

Determination of Ionospheric Parameters over Iraqi Zone

Aqeel Z. Aziz and Khalid A. Hadi*

Department of Astronomy & Space, College of Science, University of Baghdad, Baghdad, Iraq.

Abstract

In this paper, an analytical study for the behavior of ionospheric parameters (Maximum Usable Frequency (MUF) and Optimum Traffic Frequency (FOT)) has been preformed between transmitter station (Baghdad) and many different receiver stations which are distributed randomly over Iraqi territory. The ionospheric parameters dataset has been made using ICEPAC communication model for annual time for the years 2009-2011 of the solar cycle 24. A simplified ionospheric model has been suggested which based on the correlated relationship between the geographical locations coordinates (longitudes & latitudes) of receiver stations and the dataset of the MUF and FOT parameters. The results of this study showed that the correlation between the ionospheric parameters and geographical location coordinates can be expressed as linear surface equation. The predicated ionospheric parameters values using the suggested empirical model show a good fitting with theoretical values that calculated using the international models.

Keywords: Ionospheric Propagation Parameters, Radio Wave Propagation, HF Communication.

حساب قيم المعاملات الأيونسفيرية فوق منطقة العراق

عقيل زهير عزيز و خالد عبد الكريم هادي قسم الفلك والفضاء، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصة:

في هذا البحث تم إجراء دراسة تحليلية لسلوك المعاملات الأيونسفيرية (MUF و FOT) بين المحطة المرسلة (بغداد) والعديد من محطات الإستلام المختلفة التي تتوزع عشوائيا فوق منطقة العراق. تم حساب قيم المعاملات الأيونسفيرية بأستخدام نموذج الإتصالات (ICEPAC) للفترة السنوية للأعوام (2009 - 2011) والواقعة ضمن الدورة الشمسية 24. كما تم إقتراح نموذج رياضي مبسط لحساب قيم المعاملات الأيونسفيرية إستخدام نموذج الإتصالات (ICEPAC) للفترة السنوية للأعوام (2009 - 2011) والواقعة ضمن الدورة الشمسية 24. كما تم إقتراح نموذج رياضي مبسط لحساب قيم المعاملات الأيونسفيرية أربعاد الأيونسفيرية بأستخدام نموذج الإتصالات (ICEPAC) للفترة السنوية للأعوام (2009 - 2011) والواقعة ضمن الدورة الشمسية 24. كما تم إقتراح نموذج رياضي مبسط لحساب قيم المعاملات الأيونسفيرية إعتماداً على العلاقة الإرتباطية بين إحداثيات المواقع الجغرافية (خطوط الطول وخطوط العرض) لمحطات الإستلام وبيانات المعاملات الأيونسفيرية والإحداثيات المواقع الجغرافية (خطوط المول وخطوط العرض) لمحطات أن العلاقة الإرتباطية بين إحداثيات المواقع الجغرافية (حلوط المول وخطوط العرض) لمحطات أن العدلاقة الإرتباطية بين إحداثيات المواقع الجغرافية (خطوط المول وخطوط العرض) لمحطات الإستلام وبيانات المعاملات الأيونسفيرية والإحداثيات المواقع الجغرافية المواقع الإرتباطية بين المعاملات الأيونسفيرية والإحداثيات الجغرافية المواقع الإستلام يمكن التعبير عنها معاملات الأيونسفيرية والإحداثيات الجغرافية المواقع الإستلام يمكن التعبير عنها معادلاته المعاملات الأيونسفيرية المعاملات الأيونسفيرية المحسوبة بأستخدام النموذج التامية معاملات الأيونسفيرية المعاملات الأيونسفيرية المعاملات الأيونسفيرية المحسوبة بأستخدام النموذج التامية.

Introduction

The ionosphere is the part of the Earth's upper atmosphere that makes up less than one percent of the mass of the atmosphere above 50 km. It extends from about 50 km altitude to about 1000 km where it merges with near Earth space environment. Most of the ionosphere is electrically neutral, but when solar radiation strikes the chemical constituents of the atmosphere electrons are split from atoms and molecules to produce an ionized layer [1].

