

On Reverse - Centralizers Of Semiprime Rings

Ali A. Hassan ${ }^{* 1}$ and Fatin A. Fadhil ${ }^{2}$
${ }^{1}$ General Directorate Of Education Al Karakh, Ministry of Education, ${ }^{2}$ Physics Researches and Sciences Directorate, Ministry Of Science \& Technology, Baghdad, Iraq.

Abstract

In this paper we study necessary and sufficient conditions for a reversecentralizer of a semiprime ring R to be orthogonal. We also prove that a reversecentralizer T of a semiprime ring R having a commuting generalized inverse is orthogonal.

Keywords: Semiprime ring, left (right) reverse-centralizer, reverse-centralizer, orthogonal map, generalized inverse.

$$
\begin{aligned}
& \text { حَول الدوال التمركزيـة العكسية على الحلقات شُبـه ألاولـيـية } \\
& \text { علي عامر حسان "1 و فاتن عباس فاضل2 } 2 \\
& \text { 1معهد اعداد المعلمين الصباحي ، مديرية تربية الكرخ الثانية، وزارة التربية، }{ }^{2} \text { ادئرة بحوث وعلوم المواد. وزارة العلوم والنكنلوجيا }
\end{aligned}
$$

الخلاصة:

$$
\begin{aligned}
& \text { في هذا البحث ندرس الثنروط الضرورية والكافية للدوال التمركزية العكسية على الحلقة شبه الاولية R R } \\
& \text { لتكون متعامدة. ونبرهن ايضاً ان الدالة التمركزية العكسية على الحقة شبه الاولية R والتي تمتلك تعميم } \\
& \text { معكوس ابدالي تكون متعامدة. } \\
& \text { كلمات مفتاحية: الحلقة شبه الاولية ، تمركز عكسي ايسر (ايمن) ،النمركز العكسي، الدالة المتعامدة ، النعميم }
\end{aligned}
$$

1. Introduction:

The purpose of this paper is to investigate some further properties of reverse-centralizers of semiprime rings and we give necessary and sufficient conditions for a reverse-centralizer of a semiprime ring to to be orthogonal map. Recall that R is semiprime if $\mathrm{aRa}=0$ implies a $=0$ and is prime if $\mathrm{aRb}=0$ implies that $\mathrm{a}=0$ or $b=0$. Recently, some authors have studied left (right) centralizers and centralizers in the general framework of semiprime rings (see [14]). An additive mapping $T: R \rightarrow R$ is called a left (resp. right) centralizer of R if $T(x y)=T(x) y$ $(T(x y)=x T(y))$ holds, for all $x, y \in R$. If T is both left as well right centralizer, then T is a centralizer. An additive mapping $T: R \rightarrow R$ is called a left (resp. right) reverse-centralizer of R if $T(x y)=T(y) x \quad(T(x y)=y T(x))$ holds, for all x
, $\mathrm{y} \in \mathrm{R}$, if T is both left as well right reversecentralizer, then T is a reverse-centralizer, see [5]. Let M be a subset of a ring R , following [6], we recall the orthogonal complement of M is the set $M^{\perp}=\{x \in R: x y=y x=0$ for all $y \in M$ \}. Also we recall the mapping T of a ring R is called orthogonal if $\mathrm{R}=\mathrm{R}(\mathrm{T}) \oplus \mathrm{R}(\mathrm{T})^{\perp}$. We prove that a reverse-centralizer T of a semiprime ring R is orthogonal if and only if $R(T)=R\left(T^{2}\right)$, where $R(T)$ denotes the range of T. [Theorem 2.10]. Also we prove that if T is a reverse-centralizer of a semiprime ring R then the following are equivalent:

* $\mathrm{R}(\mathrm{T})=\mathrm{R}\left(\mathrm{T}^{2}\right)$
* $\quad \mathrm{R}=\operatorname{Ker}(\mathrm{T}) \oplus \mathrm{R}(\mathrm{T})$. [Theorem 2.4].

