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Abstract

The main goal of this paper is to show that a g-arc in PG(3,q) and g = 17 is
subset of a twisted cubic, that is, a normal rational curve. The maximum size of an
arc in a projective space or equivalently the maximum length of a maximum
distance separable linear code are classified. It is then shown that this maximum is
g + 1 for all dimensions up to g.
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1. Introduction
The subject of this paper is suggested by Prof.
J.W.P Hirschfeld in 2008. The main conjecture
MC,for codes, always taking g =k, is the
following:

gt+2 geven fork=g—1
mk—1,9) = {q + 1, other wise (1)
such that the value g +2 for k =g —1 both
with g even, and g + 1, in all other cases. Also

mik,q) =k+1,forg=k (2)

Establish this for 6-dimensional code and small

values of g. In projective space of k—1
dimensions over the finite field ofq=p"‘1
elements, ¥ prime IFq, the following three
notions are equivalent for n = k:
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1) An m-arc in PG{k — 1, q), that is, a set
of n points with at most & —1 in any
hyperplane;

2) A set of n vectors in V{k, g) with any k
linearly independent;

3) A maximum distance separable linear
code of length n, dimension k, and hence
minimum distance d =n —k + 1, that is, an
[n,k,n—k + 1] code.

For more details see [1-6].

2. Previous Results

Definition (1)[3]:For any given g, the set F,
satisfies the following properties:
i. The set F,, where g = p", is a field of

characteristic p;
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The elements x of F, satisfy
x?—x =0

iii. There exists & in F, such that §971 =1
and F, ={0,1,4,...897%}; such an & is called a

primitive .

Definition (2)[3]: Let V=V(in+ 1K) be
{n + 1)-dimensional vector space over the field
K with origin @. Then consider the equivalence
relation on the points of V'\{0} whose
equivalence classes are  one-dimensional
subspaces of ¥ with the origin deleted; that is,
if X, ¥yewmn{0l and for some basis
X = (x[!u Sy xn}JY = D’I}J "'J}"n}a X is
equivalent to ¥ if, for some ¢ in Ky, v; = tx;.
For all i.

Then the set of equivalence classes is the n-
dimensional projective space over K and is
denoted by PG(n,K) or; if K =GF{(g), by
PG(n,q). The elements of PG(n,q) are called
points.

Definition (3)[3]: A subspace of dimension # of
PG(n,g) will be called an r-space and is
denoted by .. It is a set of points represented
by vectors which form (with the origin) a
subspace of V{n+1,q) of dimension r + 1.
When r =0 then m, is exactly a point of
PG(n,q). When r =1, my is called a line and,
when r = 2, 7, is called a plane. m,,_4 is called
a prime or a hyperplane.

Definition (4)[3]:
i. A linear code C
V(n, q).

If dim (C) =k, then C is an [n. k]-

is a subspace of

ii.
iii.
iv.

code.
Theorem  (5)[3]:The space PG(r—1,q)
contains
I (g™ —1)/(g — 1) points,
(Gl IC i VETHUON
(g==1)i{g—1) '

g + 1 points on a line,

(g7 *—1)/(g —1) lines through a
point.

Definition (6)[3]:An #-arc is complete if it is
maximal with respect to inclusion; that is, it is
not contained in an (r + 1)-arc.

Definition (7)[4]:A normal rational curve in
PG(r,q) is any subset of PG(r,q) which is
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projectively equivalent to
{71, ,t,1) € PG(r,q) |t EF, U {co]].
For r = 2, it is a conic; for r = 3, it is a twisted

cubic.

Definition (8)[4]:Let m{r,g) be the maximum
size of an arc in PG(r,q); also, let m'(r,q)
denote the size of the second largest complete
arc in PG(r,q). Then an mn-arc with
n = m'(r,q) is contained in an m{r, g }-arc.

Theorem (9)[5]:
The dual code of a linear MDS code is
also MDS.

An m-arc exists in PG(k —1,q) if and
only if an n-arc exists in PG(n — k — 1, g).