The ionosphere layer is varies greatly with the time of day. During the day, the solar flux increases as the Sun comes into view and the electron density in the ionosphere increases. This allows high frequencies to be propagated over long distances. At night when the solar flux is low, radio energy is absorbed less and the lower frequencies are propagated better [2].

The radio waves at high frequency (HF) band (3-30) MHz which is represented as a primary communication resource that are back to Earth a distance from the transmitting antenna by the ionosphere facilities reception of information from radio waves. Long distance propagation of HF depends on an invisible layer of charged particles which envelops the Earth known as the ionosphere and the curvature of the Earth [3].

HF Communication Ionospheric Parameters

The ionospheric parameters is represented an important parameters in HF communications to determine the best range of reliable frequencies that are reflected from the ionospheric layers between two terminals at specific time, as shown in figure (1). The MUF, LUF, and FOT parameters are representing the main ionospheric parameters that can determine the best communication frequencies [4], these parameters can be defined as follows:

I. The Maximum Usable Frequency (MUF): *Is the highest frequency that permits an acceptable level of performance for propagation via the ionosphere taking intoaccount system.* The median value of MUF parameter is only 50 % of the time.

II. The Optimum Traffic Frequency (FOT):

Is also called the optimum working frequency (OWF) and define as *the highest effective frequency that propagates by ionospheric refraction alone for specific path.* It is working only 90 % of the monthly time.

III. The Lowest Usable Frequency (LUF):

Is the lowest frequency that can be propagated through ionosphere layer between

two terminals on the surface of the Earth. It is exceeded by the operational MUF on 10% of the specified period [5].

Figure 1- Illustrates the range of operation usable frequencies [5].

The predicted values of the MUF, LUF and FOT change in regular way due to the variations of the ionospheric factors over the day, the year and the 11-year sunspot cycle. Also, the parameters values change ionospheric progressively in the D, E and F layers depends on maximum electron density for each layer and the angle of incidence of the emitted radio wave [6]. Numerous studies over many years Bröms and Lundborg (1994) [7], Blagoveshchensky and Borisova (2000) [8], Fotiadis et al. (2003) [9], Barabashov et al. (2006) [10], Liu et al. (2008) [11], Walden (2010) [12] and Pietrella (2011) [13]) have been done to study variation the ionospheric parameters the behavior.

The Adopted International Communication Model

For many years, numerous organizations have developed HF ionospheric communication models in order to provide more accurate usable frequencies that are maintains between transmitter and receiver pointes over long distance.

The performance of HF communication models is evolved progressively, starting in the 1930's with uncoordinated studies by radio scientists and engineers in some countries.

The remarkable progress in computer systems over the past two decades has practically made to develop models of the ionosphere with the objective of making propagation predictions.

Currently, there are many HF prediction models generated by different organizations which have a wide range of applications in the world wide. The performance of HF models was provided many ionospheric reflection and propagation parameters like ionospheric characteristics, antenna patterns, MUF, LUF and FOT, take-off angles, propagation modes, sky-wave field strength, available receiver power, and SNR or service reliability [14].

In the present work, the Ionospheric Communications Enhanced Profile Analysis and Circuit (ICEPAC) model has been selected, because it's represent a full system performance model for high frequency (HF) radio communications circuits in the frequency range of 2 to 30 MHz.

ICEPAC model is represented the development Ionospheric Communications Analysis and Prediction (IONCAP) program. However, the ICEPAC model in America took over the completion of the IONCAP code by using technical expertise at both National Telecommunication and Information Administration (NTIA) and Institute for Telecommunication Sciences (ITS) [15].

Test and Results

The aim of this research is suggested simplified mathematical model to predict the ionospheric frequencies between transmitter station (Baghdad) and any other selected receiver station that located within the Iraqi region.