Following [6], A mapping $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ of a ring R into itself is said to have a generalized inverse if there is a mapping $S: R \rightarrow R$ such that $S T S=S$

[^0]and TST $=T$. In this case S is said to be a generalized inverse of T or S is a g-inverse of T. Generalized inverses are useful in various fields of mathematics, statistics and engineering (see [6-9]. Finally we prove that if T is a reversecentralizer of a semiprime ring having a commuting generalized inverse then T is orthogonal [Proposition 2.15].

2. Results:

Remark 2.1. It is easy to verify that if T is a reverse-centralizer of a ring R , then $\operatorname{Ker}(\mathrm{T})$ and $R(T)$ are ideals of R.
Remark 2.2. Let $S, T \in V(R)$, the set of all reverse-centralizers of a ring R is denoted by $V(R)$. We Define $(S+T)(x)=S(x)+T(x)$ and $(S T)(x)=S(T(x)), x \in R$. then $V(R)$ with these two operations is a ring with identity.
It is easy to verify that if R is a semiprime ring then $\mathrm{V}(\mathrm{R})$ is commutative.
Proof: we want prove that $\mathrm{V}(\mathrm{R})$ is commutative.

Let $S, T \in V(R)$, we want prove that $(S T)(x)=(T S)(x), \quad$ for all $x \in R$.
Consider ((ST)(x)-(TS)(x))z=ST(x)z-TS(x)z $=$
$\mathrm{ST}(\mathrm{x}) \mathrm{z}-\mathrm{T}(\mathrm{S}(\mathrm{x}) \mathrm{z}=$
$\mathrm{ST}(\mathrm{x}) \mathrm{z}-\mathrm{T}(\mathrm{zS}(\mathrm{x}))=\mathrm{ST}(\mathrm{x}) \mathrm{z}-\mathrm{S}(\mathrm{x}) \mathrm{T}(\mathrm{z})=$
$S T(x) z-S(T(z) x)=S T(x) z-x S(T(z))=$ $\mathrm{ST}(\mathrm{x}) \mathrm{z}-\mathrm{xST}(\mathrm{z})=\mathrm{ST}(\mathrm{x}) \mathrm{z}-\mathrm{ST}(\mathrm{zx})=$ $S T(x) z-S T(x) z=0$, for all $x, z \in R$. By semiprimeness of R we obtain (ST)(x)$(\mathrm{TS})(\mathrm{x})=0$, and hence $(\mathrm{ST})(\mathrm{x})=(\mathrm{TS})(\mathrm{x})$ for all $x \in R$. Thus $V(R)$ is a commutative ring.
Proposition 2.3. Let T be a reverse-centralizer of a semiprime ring R, then $\operatorname{Ker}(T)=\operatorname{Ker}\left(\mathrm{T}^{2}\right)$.
Proof: Clearly, $\operatorname{Ker}(\mathrm{T}) \subseteq \operatorname{Ker}\left(\mathrm{T}^{2}\right)$. Now, let $x \in \operatorname{Ker}\left(T^{2}\right)$, this implies that $T^{2}(x)=0$, Now, since T is a reverse-centralizer then we have, $T(x) r T(x)=(T(x) r) T(x)=T(r x) T(x)=T(T(x) r$ $x)=\operatorname{rxT}(T(x))=r x T^{2}(x)=0$. By semiprimeness of R we get, $T(x)=0$, hence $x \in \operatorname{Ker}(T)$, and hence $\operatorname{Ker}\left(\mathrm{T}^{2}\right) \subseteq \operatorname{Ker}(\mathrm{T})$. Thus, $\operatorname{Ker}(\mathrm{T})=\operatorname{Ker}\left(\mathrm{T}^{2}\right)$.
Theorem 2.4. Let T be a reverse-centralizer of a semiprime ring R. Then $R(T)=R\left(T^{2}\right)$ if and only if $\mathrm{R}=\operatorname{Ker}(\mathrm{T}) \oplus \mathrm{R}(\mathrm{T})$.