Corollary (10)[4]:
A (g + 1)-arc exists in PG{k —1,q) if
and only if a (g + 1)-arc exists in PG(g — k, q).
A (g + 2)-arc exists in PG(k —1,q) if

and only if a (g+2)arc exists in
PGlg—k+1,q); hence if
mlk—1,q) =g+ 1 0] also

mlg—k+1,q) =g+ 1.

A (g + 3)-arc exists in PG{k —1,q) if
and only if a (g+3)-arc exists in
Pelg—k+24q).

Theorem (11)[3]: In PG(2,q), g odd, a g-arc
lies on a conic.

Theorem (12)[4]: In PG(3,q),
(g + 1)-arc is a twisted cubic.

g odd, a

Theorem (13)[4]: Let K be a k-arc in PG(r,q)
with g + 1=k =r+ 3 = 6 and suppose there
exist Py, P; € K and a hyperplane 7 containing
neither Py nor Py such that, for i = 0,1, each
projection K; of K into m is rational in . Then
the arc K is contained in one and only one
normal rational curve in PG(r, q).

Theorem (14)[4]:Let K be a {g + 2)-arc in
PG(r,q) with g+1=r+3=6. If a
hyperplane m of PG(r, g) contains neither of the
points Py, Py of K, then it cannot happen that
both projections K; of K from P;, i = 0,1, onto
m are rational in m. In particular, if every
(g +1)-arc in PG(r—1,q) is rational, then
mir,qg) =g+ 1.
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Rationality of (g —3)-arcs in PG(3,q) for
qg=17

Throughout this section let g = 17 and & = 3,
a primitive element of Fy5. Arcs in PG(2,17)
have been classified [1]. In particular, there
exists a complete 14-arc, unique up to
projectivity. A construction will now be given of
such a complete 14-arc. The following formulas
are useful for addition in Fy:

1—86=85  1—482=42, 1-4§3%=3519
1-6%=65 1-487=61, 1-8%=4%
1— 5'} — 512, 1— 513 — 515
Let
P, = (1,0,0), P, =(0,1,0),
P'a =(0,0,1), P, =(1,1,1),

(6 o100 1} PEu 51‘ 215 'l}
P.5 512,515 1) P =(810,512,1),
P, = (52.67,1). P, = (53,54 1)
PlD = {6?16111 1}’ P11 = (SIEJSBJ 1},
Plﬂ = (691 661 1}, PlH = 661 051 1},

( B "-14 -l} (3)

Lemma(1)[1]: Let P; be as in (3). Then

K ={P;|1 =j=q—3} is acomplete 14-arc in
PG(2,17).

The stabilizer group of K is denoted by G{K) is
generated by g4, gz where

0 &% 0
g1 =1 & 0 0
614 613 68

87 1 8
gz = 513 513 513 .

0 0 &1
Then G(K) has the following orbits on K: one
orbit 04 = {Py,P;,Py, P5,P; Py, P4, Py}, One
orbit 0z ={P;,P;,Pyy,F; Jand one orbit
0y, = {P3,P;3 }. The group G{K) stabilizes a line
{ =v(x—3y) containing 0O; on a conic
C =v(xy —7xz + 6yz), and partitions the line
£ into three orbits are as following:

{(6%,6%,1),(8%,6%,1),(6%,6%,1), (6%,6% 1)}
{(6%,8%,1),(8%°,8° 1),(5°,6%,1),(1,6%,1)}
{(¢%,6,1),(6%%,6%,1),(67,8%,1),(6%%,6%%, 1)}

Also three orbits 0, ={P;,P5 ],

0, = {(8,1,1), (813,612,1),
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03 = {(8,1,0), (8%,87,1)]. Then K consists of
ten points Py, Ps, Pa, P, P.,P, Py ,Pyy,Py3, Pa
on a conic €, two of them P, , P;; on £, and
eight points in @, on €. The points in Oz not on
C. The points in 0, and O3 on £, where

(513,812,1) = P PynE =PaPnd
(6_. 1_.1} = PGP:LD ﬂ'EI = Pg.Pl: n 'EI
(6,1,0) = PP, N ¢, (8587,1) = P3Py n L.

