{10}+\beta \delta^{7}+\gamma \delta^{6}$,
$a_{12}=\alpha+\beta \delta^{15}+\gamma \delta^{3}$,
$a_{13}=\alpha \delta^{4}+\beta \delta^{9}+\gamma \delta^{11}$,
$a_{14}=\alpha \delta^{3}+\beta \delta^{10}+\gamma$.

$$
\text { 6. } \begin{aligned}
& a_{1}=\alpha \delta^{11}+\beta+\gamma \delta^{2} \\
a_{2} & =\alpha \delta^{14} \\
x & =\delta^{9} \\
a_{4} & =\alpha \delta^{2}+\beta+\gamma \delta^{11} \\
a_{5} & =(\alpha+\beta+\gamma) \delta \\
a_{6} & =\alpha \delta^{15}+\beta \delta^{12}+\gamma \delta^{11} \\
a_{7} & =\alpha \delta^{4}+\beta \delta^{10}+\gamma \delta^{4}, \\
a_{8} & =\beta \delta^{2}, \\
a_{9} & =\alpha \delta^{7}+\beta \delta^{3}+\gamma \delta^{4} \\
a_{10} & =\alpha \delta^{15}+\beta \delta^{7}+\gamma, \\
a_{11} & =\alpha \delta^{9}+\beta \delta^{13}+\gamma \delta^{10} \\
a_{12} & =\alpha \delta^{2}+\beta \delta^{9}+\gamma \delta^{7} \\
a_{13} & =\alpha \delta^{4}+\beta \delta^{6}+\gamma \delta^{15}, \\
a_{14} & =\alpha \delta^{9}+\beta \delta^{8}+\gamma \delta^{12}
\end{aligned}
$$

Proof: Suppose K^{\prime} is an 13-arc. Then there exists a point $Q_{14}=\left(x, 1, a_{14}\right)$ such that $K^{\prime} \cup\left\{Q_{14}\right\}$ is isomorphic to the 14 -arc K in Theorem (2). We identify a line ℓ through $P_{3}=Q_{3}$ with $t \in \mathbb{F}_{17} \cup\{\infty\}$ such that

$$
\ell \cap v(Z)=(t, 1,0)
$$

Now the lines $P_{3} P_{i}$ and $Q_{3} Q_{i}$ coincide and they are

$$
\infty, 0,1, \delta^{7}, \delta^{13}, \delta^{14}, \delta^{11}, \delta^{15}, \delta^{12}, \delta^{5}, \delta^{3}, \delta, \delta^{10}
$$

For $i=, 2,4,5, \ldots, 13$, respectively. Therefore, the set of five unisecants of K through P_{3} is

$$
\left\{\delta^{2}, \delta^{4}, \delta^{6}, \delta^{3}, \delta^{9}\right\}
$$

While the set of five unisecants of $K^{\prime} \cup\left\{Q_{14}\right\}$ through Q_{3} is

$$
\begin{gathered}
\left\{\delta^{2}, \delta^{4}, \delta^{6}, \delta^{8}, \delta^{9}\right\},\left\{\delta^{8}, \delta, \delta^{6}, \delta^{2}, \delta^{9}\right\} \\
\left\{\delta, \delta^{8}, \delta^{9}, \delta^{4}, \delta^{6}\right\} \\
\left\{\delta^{8}, \delta^{6}, \delta^{4}, \delta^{2}, \delta\right\},\left\{\delta^{2}, \delta^{9}, \delta^{4}, \delta^{8}, \delta\right\} \\
\left\{\delta^{9}, \delta^{2}, \delta, \delta^{6}, \delta^{4}\right\}
\end{gathered}
$$

According as x is $\delta, \delta^{2}, \delta^{4}, \delta^{6}, \delta^{8}, \delta^{9}$.