Proof:

Suppose that $R(T)=R\left(T^{2}\right)$, since T is a reverse-centralizer then by (Remark 2.1.) $\operatorname{Ker}(\mathrm{T})$ and $\mathrm{R}(\mathrm{T})$ are ideals of R , now we show that $\operatorname{Ker}(T) \cap R(T)=0$. Let $w \in \operatorname{Ker}(T) \cap R(T)$. Then $w \in \operatorname{Ker}(T)$ and $w \in R(T)$ and hence $T(w)=0$ and $T(y)=w$ for some $y \in R$. Hence
$\mathrm{T}(\mathrm{w})=\mathrm{T}^{2}(\mathrm{y})=0$. Thus $\mathrm{y} \in \operatorname{Ker}\left(\mathrm{T}^{2}\right)$. But by (proposition 2.3.), we have $\operatorname{Ker}(\mathrm{T})=\operatorname{Ker}\left(\mathrm{T}^{2}\right)$. Thus $\mathrm{y} \in \operatorname{Ker}(\mathrm{T})$ which implies that $\mathrm{T}(\mathrm{y})=0$ and hence $w=0$. Which implies that $\operatorname{Ker}(T) \cap$ $R(T)=0$.
Now, suppose that $z \in R$, then $T(z) \in R(T)$, by assumption we have $T(z) \in R\left(T^{2}\right)$. Thus $T(z)=T^{2}(v)$ for some $v \in R$, and $\operatorname{so} T(z)-T^{2}(v)=$ $\mathrm{T}(\mathrm{z}-\mathrm{T}(\mathrm{v}))=0$. This implies that $\mathrm{z}-\mathrm{T}(\mathrm{v}) \in \operatorname{Ker}(\mathrm{T})$, now we can write $\mathrm{z}=(\mathrm{z}-\mathrm{T}(\mathrm{v}))+\mathrm{T}(\mathrm{v})$. This implies that $\mathrm{R}=\operatorname{Ker}(\mathrm{T}) \oplus \mathrm{R}(\mathrm{T})$.
Conversely, Suppose that $R=\operatorname{Ker}(T) \oplus R(T)$, we prove that $R(T)=R\left(T^{2}\right)$. Clearly that $R\left(T^{2}\right) \subseteq R(T)$. Now let $y \in R(T)$, then $y=T(x)$ for some $x \in R$. Thus by assumption, $x=x-$ ${ }_{1}+x_{2}$, where $x_{1} \in \operatorname{Ker}(T)$ and $x_{2} \in R(T)$. Thus
$y=T(x)=T\left(x_{1}+x_{2}\right)=T\left(x_{1}\right)+T\left(x_{2}\right)=T\left(x_{2}\right)$. Since $x_{2} \in R(T)$, therefore $x_{2}=T(w)$ for some $w \in$ R, hence
$y=T\left(x_{2}\right)=T(T(w))=T^{2}(w)$, which implies that
$y \in R\left(T^{2}\right)$. Thus $R(T) \subseteq R\left(T^{2}\right)$, hence $R(T)$ $=R\left(\mathrm{~T}^{2}\right)$.
Definition 2.5. [6]. Let M be a subset of a ring R. We define the orthogonal complement of M to be the set $M^{\perp}=\{x \in R$: $x y=y x=0$ for all y $\in \mathrm{M}\}$.
Remark 2.6. [6]. It is easy to verify that if M is an ideal of R then M^{\perp} is also an ideal of R .
Example.2.7 Let $M_{2}(R)$ denote the ring of all 2×2 matrices over the set of all real numbers R and let $T: M_{2}(R) \rightarrow M_{2}(R)$ be an additive mapping defined by $\mathrm{T}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=\left[\begin{array}{ll}0 & 0 \\ b & d\end{array}\right]$, for all $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{M}_{2}(\mathrm{R})$. One can easily show that $\operatorname{Ker}(\mathrm{T}) \nsubseteq \mathrm{R}(\mathrm{T})^{\perp}$ and $\mathrm{R}(\mathrm{T}) \nsubseteq \operatorname{Ker}(\mathrm{T})^{\perp}$. Farther, it is clear that T is not reverse-centralizer. Moreover, if T is reverse-centralizer then it is easy to verify that $\operatorname{Ker}(\mathrm{T}) \subseteq \mathrm{R}(\mathrm{T})^{\perp}$ and $\mathrm{R}(\mathrm{T}) \subseteq \operatorname{Ker}(\mathrm{T})^{\perp}$.
Proposition 2.8. Let R be a semiprime ring and $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ a reverse-centralizer of R . Then $\operatorname{Ker}(\mathrm{T})=\mathrm{R}(\mathrm{T})^{\perp}$.
Proof:
First, we want prove that $\operatorname{Ker}(\mathrm{T}) \subseteq$ $R(T)^{\perp}$. Let $x \in \operatorname{Ker}(T)$, then $T(x)=0$, now replace x with $x y$, we get $T(x y)=0$, for all $x, y \in R$. But T is reverse-centralizer of R, therefore
$T(x y)=y T(x)=T(y) x=0$ for all $x, y \in R$. Thus x $\in R(T)^{\perp}$. and hence Ker $(T) \subseteq R(T)^{\perp}$. Now let $\mathrm{z} \in \mathrm{R}(\mathrm{T})^{\perp}$, then $\mathrm{zT}(\mathrm{x})=\mathrm{T}(\mathrm{z}) \mathrm{x}=0$ for all $\mathrm{x} \in$ R.