The tangents at P; and Py3to € meetat R. The
lines

PlRJ PZRJPHRJRIRJPERJP?RJPBRJP11R1P13RJP14R;

Are part of a  pencil However
0,' = €— {0, U0,) is inequivalent to 0. The
other eight lines of the pencil meet C in 0.

Theorem (2): Let & be the projective
automorphism group of the complete {g — 3)-
arc K in Lemma 1. Then

i {7 acts transitively on K;

ii. The stabilizer G of Py in & acts 3-
transitively and faithfully on the set of five
unisecants of K through Pg;

i 1Gsl = 4and |G| =

Proof: Let (t;, 1,0) be the projection of B; from
P to the line v(z) fori €{1,2, ..., g — 3} — {3].
Then t; takes the respective values
oo, ﬂj'lj 6?1 6131514 , 511)@15) 612J 65 , SEJ &5 , alD
. Therefore, the unisecant ¢; of K through P;
takes the form

v(X +3Y), v(X + 2Y), v(X + 4Y), v(X + 8Y),

v(X +7).

We identify a line # through P; with
x € FyU {oo]} satisfying #nu(Z) = (x, 1,0).
Now, a projectivity g € G5 induced by a 3 x 3
matrix [a;;] maps a line x to

(a11x + az1)/{a12x+ az;).

Let o € Z4We shall show that there exists a
unique  projectivity g& &3 such  that
Q(-E'i} = 'EIEI:E}-

Suppose a matrix A4 =
projectivity g. Since the
transformation

[a;;] induces such a
linear fractional
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(@11x + azq1)/(a12x+ ay;)

Maps &2,8%,8%,8%,8% to
o

8%,8%,8%,87,8° respectively, A takes the form
87 1 BB
A= 613 613 513
a fF ¥

hence a«=£=0. Similarly, gP.=PF;
yieldsy = &% Note that A*=1;. It can be
verified that g sends P,.. B, to

PEJP4JPHJPBJP14JP'}J PZJP?JP12JP6JP11P1DJP13J
P44, respectively.

Let & be a group homomorphism from G to Z 4

such that g(£;) = €g(4)1). Since g generate Z 4,
so # is surjective. Finally [#~1(z)| = 1, which
implies that & is injective. [ ]

Lemma(3)[1]: An 13-arc in PG(2,17) is
projectively isomorphic to either
{(t%,t, 1|t €Fy; —{0,1}} or K — {P,,}.

Theorem (4): Let @;, 1 =i = 14, be points in
PG(2,17) with the following coordinates:

@, = (1,0,a4),
@3 =(0,0,1),
QE = (a.l 61I}J G‘E}u

Q= (GJL ﬂ’!}v

Qél = (1,11 ﬂ43|,

QE = (SIZJ 615! "-16}1

Q'.'-’ = (all}JalzJa?}’ QB = {6:,5?,ﬂ3},

QE‘" = (631 64: ﬂ"}l Qll} = (STJ 6111 ﬂ-j_l}},

Q11 = (61%,85,a14), Qqp = (8°,8%,a47),
13 = (SGJ SEJ "-113}’ I{21-4 = (.'X-'J 1J '-'_"'1-51-]I :

Then
K'={Q:1=i= 13}

Is an 13-arc isomorphic to K —{P;s} under a
projectivity g with @4 = gPys if and only if
there exist constants «, 5% € Fy> with y =0
such that one of the following six conditions
holds:

1, a;=1,1<i<14, and x =4,
2. a, =(x+ 5 +7y) 62

a; =adl +BE*+y,

x=4°2

as=al"+ [+,

az = adl? + B5% + y83,
ap = adl® + B6% +y61s
a; = adt + BE15 + 512

930

ag = ad* + B6%+ ys7,
ag=a+ 8 + 63,
Qg = & + BE% + y61L
ayy = ad?+ 6%+ ¥4t
Qi = ad*+ B61° + ya°,
a3 = ad'® + f53 + 85,
(s = @Bt + f52 + 814,
ay =a+f8° +ya2,
iy = &,
— 54,