1. Let $x=\delta$. By Theorem (2) there exists a unique projectivity g from K to $K^{\prime} \cup\left\{Q_{14}\right\}$ fixing P_{3} and sending each unisecant to itself. A 3×3-matrix $A=\left[a_{i j}\right]$ inducing g takes the form

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
\alpha & \beta & \gamma
\end{array}\right)
$$

Since $g K=K^{\prime} \cup\left\{Q_{14}\right\}$, it follows that $\alpha=\beta=0$ and $\gamma=1$. Thus condition (1) holds.
2. Let $x=\delta^{2}$ and let g be a projectivity from K to $K^{\prime} \cup\left\{Q_{14}\right\}$ fixing P_{3} and sending the unisecants $\delta^{2}, \delta^{4}, \delta^{6}, \delta^{8}, \delta^{9}$ of K through P_{3} to $\delta^{8}, \delta, \delta^{6}, \delta^{2}, \delta^{9}$, respectively. Then a matrix A inducing g takes the form

$$
A=\left(\begin{array}{ccc}
1 & \delta & 0 \\
\delta^{8} & \delta^{8} & 0 \\
\alpha & \beta & \gamma
\end{array}\right)
$$

This g maps the line $P_{3} P_{i}$ to

$$
\delta^{15}, 1,0, \delta^{13}, \delta^{11}, \delta^{11}, \delta^{14}, \infty, \delta^{3}, \delta^{5}, \delta^{4}, \delta^{12}
$$

For $i=1,2,4,5, \ldots, 14$, respectively. Now it can be verified that condition (2) holds.
3. Let $x=\delta^{4}$ and let g be a projectivity from K to $K^{\prime} \cup\left\{Q_{14}\right\}$ fixing P_{3} and sending the five unisecants $\delta^{2}, \delta^{4}, \delta^{6}, \delta^{8}, \delta^{9}$ of K through P_{3} to $\delta, \delta^{8}, \delta^{9}, \delta^{4}, \delta^{6}$, respectively. A matrix A inducing g is of the form

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\delta^{5} & \delta^{8} & 0 \\
\alpha & \beta & \gamma
\end{array}\right)
$$

Now it can be seen that condition (3) holds.
4. Let $x=\delta^{6}$ and let g be a projectivity from K to $K^{\prime} \cup\left\{Q_{14}\right\}$ fixing P_{3} and sending the five unisecants $\delta^{2}, \delta^{4}, \delta^{6}, \delta^{8}, \delta^{9}$ of K through P_{3} to $\delta^{8}, \delta^{6}, \delta^{4}, \delta^{2}, \delta$, respectively. A matrix A inducing g is of the form

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
\delta^{10} & 0 & 0 \\
\alpha & \beta & \gamma
\end{array}\right)
$$

Now it can be seen that condition (4) holds.
5. Let $x=\delta^{8}$ and let g be a projectivity from K to $K^{t} \cup\left\{Q_{14}\right\}$ fixing P_{3} and sending the five unisecants $\delta^{2}, \delta^{4}, \delta^{6}, \delta^{8}, \delta^{9}$ of K through P_{3} to $\delta^{2}, \delta^{9}, \delta^{4}, \delta^{8}, \delta$, respectively. A matrix A inducing g is of the form

$$
A=\left(\begin{array}{ccc}
1 & \delta^{5} & 0 \\
\delta^{7} & \delta^{13} & 0 \\
\alpha & \beta & \gamma
\end{array}\right)
$$

Now it can be seen that condition (5) holds.
6. Let $x=\delta^{9}$ and let g be a projectivity from K to $K^{\prime} \cup\left\{Q_{14}\right\}$ fixing P_{3} and sending the five unisecants $\delta^{2}, \delta^{4}, \delta^{6}, \delta^{8}, \delta^{9}$ of K through P_{3} to $\delta^{9}, \delta^{2}, \delta, \delta^{6}, \delta^{4}$, respectively. A matrix A inducing g is of the form

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
\delta^{2} & \delta^{13} & 0 \\
\alpha & \beta & \gamma
\end{array}\right)
$$

As in the preceding cases we can see that condition (6) holds. Conversely, if one of the conditions (1)-(6) holds, the corresponding matrix A induces a projectivity g such that $g(K)=K^{\prime} \cup\left\{Q_{14}\right\}$. Hence, K^{\prime} is 13-arc.

Theorem (5): Let $q=17$.