By semiprimness of R we get $T(z)=0$, that is $\mathrm{z} \in \operatorname{Ker}(\mathrm{T})$. Therefore $\mathrm{R}(\mathrm{T})^{\perp} \subseteq \operatorname{Ker}(\mathrm{T})$, and hence $\operatorname{Ker}(T)=R(T){ }^{\perp}$.
Definition 2.9. [6]. A mapping T of a ring R is said to be orthogonal if $\mathrm{R}=\mathrm{R}(\mathrm{T}) \oplus \mathrm{R}(\mathrm{T})^{\perp}$.

The following Theorem gives the necessary and sufficient conditions for a reversecentralizer T of a semiprime ring to be orthogonal.
Theorem 2.10. A reverse - centralizer T of a semiprime ring R is orthogonal if and only if $R(T)=R\left(T^{2}\right)$.
Proof: Let T be a reverse-centralizer of semiprime ring R. Suppose that T is orthogonal then $\mathrm{R}=\mathrm{R}(\mathrm{T}) \oplus \mathrm{R}(\mathrm{T})^{\perp}$. By proposition (2.8.), we have $\operatorname{Ker}(\mathrm{T})=\mathrm{R}(\mathrm{T})^{\perp}$, this implies that $\mathrm{R}=\mathrm{R}(\mathrm{T}) \oplus \operatorname{Ker}(\mathrm{T})$. Thus by Theorem (2.4.) we get $R(T)=R\left(T^{2}\right)$.Conversely, suppose that $R(T)=R\left(T^{2}\right)$. Thus by proposition (2.4.) we have
$\mathrm{R}=\operatorname{Ker}(\mathrm{T}) \oplus \mathrm{R}(\mathrm{T})$, hence by proposition (2.8.), we obtain $\mathrm{R}=\mathrm{R}(\mathrm{T}) \oplus \mathrm{R}(\mathrm{T})^{\perp}$, and hence, T is orthogonal.
Corollary 2.11. An idempotent reversecentralizer of a semiprime ring is orthogonal.
Definition 2.12. [6] A mapping $T: R \rightarrow R$ of a ring R into itself is said to have a generalized inverse if there is a mapping $S: R \rightarrow R$ such that STS $=S$ and TST $=T$. In this case S is said to be a generalized inverse of T or S is a g-inverse of T.

