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Abstract

In this paper we study necessary and sufficient conditions for a reverse-
centralizer of a semiprime ring R to be orthogonal. We also prove that a reverse-
centralizer T of a semiprime ring R having a commuting generalized inverse is

orthogonal.
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1. Introduction:

The purpose of this paper is to investigate
some further properties of reverse-centralizers of
semiprime rings and we give necessary and
sufficient conditions for a reverse-centralizer of
a semiprime ring to to be orthogonal map.
Recall that R is semiprime if aRa=0 implies a
=0 and is prime if aRb=0 implies that a=0 or
b=0. Recently, some authors have studied left
(right) centralizers and centralizers in the
general framework of semiprime rings (see [1-
4]). An additive mapping T:R—R is called a left
(resp. right) centralizer of R if T(xy)=T(X)y
(T(xy)=xT(y)) holds, for all x,yER. If T is both
left as well right centralizer, then T is a
centralizer. An additive mapping T:R—R is
called a left (resp. right) reverse-centralizer of R
if T(xy)=T(y)x (T(xy)=yT(x)) holds, for all x
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YE R, if T is both left as well right reverse-
centralizer, then T is a reverse-centralizer, see
[5]. Let M be a subset of a ring R, following
[6], we recall the orthogonal complement of M
is the set M~ ={XER: xy=yx =0 forally € M
}. Also we recall the mapping T of a ring R is
called orthogonal if R = R(T) @ R(T)" . We
prove that a reverse-centralizer T of a semiprime
ring R is orthogonal if and only if R(T) = R(T?),
where R(T) denotes the range of T. [Theorem
2.10]. Also we prove that if T is
a reverse-centralizer of a semiprime ring R then
the following are equivalent:

*  R(T) = R(TY)

R = Ker (T) @ R(T). [Theorem 2.4].
Following [6], A mapping T: R — R of aring R
into itself is said to have a generalized inverse if
there is a mapping S: R — R such that STS = S
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and TST = T. In this case S is said to be a
generalized inverse of T or S is a g-inverse of T.
Generalized inverses are useful in various fields
of mathematics, statistics and engineering (see
[6-9]. Finally we prove that if T is a reverse-
centralizer of a semiprime ring having a
commuting generalized inverse then T is
orthogonal [Proposition 2.15].
2. Results:
Remark 2.1. It is easy to verify that if T is a
reverse-centralizer of a ring R, then Ker(T) and
R(T) are ideals of R.
Remark 2.2. Let S, T €V(R), the set of all
reverse-centralizers of a ring R is denoted by
V(R). We Define (S+T)(x)=S(x)+T(x) and
(STH(X)=S(T(x)) , XER. then V(R) with these
two operations is a ring with identity.
It is easy to verify that if R is a semiprime ring
then V(R) is commutative.
Proof: we want prove
commutative.

Let S, TE€ V(R), we want prove that
(ST)Y(X)= (TS)(X) , forall x€ R.
Consider  ((ST)(X)-(TS)(x))z = ST(X)z-TS(x)z

that V(R) is

ST(X)z-T(S(x))z
ST(X)z-T(zS(x))
ST(X)z-S(T(2)x)
ST(X)z-xST(2) ST(X)z-ST(zx)
ST(X)z-ST(x)z 0 , for all xzeR . By
semiprimeness of R we obtain (ST)(X)-
(TS)(x)=0, and hence (ST)(x) = (TS)(x) for all
XE R. Thus V(R) is a commutative ring.
Proposition 2.3. Let T be a reverse-centralizer
of a semiprime ring R, then Ker (T) = Ker (T?).
Proof: Clearly, Ker (T) SKer (T?). Now, let
xE Ker (T?), this implies that T%(x)=0 , Now,
since T is a reverse-centralizer then we
have, TO)rT(X)=(TX)NTX)=T(rX)TX)=T(T(X)r
X)=rxT(T(x))=rxT*(x)=0. By semiprimeness of
R we get, T(x)=0, hence x& Ker (T), and hence
Ker(T?) S Ker (T). Thus, Ker (T) = Ker (T?).
Theorem 2.4. Let T be a reverse-centralizer of a
semiprime ring R. Then R(T) = R(T?) if and
only if R = Ker (T) & R(T).

Proof:

Suppose that R(T) = R(T?) , since Tis a
reverse-centralizer then by (Remark 2.1))
Ker(T) and R(T) are ideals of R, now we show
that Ker(T) N R(T)=0. Let wE& Ker(T) N R(T).
Then w& Ker(T) and weR(T) and hence
T(w)=0 and T(y)=w for some y=R. Hence

ST(X)z-S(X)T(2)
ST(X)z-xS(T(2))
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T(W)=T%y)=0. Thus y <Ker(T). But by
(proposition 2.3.), we have Ker (T) = Ker (T?).
Thus y& Ker(T) which implies that T(y)=0 and
hence w=0. Which implies that Ker(T) N
R(T)=0.

Now, suppose that z& R, then T(z) =R(T), by
assumption we have T(z) € R(T?. Thus
T(2)=T?(v) for some vE R, and soT(z2)-T(v)=
T(z-T(v))=0. This implies that z-T(v) =Ker(T),
now we can write z=(z-T(v))+T(v). This implies
that R = Ker (T) & R(T).