1. A k-arc in $P G(3, q) \quad$ with $k=q-3, q+1$ is rational.
2. $m(4, q)=m(8, q)=m(9, q)=q+1$.

Proof: Assume that there exists a nonrational 14-arc

$$
L=\left\{Q_{i} \mid 1 \leq i \leq q-3\right\}
$$

In $P G(3,17)$. Among the fourteen projections L from one of its points to a plane, at most one of these plane 13 -arc can be rational, by Theorem (13). So assume that the projections from Q_{1}, Q_{3}, Q_{4} are not rational. This assumption leads us to a contradiction.

The projection L_{j} of L from Q_{j} to a hyperplane π_{j} not through Q_{j} is isomorphic to the 13 -arc $K-\left\{P_{14}\right\}$ in Lemma (3) for $j=1,3,4$. Without loss of generality we further assume that Q_{j} has the following coordinates

$$
\begin{array}{ll}
Q_{1}=\left(1,0,0, b_{1}\right), & Q_{2}=\left(0,1,0, b_{2}\right), \\
Q_{3}=\left(0,0,1, b_{3}\right), & Q_{4}=(0,0,0,1), \\
Q_{5}=\left(1,1,1, b_{5}\right), & Q_{6}=\left(\delta, \delta^{10}, 1, b_{6}\right), \\
Q_{7}=\left(\delta^{12}, \delta^{15}, 1, b_{7}\right), & Q_{8}=\left(\delta^{10}, \delta^{12}, 1, b_{8}\right) \\
Q_{9}=\left(\delta^{2}, \delta^{7}, 1, b_{9}\right), & \left.Q_{10}=\delta^{3}, \delta^{4}, 1, b_{10}\right), \\
Q_{11}=\left(\delta^{7}, \delta^{11}, 1, b_{11}\right), & Q_{12}=\left(\delta^{13}, \delta^{8}, 1, b_{12}\right) \\
Q_{13}=\left(\delta^{9}, \delta^{6}, 1, b_{13}\right), & Q_{14}=\left(\delta^{6}, \delta^{5}, 1, a_{14}\right)
\end{array}
$$

Thus the projection L_{4} of L from Q_{4} to the hyperplane $v\left(X_{4}\right)$, a point $(x, y, z, 0)$ of which is identified with $(x, y, z) \in P G(2,17)$, consists of the following points:

```
\(R_{1}=\left(1,0, b_{1}\right)\),
\(R_{2}=\left(0,1, b_{2}\right)\),
\(R_{3}=(0,0,1)\),
\(R_{4}=\left(1,1, b_{5}-b_{3}\right)\),
\(R_{5}=\left(\delta, \delta^{10}, b_{6}-b_{3}\right)\),
\(R_{6}=\left(\delta^{12}, \delta^{15}, b_{7}-b_{3}\right)\),
\(R_{7}=\left(\delta^{10}, \delta^{12}, b_{8}-b_{3}\right)\),
\(R_{8}=\left(\delta^{2}, \delta^{7}, b_{9}-b_{3}\right)\),
\(R_{9}=\left(\delta^{3}, \delta^{4}, b_{10}-b_{3}\right)\),
\(R_{10}=\left(\delta^{7}, \delta^{11}, b_{11}-b_{3}\right)\),
\(R_{11}=\left(\delta^{13}, \delta^{8}, b_{12}-b_{3}\right)\),
\(R_{12}=\left(\delta^{9}, \delta^{6}, b_{13}-b_{3}\right)\),
\(R_{13}=\left(\delta^{6}, \delta^{5}, b_{14}-b_{3}\right)\).
```

