

Projectivity on y-closed Submodules

B.H. Al-Bahrani*

Department of Mathematics, College of Science, University of Baghdad

Abstract:

In this notion we consider a generalization of the notion of a projective modules , defined using y-closed submodules . We show that for a module $M=M_1\oplus M_2$. If M_2 is M_1-y -closed projective , then for every y-closed submodule N of M with $M=M_1+N$, there exists a submodule M of N such that $M=M_1\oplus M^{\sim}$. Keywords : projective moduls , y-closed submodules .

الاسقاطية على المقاسات الجزئية المغلقة من النمط y

الخلاصة :

1. Introduction :

Throughout R will be an associative ring with identity and all modules will be unital left R - modules .

Let N be a module , a module M is said to be N – projective if for every submodule X of N, any homomorphism φ from M to $\frac{N}{X}$ can be lifted to a homomorphism ψ from M to N.

It is known that a module P is projective if P is M - projective, for every module M. A module M is called quasi – projective if M is M – projective, see [1], [2], [3].

A submodule N of an R – module is said to be an y-closed submodule of M provided $\frac{M}{N}$ is nonsingular, see [4].

Clearly that for a singular R – module M, M is the only y-closed submodule of M.

In this paper we define projectivity on y-closed submodules.

1- Projectivity on y-closed submodules

Definition 1.1 : Let N be a module . A module M is said to be N – y-closed projective if for every y-closed submodule X of N , any homomorphism $\varphi : M \rightarrow \frac{N}{X}$ can be lifted to a homomorphism $\psi : M \rightarrow N$ i.e., if $\pi : N \rightarrow \frac{N}{X}$ is the natural epimorphism , then there exists on R – homomorphism $\psi : M \rightarrow N$ such that $\pi \psi = \varphi$.

A module M is called an y-closed projective module if M is N-y-closed projective , for every module N .

Remark 1.1: every singular module is y-closed projective .

Proof : Let M be a singular module . Let N be any R-module and let X be an y-closed submodule of N, then $\frac{N}{x}$ is nonsingular.

Let $f: M \rightarrow \frac{N}{X}$ be any R – homomorphism. Since M is singular, then by [4] f = 0. So f can be lifted to a homomorphism $0 = \varphi : M \rightarrow N$. Thus M is y-closed projective.

Example 1.2 : It is clear that every projective is y-closed projective .

The converse is not true . For example , consider the module .

 Z_n as a Z-module , for $n\geq 2$. since Z_n is singular, then Z_n is y-closed projective , by remark 1.1 . But it is known than Z_n is not projective .

Remark 1.3 : Let N be an R-module and Let M be a singular R-module . Then N is M-y-closed projective .

Proof: since M is singular , then M is the only y-closed submodule of M . Thus N is M-y-closed projective .

The following two remarks are in coodearl, we sketch their proofs .

Remark 1.5: Let A and B be submodules of an R-module M such that $A \subseteq B$ if A is y-closed in B and B is y-closed in M, then A is y-closed in M.

Proof : consider the following short exact sequence

$$0 \to \frac{B}{A} \xrightarrow{i} \frac{M}{A} \xrightarrow{\pi} \frac{M}{A} \xrightarrow{M} 0$$

Where i is the inclusion map and π is the natural epimorphism . since $\frac{M}{B} \simeq \frac{M}{B}$ is nonsingular and $\frac{B}{A}$ is non singular , then $\frac{M}{A}$ is non singular , see [4].

Remark 1.6 : Let $\{M_{\alpha} / \alpha \in \Lambda\}$ be a family of Rmodules and Let A_{α} be a submodule of M_{α} , for each $\alpha \in \Lambda$. Then $\mathcal{D}_{\alpha \in \Lambda} A_{\alpha}$ is y-closed in $\mathcal{D}_{\alpha \in \Lambda}$ M_{α} if and only if A_{α} is y-closed in M_{α} , for each $\alpha \in \Lambda$ $\frac{\mathbf{Proof}}{\mathfrak{B}_{\alpha \in \Lambda} \mathbf{M} \alpha} \stackrel{\sim}{\longrightarrow} \mathfrak{B}_{\alpha \in \Lambda} (\frac{\mathbf{M} \alpha}{\mathbf{A} \alpha})$

But $\mathcal{D}_{\alpha \in \Lambda}(\frac{M\alpha}{A\alpha})$ is non singular if and only if $\frac{M\alpha}{A\alpha}$ is non singular, for each $\alpha \in \Lambda$. Therefore

 $\mathcal{D}_{\alpha \in \Lambda}$ A_{α} is y-closed in $\mathcal{D}_{\alpha \in \Lambda}$ M_{α} if and only if A_{α} is y-closed in M_{α}, for each $\alpha \in \Lambda$.