Qs =+ [E12+ patd

a; = ad + 51 + ya3,
ag = ad? + B&° +y6F,
a; = adt? + BE1* + 511
ag = af?

ag=ad*+ B +y&1?,
Qg = ad’ + (6% +y62,
ay, = adl? + 53 + 813
ay; = ad? + BE12 + y8E,
Qi3 = ad®+ [fé1 +y,
4 = IIE;B + ﬁﬂ?ﬂ + Yall}.

]

ﬂ,j_:ﬁ,
a, = ad®,
x =45,

as=ad®+f +vy,

as =a + 6 + yd*,

a. = ad® + B61% + y51°,
a; = ad? + f&1° +y,

az = adl® + B&% +y8*
ag=ad®+ g&3 +y,
Qg = ad + 87 +y8,
ayq = ad* + BE13 + 5,
ay; = adZ+ 8%+,
a3 = adt+ 85+ y813
A4 = ﬂ64+ ﬁas +'}fﬂ?5

a, =ad*+ B85 +y 8
a, = ad?® + [6% +y5?
x=4%8,
ag=(a+f +y)3d,
ag = ad? + BE% + 63,
ag = ad>+ B610+yd7,
a;=a+ 6%+,
ag = ad* + BE15 + 8%
as = ad? + f&11 +y,
Qg = ad®+ Bt +y,
ay, = ad®+ BE7 + ya°
Qy; = a + 65 + 83
Q3 = ad*+ B6% + yo1t,
Qs = ad®+ 50+ vy,

Iraqi Journal of Science, 2013, Vol 54, No.4, pp:927-933

14
)



Al-Seraji

6. a =adt + g+ y 82,
a; = adl®,
x—a'—"
ay = ad? + g+ ys1?,
as;=(a+F+vy) &,
ﬂ.ﬁ_ﬂ'ﬂ'lsl"‘ﬁﬂl‘ +.}f"‘11
a; = ad* + [510 + 8%
ag = f&?,
ag=ad’ + f&%+
Qg = & q15+1l5” +¥,
Ay = +ﬁﬂ'13+'}’ﬁm
Qy; = ad® + F6°+y67,
ﬂ.13=ﬂ'54+366+ 615

Qs = ad” + BE% +y612

Proof: Suppose K' is an 13-arc. Then there
exists a point @4 = (x,1,a;4) such that
K'U{Q4s} is isomorphic to the 14-arc K in
Theorem (2 ). We identify a line # through
Py = Q5 with ¢ € Fy; U {oo] such that

£nu(Z) =(t, 1,0).

Now the lines B3 P; and @@, coincide and they
are

oo, ﬂ-l ’*'.'-’ ’*13 514 511 615 512 65 65 & 61[!'
Fori =,2,4,5,...,13, respectively. Therefore,

the set of five unisecants of K through P; is
{52, 64J 56 , 58, 59},

While the set of five unisecants of K' U {Q.}
through @5 is

According as x is 8, & 58,89,

1. Let x = &. By Theorem (2) there exists
a unique projectivity g from K to K'U{Q4]
fixing P; and sending each unisecant to itself. A
3 x 3-matrix A = [a;;] inducing g takes the

form
1 0 0
A:@ 1 EI),
5 ¥

2646'6
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Since gK =K'U{@..}, it follows that
o= =0 and ¢y =1. Thus condition (1)
holds.

2. Let x = 4&%and let g be a projectivity

from K to K' U {@,4] fixing P; and sending the

unisecants &2, E:-“‘ 5%,8%,8% of K through Pg
to8%,8,8%,8%,8% | respectively. Then a matrix

A inducing g takes the form

1 & 0
A_(SB 58 [])
a f ¥

This g maps the line P3P; to

6151 -]_JﬂjalﬂjgllJall 614 o0 53,551541512

Fori = 1,2,4,5,...,14, respectively. Now it can
be verified that condition (2) holds.