Conversely, Suppose that R = Ker (T) & R(T),
we prove that R(T) = R(T?. Clearly that
R(T?) S R(T). Now let yER(T), then y=T(x)
for some x& R. Thus by assumption, x=x-
1+tXz, where x;& Ker(T) and x;, € R(T).
Thus

y= TX)=T(X1+X2)=T(X1)+T(X2)=T(xz). Since
X2 €ER(T), therefore x,=T(w) for some w&
R, hence

y = T(X,) = T(T(w)) = T?w), which implies
that

y €R(T?). Thus R(T) € R(T?), hence R(T)
= R(T?).

Definition 2.5. [6]. Let M be a subset of a ring
R. We define the orthogonal complement of M
to be the set MLz{ XER: xy=yx =0 forally
EM}L

Remark 2.6. [6]. It is easy to verify that if M is
an ideal of R then M~ is also an ideal of R.
Example.2.7 Let M,(R) denote the ring of all
2x2 matrices over the set of all real numbers R
and let T: My(R) — M,(R) be an additive

. . a b 0 a
mapping defined by T([C t1,])= [b ﬂ,], for all
[i 2] & My(R). One can easily show that
Ker(T) ¢ R(T) " and R(T) ¢ Ker(T)" . Farther, it
is clear that T is not reverse-centralizer.
Moreover, if T is reverse-centralizer then it is
easy to verify that
Ker (T) S R(T) and R(T) S Ker(T) .
Proposition 2.8. Let R be a semiprime ring and
T: R—R a reverse-centralizer of R. Then
Ker(T) = R(T) .

Proof:

First, we want prove that Ker (T) &
R(T)". Let X€ Ker(T), then T(x)=0, now
replace X
with xy, we get T(xy)=0, for all x,y € R.But T
is  reverse-centralizer of R, therefore
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T(xy)=yT(X)=T(y)x=0 for all x,ye R . Thus x
e R(T)L. and hence Ker (T) & R(T)L. Now
let zER(T)L,then ZT(X)=T(2)x=0 for all x =
R.
By semiprimness of R we get T(z)=0, that is
zE Ker (T). Therefore R(T) © S Ker(T), and
hence Ker(T) = R(T) —.
Definition 2.9. [6]. A mapping T of aring R is
said to be orthogonal if R=R(T) @ R(T) *.

The following Theorem gives the necessary

and sufficient conditions for a reverse-
centralizer T of a semiprime ring to be
orthogonal.

Theorem 2.10. A reverse - centralizer T of a
semiprime ring R is orthogonal if and only if
R(T)= R(T?).

Proof: Let T be a reverse-centralizer of
semiprime ring R. Suppose that T is orthogonal
then R=R(T) @ R(T) . By proposition (2.8.),
we have Ker(T) = R(T) *, this implies that
R= R(T) @ Ker(T). Thus by Theorem (2.4.) we
get R(T) = R(T?.Conversely, suppose that
R(T)= R(T% . Thus by proposition (2.4.) we
have

R = Ker (T) @& R(T), hence by proposition
(2.8.), we obtain R=R(T) @ R(T) —, and hence,
T is orthogonal.

Corollary 2.11. An idempotent reverse-
centralizer of a semiprime ring is orthogonal.
Definition 2.12. [6] A mapping T: R — R of a
ring R into itself is said to have a generalized
inverse if there is a mapping S: R — R such that
STS=Sand TST =T. In this case S is said to be
a generalized inverse of T or S is a g-inverse of
T.

Before we give our main result, we need
the following proposition which can be
found in [3].

Proposition 2.13. Let T: R — R be an additive
mapping with S as a g-inverse.

Then the following hold:

(a) TS and ST are idempotents.

(b) R(TS) = R(T), and Ker(ST) = Ker(T).
Remark 2.14. [6] It is well known that a g-
inverse S of a mapping T : R — R is not unique.
But there is at most one g-inverse which
commutes with T. If S and S’ are g-inverses of
T, both commuting with T, then TS’ = TSTS'
STS'T = ST, and hence S'=S'TS' = S'ST = S'TS
=TS'S=STS=S.
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The following proposition gives a condition
under which a reverse-centralizer of a ring is
orthogonal.

Proposition 2.15. Let T be a reverse-centralizer
of a semiprime ring R. if T has a commuting
g-inverse SEV(R), then T is orthogonal map.
Proof:

Let T be a reverse-centralizer of a
semiprime ring R. Suppose that T have a
commuting g-inverse SEV(R). Thus by Remark
(2.2.) we get TS = ST. Also TS and ST are
reverse-centralizers and are idempotent by
Proposition (2.13). Thus by Corollary (2.11.) TS
and ST are orthogonal. Thus R = Ker (TS) &
R(TS) Ker (ST) @ R(TS). Now by
Proposition (2.13), we have
Ker (ST)= Ker (T) and R(TS)= R(T). Thus R =
Ker (T) @& R(T). But by Proposition (2.8.),
Ker (T)= R(T) *, therefore R = R(T) =~ @
R(T). Hence T is orthogonal.
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