Proof: Let X be a y-closed submodule of K and $f: M \rightarrow \frac{K}{X}$ be any homomorphism. Since K is y-closed in N, then X is y-closed in N. consider the following diagram

Where i, i_1 are the inclusion maps and π , π_1 are the natural epimorphisms . Since M is N-y-closed projective , then there exists a homomorphism $g:M\to N$ such that $\pi_1g=i~f$. claim that $g(M)\subseteq K$, to show that Let $m\in M$. $\pi_1g(m)=i~f(m)=f(m)$ Let f(m)=k+X. So g(m)+X=k+X. Thusg(m) – $k\in X\subseteq K$ and hence $g(m)\in K$.

Now define $h: M \rightarrow K$ by h(m) = g(m) , $\forall m \in M$.

Let $\boldsymbol{m} \in \boldsymbol{M}$, then

 π h(m) = π g(m) = $\pi_1 g(m)$ = i f(m) = f(m) , Thus π h = f .

Proposition 1.8: Let N be an R-module and M be N-y-closed projective . if K is a submodule of N, then M is $\frac{N}{r}$ -y-closed projective .

Proof: Let $\frac{x}{\kappa}$ be a y-closed sub module of $\frac{N}{\kappa}$ and f: M $\rightarrow \frac{N}{K}$ be any R – homomorphism . Now $\frac{N}{K} \approx \frac{N}{X}$. So Let $\varphi : \frac{N}{K} \xrightarrow{N} X$ be the isomorphism defined by $\varphi((n+K) + \frac{X}{K}) = n + X$, $\forall n \in N$. Since $\frac{N}{K}$ is nonsingular, then X is a y-closed submodule of N.

Now consider the following diagram :

Where π , π_1 , π_2 are the natural epimorphisms since M is N-y-closed projective, then there exists a homomorphism $g : M \to N$ such that $\pi_1 g = \varphi f$.

Let $h = \pi_2 g$. claim that $\pi h = f$. To show that φf = $\pi_1 g = \varphi \pi \pi_2 g = \varphi \pi h$. since φ is an isomorphism, then $\pi h = f$.

Proposition 1.9: Let M and N be R- modules . Then M is N –y-closed projective if and only if for every epimorphismg: N \rightarrow N` with kerg is y-closed in N, where N`is any R-module and any homomorphism f : M \rightarrow N`, there exists a homomorphism

 $h: M \rightarrow N$ such that gh = f

Proof : By the first isomorphism theorem $\frac{N}{kerg} \cong N^{\sim}$. So there exists an isomorphism ψ : $N^{\sim} \rightarrow \frac{N}{kerg}$ defined by $\psi(n^{\sim}) = x + kerg$, where $g(x) = n^{\sim}$. Now consider the following diagram

Where π is the natural epimorphism , then exists a homomorphism $h: M \to N$ such that $\pi h = \psi f$.

Now Let $m \in M$, then $h(m) + \ker g = x + \ker g$, where g(x) = f(m). So $h(m) - x \in \ker g$. Thus g(h(m) - x) = 0 and hence gh(m) = g(x) = f(m). Thus gh = f. The converse is clear.

Proposition 1.10 : Let M and N be R – modules. if M is N-y-closed projective , then any epimorphism $f : N \rightarrow M$ with kerf is y-closed in N split . In addition , if N is indecomposable , then f is an isomorphism .

Proof : consider the following diagram

Where 1 is the identity . By prop 1.9, there exists a homomorphism $h: M \rightarrow N$ such that f h = 1. Thus f has a right inverse and hence split. Thus ker f is a direct summand of N.

Let M be an R - module , Recall that M is called a CLS - module if every y-closed submodule of M is a direct summand see [5] .

Proposition 1.11 : Let M be an R – module such that $\frac{M}{K}$ is M – y-closed projective, for every y-closed submodule K of M, then M is a CLS – module.

Proof: Let K be a y-closed submodule of M Let $\pi : M \rightarrow \frac{M}{K}$ be the natural epimorphism, then ker $\pi = K$ is a direct summand of M, by proposition 1.10.

2- Direct sums and y-closed projectivity

Proposition 2.1 : Let $M = M_1 \oplus M_2$ be an R – module .If M_2 is M_1 – y-closed projective, then for every y-closed submoduleN of M with $M = M_1 + N$, there exists a submodule M`of N such that $M = M_1 \oplus M$ `.

Proof: Let $\varphi : M_2 \rightarrow \frac{M_1}{M_1 \cap N}$ be a map defined by $\varphi(m_2) = \varphi(x + y) = x + M_1 \cap N$, where $m_2 \in M_2$, $x \in M_1$ and $y \in N$.

It is easy to show that φ is well defined .