3. Let x =d&%and let g be a projectivity
fromKtoK'U {QH} fixing P; and sending the
five unisecants 62,64,8%,58%,6% of K through
P, t08,5%,8%,8%,8 56 respectlvely A matrix 4

inducing g is of the form

1
Az(as-
o

Now it can be seen that condition (3) holds.

0 0
g ¥

o

4, Let x = 3&%nd let g be a projectivity
from K to K" U {@,.] fixing P53 and sending the
five unlsecants 52,8%,8%,8%,8% of K through
P, to 6%,8%,8%,8%,8 | respectlvely. A matrix 4

SO, 0
mducmg gis of the form

0 1 0

A= (.:3‘1“' 0 ﬂ).

a f ¥
Now it can be seen that condition (4) holds.
5. Let x = d&%and let g be a projectivity
from K to K' U {@,.] fixing P; and sending the
five unisecants & 52,8%,8%,85%,8% of K through
P, tod%,8°%, 8%, 63 , respectively. A matrix A
mducmg g isof the form

1 &5 0
A=|87 813 0|
a f oy
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Now it can be seen that condition (5) holds.

6. Let x = &%nd let g be a projectivity
fromK to K'v {Q14} fixing P; and sending the
five unisecants §2,8%,8%,8%,8% of K through

2,8,8°5, 5% respectlvely A matrix 4

P;t06%,6%,8,6
1 0
o a).
E vy

inducing g is of the form
0
A= ("2
o
As in the preceding cases we can see that
condition (6) holds. Conversely, if one of the
conditions (1)-(6) holds, the corresponding
matrix A induces a projectivity g such that

gK)=K'u{Q.s) Hence,K'is13-arc. m
Theorem (5): Let g = 17.
1. A k-arc in PG(3,q)  with

k=g—3,q+ 1lisrational.
2. mi(4,q) =mi(8,q) =m(9,q)=qg +1.

Proof: Assume that there exists a nonrational
14-arc

L={Q/1=i=q—3)

In PG(3,17). Among the fourteen projections L
from one of its points to a plane, at most one of
these plane 13-arc can be rational, by Theorem
(13). So assume that the projections from
2,05, Q= are not rational. This assumption
leads us to a contradiction.

The projection L; of L from @; to a hyperplane
m; not through @; is isomorphic to the 13-arc
K —{P..} in Lemma (3) forj = 1,3,4. Without
loss of generality we further assume that @; has
the following coordinates

Ql = (11{]1{]: bl}l QE = (ﬂ.u-l_:ﬂ_u b:}!

QH = (ﬂ.lﬂjij bg}, Q4 = (ﬂjﬂjﬂ_.-l},

QE = (11111.1 bE}J QE - {ﬁ 51 1 bﬁ-}
Q.= (512,515, 1, b?}, Qg = (all} Gl; 1, bB}
Qs = (8%,87,1, bg), Qio = 83,8%,1, byp),
Qu1 = (87,8%,1,byy), Qu2 = (83,851, by,)

Qi3 = (ﬁgsaes 1,bi3), Qua= (56;55; 1, a44)
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Thus the projection L, of L from @, to the
hyperplane v(X;), a point (x, v, z,0) of which is
identified with (x, v, z) € PG(2,17), consists of
the following points:

Rl = (1,{], ‘hl}!
RE = (0111 bz}:
R;=1(0,01),

R4 = (1_,1_, bE_ ba},

5'5 = (8,81%,bg — by),
= (812,85, b; — by),
(51'} 812, by — by),

Ra = (52:5?:59— -’33},
R'} = (631 641 I;-.’Ill:!l - bﬂ::la

Ry = (613 -’31" b)),

Rlﬂ == (691 C? _ bg},

Ryz = (56;55 b3).