The projection L_{1} of L from Q_{1} onto the plane $v\left(X_{1}\right)$, a point $(0, x, y, z)$ of which is identified with $(x, y, z) \in P G(2,17)$, consists of the following points:
$S_{1}=\left(1,0, b_{2}\right)$,
$S_{2}=\left(0,1, b_{3}\right)$,
$S_{3}=(0,0,1)$,
$S_{4}=\left(1,1, b_{5}-b_{1}\right)$,
$S_{5}=\left(\delta^{10}, 1, b_{6}-b_{1} \delta\right)$,
$S_{6}=\left(\delta^{15}, 1, b_{7}-b_{1} \delta^{12}\right)$,
$S_{7}=\left(\delta^{12}, 1, b_{8}-b_{1} \delta^{10}\right)$,
$S_{8}=\left(\delta^{7}, 1, b_{9}-b_{1} \delta^{2}\right)$,
$S_{9}=\left(\delta^{4}, 1, b_{10}-b_{1} \delta^{3}\right)$,
$S_{10}=\left(\delta^{11}, 1, b_{11}-b_{1} \delta^{7}\right)$,
$S_{11}=\left(\delta^{8}, 1, b_{12}-b_{1} \delta^{13}\right)$,
$S_{12}=\left(\delta^{6}, 1, b_{13}-b_{1} \delta^{9}\right)$,
$S_{13}=\left(\delta^{5}, 1, b_{14}-b_{1} \delta^{6}\right)$.
Then L_{1} is precisely the 13 -arc $\left\{Q_{i} \mid 1 \leq i \leq 13\right\}$ of Theorem (4). Reorder the S_{i} as follows:
$T_{1}=\left(1,0, b_{2}\right), T_{2}=\left(0,1, b_{3}\right)$,
$T_{3}=(0,0,1), T_{4}=\left(1,1, b_{5}-b_{1}\right)$,
$T_{5}=\left(\delta, \delta^{10}, b_{6} \delta^{10}-b_{1}\right)$,
$T_{6}=\left(\delta^{12}, \delta^{15}, b_{7} \delta^{15}-b_{1}\right)$,
$T_{7}=\left(\delta^{10}, \delta^{12}, b_{8} \delta^{12}-b_{1}\right)$,
$T_{8}=\left(\delta^{2}, \delta^{7}, b_{9} \delta^{7}-b_{1}\right)$,
$T_{9}=\left(\delta^{3}, \delta^{4}, b_{10} \delta^{4}-b_{1}\right)$,
$T_{10}=\left(\delta^{7}, \delta^{11}, b_{11} \delta^{11}-b_{1}\right)$,
$T_{11}=\left(\delta^{13}, \delta^{8}, b_{12} \delta^{8}-b_{1}\right)$,

$$
\begin{aligned}
& T_{12}=\left(\delta^{9}, \delta^{6}, b_{13} \delta^{6}-b_{1}\right), \\
& \left.T_{13}=\delta^{6}, \delta^{5}, b_{14} \delta^{5}-b_{1}\right) .
\end{aligned}
$$

First assume that case(1) of Theorem(4) holds for the arc $L_{3}=\left\{R_{i} \mid 1 \leq i \leq 13\right\}$. Then

$$
\begin{gathered}
b_{5}=b_{6}=b_{7}=b_{8}=b_{3}+1 \text { and } \\
Q_{5}=Q_{6}=Q_{7}=Q_{8}
\end{gathered}
$$

Lie in the plane $v\left(\left(b_{3}+1\right) X_{3}+X_{4}\right)$, a contradiction. Similarly, case(1) does not hold for the arc L_{1}.