Let $\xi : \xrightarrow{M_1}_{M_1 \cap N} \xrightarrow{M}_N$ be the isomorphism defined as follows:

 $\xi(\mathbf{m}_1 + \mathbf{M}_1 \cap \mathbf{N}) = \mathbf{m}_1 + \mathbf{N}$. Now consider the following diagram

where π_1 and π are the natural epimorphisms and j_1 and j_2 are the inclusion maps. Since N is y-closed in M and $\frac{M}{N} = \frac{M_1 + N}{N} \approx \frac{M_1}{M_1 \cap N}$, then $M_1 \cap N$ is y-closed in M_1 .

But M_2 is M_1 –y-closed projective , therefore there exists

 $f:\ M_2{\rightarrow} M_1$ such that $\pi_1\ f=\phi$. We can easily show that $M=M_1+M_2=M_1+(j_1\ f+j_2)\ (M_2)$. Now

Let $m_{1} \in M_{1} \cap (j_{1} \ f+j_{2}) \ (M_{2})$, $m_{1} = j_{1} \ f \ (m_{2}) - j_{2} \ (m_{2})$.

Therefore $m_1=f(m_2)-m_2$. Thus $f(m_2)-m_1=m_2$. Therefore $m_2\!\in\!M_1\!\cap\,M_2=0$ and $f(m_2)$ - $m_1=0$. Thus $m_1=0$. Hence $M=M_1\oplus~(j_1~f-j_2~)~(M_2)$.

Now , we only need to show that $(j_1 \ f - j_2 \) \ (M_2) \subseteq N$

Let $x \in M_2$, therefore $x = x_1 + y_1$, where $x_1 \in M_1$ and $y_1 \in N$.

$$\begin{split} f(x) &- x + N = \pi \left(\left(j_1 \ f - j_2 \ \right) (x) \right) \\ &= \pi \ j_1 \ f(x) - \pi \ j_2 \ (x) \\ &= \xi \ \pi_1 \ f(x) - \pi \ j_2 \ (x) \\ &= \xi \ \phi(x) - \pi \ j_2 \ (x) \\ &= (x_1 + N) - (x + N) \\ &= x_1 - x + N \\ &= -y_1 + N \\ &= N \\ \end{split}$$

Thus $(j_1 f - j_2) (M_2) \subseteq N$.

Proposition 2.2 : A direct sum $\mathcal{D}_{\alpha \in \Lambda}$ M_{α} is N-y-closed projective if and only if M_{α} is N-y-closed projective, for every $\alpha \in \Lambda$.

Proof : Suppose $\mathcal{D}_{\alpha \in \Lambda}$ M_{α} is N-y-closed projective . Let X be a y-closed submodule of N. Consider the following diagram

Where f is any homomorphism , P_{α} is the projection maps, J_{α} is the inclusion map and π is the natural epimorphism .

Then there exists a homomorphism $g : \mathcal{D}_{\alpha \in \Lambda}$ $M_{\alpha} \rightarrow N$ such that $\pi g = f P_{\alpha}$. Let $h = g J_{\alpha}$. Now $\pi h = \pi g J_{\alpha} = f P_{\alpha} J_{\alpha} = f I = f$. Thus M_{α} is N-y-closed projective.

The converse , Let \boldsymbol{X} be a y-closed sub module of \boldsymbol{N} and

f : $\mathfrak{O}_{\alpha \in \Lambda} M_{\alpha} \rightarrow \frac{N}{X}$ be any R – homomorphism . Now consider the following diagram

Where i_{α} is the inclusion, P_{α} is the projection and π is the natural epimorphism.

For every $\alpha \in \Lambda$, since M_{α} is N-y-closed projective, then have exists a homomorphism $g_{\alpha} : M_{\alpha} \rightarrow N$ such that $f i_{\alpha} = \pi g_{\alpha}$. Define h: $\mathfrak{D}_{\alpha \in \Lambda} M_{\alpha} \rightarrow N$ as follows: h($(m_{\alpha})_{\alpha \in \Lambda}$) = $\sum_{\alpha \in \Lambda} g_{\alpha}(m_{\alpha})$

h is well defined, since $m_{\alpha} \neq 0$ for at most a finite number of $\alpha \in \Lambda$. To show that $\pi h = f$. Let $(m_{\alpha})_{\alpha \in \Lambda} \in \mathcal{D}_{\alpha \in \Lambda} M_{\alpha}$

$$\pi h ((m_{\alpha}))_{\alpha \in \Lambda} = \pi \sum_{\alpha \in \Lambda} g_{\alpha}(m_{\alpha})$$
$$= \sum_{\alpha \in \Lambda} \pi g_{\alpha}(m_{\alpha})$$

$$= \sum_{\alpha \in \Lambda} f i_{\alpha}(m_{\alpha})$$

= f ($\sum_{\alpha \in \Lambda} i_{\alpha}(m_{\alpha})$)
= f ($(m_{\alpha})_{\alpha \in \Lambda}$).