Before we give our main result, we need the following proposition which can be found in [3].
Proposition 2.13. Let $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ be an additive mapping with S as a g -inverse.
Then the following hold:
(a) TS and ST are idempotents.
(b) $\mathrm{R}(\mathrm{TS})=\mathrm{R}(\mathrm{T})$, and $\operatorname{Ker}(\mathrm{ST})=\operatorname{Ker}(\mathrm{T})$.

Remark 2.14. [6] It is well known that a ginverse S of a mapping $T: R \rightarrow R$ is not unique. But there is at most one g-inverse which commutes with T. If S and S^{\prime} are g-inverses of T , both commuting with T , then $\mathrm{TS}^{\prime}=\mathrm{TSTS}^{\prime}=$ $\mathrm{STS}^{\prime} \mathrm{T}=\mathrm{ST}$, and hence $\mathrm{S}^{\prime}=\mathrm{S}^{\prime} \mathrm{TS}^{\prime}=\mathrm{S}^{\prime} \mathrm{ST}=\mathrm{S}^{\prime} \mathrm{TS}$ $=\mathrm{TS} \mathrm{S}^{\prime}=\mathrm{STS}=\mathrm{S}$.

The following proposition gives a condition under which a reverse-centralizer of a ring is orthogonal.
Proposition 2.15. Let T be a reverse-centralizer of a semiprime ring R. if T has a commuting g-inverse $S \in V(R)$, then T is orthogonal map.

Proof:

Let T be a reverse-centralizer of a semiprime ring R. Suppose that T have a commuting g-inverse $S \in V(R)$. Thus by Remark (2.2.) we get $\mathrm{TS}=$ ST. Also TS and ST are reverse-centralizers and are idempotent by Proposition (2.13). Thus by Corollary (2.11.) TS and ST are orthogonal. Thus $\mathrm{R}=\operatorname{Ker}(\mathrm{TS}) \oplus$ $\mathrm{R}(\mathrm{TS})=\operatorname{Ker}(\mathrm{ST}) \oplus \mathrm{R}(\mathrm{TS})$. Now by Proposition (2.13.), we have $\operatorname{Ker}(\mathrm{ST})=\operatorname{Ker}(\mathrm{T})$ and $\mathrm{R}(\mathrm{TS})=\mathrm{R}(\mathrm{T})$. Thus $\mathrm{R}=$ Ker $(T) \oplus R(T)$. But by Proposition (2.8.), Ker $(\mathrm{T})=\mathrm{R}(\mathrm{T})^{\perp}$, therefore $\mathrm{R}=\mathrm{R}(\mathrm{T})^{\perp} \oplus$ $R(T)$. Hence T is orthogonal.

References

1. Vukman J. 1997, Centralizers on semiprime rings, Comment. Math. Univ. Carolinae,38, pp:231-240.
2. Vukman J. 1999, An identity related to centralizers in semiprime rings, Comment.Math. Univ. Carolinae, 40, pp:447-456.
3. Vukman J. 2001, Centralizers on semiprime rings, Comment. Math. Univ. Carolinae, 42, pp:237-245.
4. Zalar B. 1991, On centralizers of semiprime rings, Comment. Math. Univ. Carolinae, 34, pp:609-614.
5. Fadhil F.A. and Majeed A.H. 2011, free action on prime and semiprime rings, Journal of Basrah Researches (Sciences), 37(4)C, pp:134-137.
6. Chaudhry, M. A. and Samman, M. S. 2006, Generalized inverses of centralizers of semiprime rings, Aequationes Math. 71, pp:246-252.
7. Caradus, S. R. 1974, Generalized Inverses and Operator Theory, Queen's Papers in Pure and Appl. Math. 38.
8. Campbell, S. L. and Meyer Jr. C. D. 1991 Generalized inverses of linear transformations, Dover Publications, Inc., New York,.pp:77-90.
9. Steffen R. and Silbermann B. 1999, Continuity of generalized inverses in Banach algebras, Studia Math. 136 (3), pp:197-227.

[^0]: *Email: ali1977math@yahoo.com