The projection Ly of L from @4 onto the plane

v(X;), a point (0, x,v,z) of which is identified
with (x,v,z) € PG(2,17), consists of the
following points:

51 = (1,{], b:},
S, = (GJLFJE}:

S3:=1(0,0,1),

54 = (1;1; bE - bl}a
S.=(8,1,b,— b, 8),
Se= (515: 1,by— 51512},
57 = (512: 1, bg— biam},
Sg=(87,1,bg — byd?),

S5g = (54: 1,by9 — -’31533‘,
10 = (5111 1,544 — -’5'13?3',
511 = (58: 1,545 — 51513}.
542 = (56; 1,b43 — -’3159},
543 = (55; 1,by4 — -’3156]‘-

Then L, is precisely the 13-arc {@;|1 =i = 13}
of Theorem (4). Reorder the 5; as follows:

Tj_ - (-l,ﬂjbg}, Tz - (ﬂj-lj bg},

T, =(0,0,1), T. = (1,1, b — by),
Ts = (8,8, b 81 — by),

Te = (812,8%%,b78% — by),

T; = (61°,8%%,bgd™ — by),

T = (82,87,bg87 — by),

Ty = (83,8%,byp8* — by),

Tio = (87,8, by, 611 — by),

Ty = (513: ae, -’31258 —by),
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— (5% =6 nE

Ty = (8%,8%,b136°— by),
— 56 85 =5

jl-;I.H =050 .lblq-c' _‘bl}

First assume that case(1) of Theorem(4) holds
forthearc Ly = {R;|1=1i=13}. Then

b5:b6:b?2b32b3+1and
Qs =Qs=0Q7=0Q¢

Lie in the plane v({(by + 1)X; + X.), a
contradiction. Similarly, case(1) does not hold
for the arc L.

Suppose now that case(2) of Theorem(4) holds
for L. Then there are constants a, 5,y € Fy-
with ¥ # 0 such that, putting b = by gives the
following:

by =(a+f+y)8?%

by =adt+ B2 +y,
be=ad®+ f+y+b,
bg=ad¥+B3°+ya3+ b,
by =ad® +B8° +yd= + b,
bg = ad + 81 +yd12 + b,
bg=ad*+ 8%+ y87+ b,
bjp=a+ B8+ y8*+b,

by =a+ B8 +ys1t +b,
b, =ad? + (8% +yd8% +b,
bis = ad* + 6% + y&5+D,
bis =ad + F8¥+y85+ b,

Therefore the third component of T; takes the
form of the following:

(a + B87)E™ + v,

b,

1,

(o +585)8%13 + y8° + b,

(o + B82)8¥ + yé + bs10,

(o + p&%)a% +y812 + 815

(a + B6%)61% + y611 + bS5,
(o + 562)6% + y6% + b&7,
(o + fE5)E12 + yE15 + ba*,
(o + B&11)8% + y315 + bt
(a + 6110612 + y62 + b62,

(a + B512)68 + y613 + bGE,

(o + 861) + y88 + o= |

If case(2) of Theorem(4) holds for L4, there are
constants a',8", and ¥" = 0 in Fy5 in terms of
which the third component of T; can be
expressed. This gives twelve homogeneous
linear equations in a, &y, b,a",8',y". It is not
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difficult to show that " = 0 for any solution of
this system of equations, a contradiction.

The same situation also prevails in cases (3), (4),
(5), (6) for L,. Since the cases (3), (4), (5), (6)
for L5 can be dealt with similarly, only formulas
expressing b; and the third component of T; in
terms of a, 8,%,b = by are necessary. In each
case, a contradiction is obtained.

since a 18-arc is a twisted cubic by Theorem
(12), so m(4,17) = 18 by Theorem (14). Now
since an 14-arc in PG(3,17) is rational, For, if
every 14-arc is rational, then a 15-arc in
PG(4,17) is rational, by Theorem (13). Hence,
again by Theorem (13), a 16-arc in PG(5,17) is
a normal rational curve, also by Theorem (13), a
17-arc in PG(6,17) is rational, Hence, again by
Theorem (13), a 18-arc in PG(7,17) is a normal
rational curve. So, by  Theorem(14),
m(8,17) = 18. Now, Corollary (10) (ii) gives
that), m(9,17) = 18. =
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