Suppose now that case(2) of Theorem(4) holds for L_{3}. Then there are constants $\alpha, \beta, \gamma \in \mathbb{F}_{17}$ with $\gamma \neq 0$ such that, putting $b=b_{3}$ gives the following:
$b_{1}=(\alpha+\beta+\gamma) \delta^{2}$,
$b_{2}=\alpha \delta^{11}+\beta \delta^{2}+\gamma$,
$b_{5}=\alpha \delta^{6}+\beta+\gamma+b$,
$b_{6}=\alpha \delta^{13}+\beta \delta^{9}+\gamma \delta^{3}+b$,
$b_{7}=\alpha \delta^{15}+\beta \delta^{5}+\gamma \delta^{15}+b$,
$b_{8}=\alpha \delta^{11}+\beta \delta^{15}+\gamma \delta^{12}+b$,
$b_{9}=\alpha \delta^{4}+\beta \delta^{3}+\gamma \delta^{7}+b$,
$b_{10}=\alpha+\beta \delta+\gamma \delta^{4}+b$,
$b_{11}=\alpha+\beta \delta^{2}+\gamma \delta^{11}+b$,
$b_{12}=\alpha \delta^{12}+\beta \delta^{9}+\gamma \delta^{8}+b$,
$b_{13}=\alpha \delta^{4}+\beta \delta^{15}+\gamma \delta^{6}+\mathrm{b}$,
$b_{14}=\alpha \delta^{14}+\beta \delta^{3}+\gamma \delta^{5}+b$.
Therefore the third component of T_{i} takes the form of the following:
$\left(\alpha+\beta \delta^{7}\right) \delta^{11}+\gamma$,
b,
1 ,
$\left(\alpha+\beta \delta^{5}\right) \delta^{13}+\gamma \delta^{2}+b$,
$\left(\alpha+\beta \delta^{2}\right) \delta^{14}+\gamma \delta+b \delta^{10}$,
$\left(\alpha+\beta \delta^{9}\right) \delta^{3}+\gamma \delta^{12}+\delta^{15}$,
$\left(\alpha+\beta \delta^{8}\right) \delta^{14}+\gamma \delta^{11}+b \delta^{15}$,
$\left(\alpha+\beta \delta^{2}\right) \delta^{6}+\gamma \delta^{3}+b \delta^{7}$,
$\left(\alpha+\beta \delta^{8}\right) \delta^{12}+\gamma \delta^{15}+b \delta^{4}$,
$\left(\alpha+\beta \delta^{11}\right) \delta^{6}+\gamma \delta^{15}+b \delta^{11}$,
$\left(\alpha+\beta \delta^{11}\right) \delta^{12}+\gamma \delta^{2}+b \delta^{2}$,
$\left(\alpha+\beta \delta^{12}\right) \delta^{8}+\gamma \delta^{13}+b \delta^{6}$,
$\left(\alpha+\beta \delta^{11}\right)+\gamma \delta^{8}+b \delta^{5}$.
If case(2) of Theorem(4) holds for L_{1}, there are constants $\alpha^{\prime}, \beta^{\prime}$, and $\gamma^{\prime} \neq 0$ in \mathbb{F}_{17} in terms of which the third component of T_{i} can be expressed. This gives twelve homogeneous linear equations in $\alpha, \beta, \gamma, b, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$. It is not
difficult to show that $\gamma^{\prime}=0$ for any solution of this system of equations, a contradiction.
The same situation also prevails in cases (3), (4), (5), (6) for L_{1}. Since the cases (3), (4), (5), (6) for L_{3} can be dealt with similarly, only formulas expressing b_{i} and the third component of T_{i} in terms of $\alpha, \beta, \gamma, b=b_{3}$ are necessary. In each case, a contradiction is obtained.
since a 18 -arc is a twisted cubic by Theorem (12), so $m(4,17)=18$ by Theorem (14). Now since an 14-arc in $P G(3,17)$ is rational, For, if every 14 -arc is rational, then a 15 -arc in $P G(4,17)$ is rational, by Theorem (13). Hence, again by Theorem (13), a 16 -arc in $P G(5,17)$ is a normal rational curve, also by Theorem (13), a 17-arc in $P G(6,17)$ is rational, Hence, again by Theorem (13), a 18 -arc in $P G(7,17)$ is a normal rational curve. So, by Theorem(14), $m(8,17)=18$. Now, Corollary (10) (ii) gives that $), m(9,17)=18$.

Anknowledgments

I would like to thank my supervisor, Professor J.W.P. Hirschfeld for his suggestions which help me to complete this work.

References

1. Al-seraji N.A.M, 2010, The Geometry of the plane of order seventeen and its application to Error-Correcting Codes, Ph.D. Thesis, University of Sussex, UK,. pp:1-115.
2. Ali A. H., Hirschfeld J. W. P., and Kaneta H., 1995, on the Size of Arcs in Projective Spaces, ieee Transactions on information Theory, 41(5),. pp:1649-1656.
3. Hirschfeld J.W.P, 1998. Projective Geometries Over Finite Fields, Second Edition, Oxford University Press, Oxford, pp:301-316.
4. Hirschfeld J.W.P, Korchmáros G and Torres F, 1985. Finite Projective Space of Three Dimensions, Oxford University Press, Oxford,. pp:1-316.
5. Al-Zangana, E.B., 2011, The Geometry Of The Plane Of Order Nineteen And Its Application To Error-Correcting Codes, Ph.D. Thesis, University of Sussex, UK. pp:1-152.
6. Al-seraji N.A.M, 2013, On Almost Maximum Distance Separable codes, journal of Baghdad, College of Science, University of Baghdad, 54(3). pp:638-641.

[^0]: *Email: najem_abdul@yahoo.com