Recall that an R – module M has D_2 if for any submodule N of M which $\frac{M}{N}$ is isomorphic to a direct summand of M, then N is a direct summand of M, see [1]. It is known that if a module M is M – projective, then M has D_2 , see [1, prop 4.38].

We have the following result when a module M is M –y-closed projective.

Proposition 2.3 : Let M be M-y-closed projective module and N be a y-closed submodule of M. If $\frac{M}{N}$ is isomorphic to a direct summand K of M, then N is a direct summand of M.

Proof : Let π : M $\rightarrow \frac{M}{N}$ be the natural epimorphism and

 $\psi: \frac{M}{N} \to K$ be an isomorphism . Let $f = \psi \pi : M$ $\to K$

Clearly ψ is an epimorphism and ker f = N

By prop 2.2 , K is M-y-closed projective and hence f is split , by Prop. 1.10 . Thus ker f = N is a direct summand of N .

Let M be an R-module and N be a submodule of M .

N is called a fully invariant submodule of M if f $(N) \subseteq N$, for every R-homomorphism f : M \rightarrow M, see [6].

Proposition 2.4 : Let M be an R-module and $N = \bigoplus_{i=1}^{n} N_i$ be an R-module such that every y-closed submodule of N is fully invariant. If M is N_i -y-closed projective, for every i = 1, ..., n, then M is N-y-closed projective. The converse is true if N is nonsingular.

Proof : Suppose M is Ni-y-closed projective, for every i = 1,...,n. Let X be a y-closed submodule of $\mathcal{O}_{i=1}^{n} N_{i}$. Let $P_{j} : \mathcal{O}_{i=1}^{n} N_{i} \rightarrow N_{j}$ be the projection, \forall j=1,...,n since X is fully invariant. then $P_{i}(X) \subseteq X \cap N_{i}$. Let $x \in X$, then $x = \sum_{j=1}^{n} x_{i} = \sum_{i=1}^{n} p_{i}(x)$. Thus $x_{i} \in X \cap N_{i}$. Thus $X = \mathcal{O}_{i=1}^{n}(X \cap N_{i})$. Since X is y-closed in N, then $\frac{N}{x}$ is nonsingular and hence,

and hence, $\frac{X+N_i}{X} \subseteq_X^N$ is nonsingular. But $\frac{X+N_i}{X} \simeq \frac{N_i}{X \cap N_i}$, therefore $X \cap N_i$ is y-closed in N_i , for every i = 1, ..., n. Now consider the following diagram

Where $\bar{p}_j (\sum_{i=1}^n x_i + X) = x_j + N_j \cap X$, $\bar{i}_j (x_j + N_j \cap X) = x_i + X$, i_j is the inclusion maps and π , π_j

are the natural apimoprphisms . Since M is N_j -y-closed projective , then there

exists a homomorphism g_j : M $\rightarrow N_j$ such that $\pi_j q_j = \bar{p}_j$ f

Now define h : $M \rightarrow \bigoplus_{i=1}^{n} N_i$ as follows : h(m) = $\sum_{i=1}^{n} g_i(m)$ clearly $\pi = \sum_{j=1}^{n} \overline{i_j} \pi_j p_j$ to show that π h = f, Let m \in M π h(m) = $\pi (\sum_{i=1}^{n} g_i(m))$ = $\sum_{j=1}^{n} \overline{i_j} \pi_j p_j (\sum_{i=1}^{n} g_i(m))$ = $\sum_{j=1}^{n} \overline{i_j} \pi_j g_j(m)$ = $\sum_{j=1}^{n} \overline{i_j} \overline{p_j} f(m)$ = f(m) **References :**

- Mohamed S. H. and Muller B. J., 1990.
 Continuous and Discrete Modules, London Math. Soc. LNS 147 Cambridge Univ. Press, Cambridge.
- 2. John Clark, Christian Lomp, Narayanaswami, Vanaja and Robert Wisbauer, 2006. Lifting modules, Supplements and projectivity in module theory.
- **3.** Kasch F., **1982**. *Modules and Rings*, Academic Press, London,
- **4.** Goodearl K. R., **1976**. *Ring Theory*, Non Singular Rings and Modules, Marcel Dekker, New York,
- 5. Tercan A., 1995. On CLS–Modules, Rocky Mountain J.Math. 25, pp:1557–1564.
- 6. Wilson G. V., **1986**. Modules with the Summand intersection property , *Comm. Algebra* , 14 , pp:21 38.