The ICEPAC communication model that represents one of the best recommended international HF communication models has been adopted to calculate the dataset values of the MUF and FOT parameters.

The years (2009-2011) have been selected to be the studied time period, because these years represent the beginning of solar cycle 24. Figure (2) illustrates the variation of monthly values of observed sunspots for selected years [16].

Figure 2- Sunspots number for years 2009-2011.

The Iraqi region which is laid within the longitudes range of $(39.1 \ ^{O}E - 47.37 \ ^{O}E)$ and

latitudes of (30.02 ^oN - 37.3 ^oN) has been considered for the studied area. The capital Baghdad which is located at geographical coordinates 44.42 ^oE and 33.32 ^oN had been selected to represent as a transmitter station and thirty one different locations which are distributed over Iraqi region have been represented as receiver stations, as shown in figure 3.

Figure 3- The locations of transmitter and receiver stations over local area.

The coordinates of geographical location coordinates (longitudes and latitudes) of the selected receivers laid over the Iraqi zone and bearing transmitter (T_X) to receiver (R_X) can be described in table (1).

Table 1- Illustrates the geographical locations of receiver stations and bearing parameter values $(T_X \text{ to } R_X)$.

Station Nama	Geogra Loca	aphical ation	Bearing (T _x	
Station Name	Lon (⁰ E)	Lat (⁰ N)	to R_x) (Deg)	
Afak	45	32	159.46	
Ajlan	44.2	30.02	183.61	
Akika	44.2	37.15	357.22	
Al-Amarah	47.15	31.83	122.53	
Al-Busayyah	46.02	30.11	156.82	
Al-Habariyah	42.21	32.28	241.08	
Al-Kinaq	45	31.25	166.62	
Al-Kut	45.83	32.51	124.18	
Al-Ma'aniyah	42.98	30.73	205.39	
Al-Mosal	43.13	36.34	340.88	
Al-Najaf	44.33	32	183.95	
Al-Nasiriyah	46.27	31.05	145.14	
Al-Rattawi	41.7	31.65	234.35	

Al-Rumadi	43.3	33.42	276.22
Al-Rumailah	47.37	30.28	140.09
Bara	41.49	36.37	322.11
Barwanah	42.39	34.1	294.99
Hader	42.72	35.59	328.56
Husybah	40.99	34.39	291.02
Kalar	45.3	34.63	29.10
Kani Sakht	46.07	33.27	91.80
Karbala	44.03	32.62	205.22
Kirkuk	44.32	35.48	357.98
Mandali	45.56	33.74	66.02
Rawanduz	44.52	36.51	1.95
Samarra	43.38	34.2	315.65
Sulaymaniyah	45.43	35.55	20.31
Tirbil	39.1	32.85	264.75
Tulaiha	40.98	33	264.18
Tuz	43.64	34.88	337.50
Zakho	42.7	37.3	340.83

In this work, the values of the MUF and FOT parameters have been studied statistically by analyzing the generated dataset from the ICEPAC model for annual time period of the selected years of solar cycle 24. Table (2) shows samples of the statistical analysis data file that illustrate the annual statistics.

Table 2- Shows samples of statistical analysis ofMUF & FOT parameters.

	MUF (Baghdad - Karbala) (2011)												
Time	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Annual
0	3.11	3.6	3.9	5.33	6.5	6.48	6.5	6.2	5.74	6.2	6	5.36	5.0
1	3.23	3.7	4	5.33	6.4	6.3	6.2	6	5.74	6.1	5.9	5.34	5.0
2	3.42	3.9	4.2	5.33	6.1	6.03	5.9	5.7	5.6	5.9	5.8	5.35	5.0
3	3.24	3.8	4.2	5.06	5.6	5.6	5.4	5.3	5.2	5.6	5.4	4.99	4.8
4	2.7	3.3	3.6	4.53	5.2	5.26	5	4.9	4.81	5.1	4.7	4.3	4.4
5	2.47	2.8	3.2	4.33	5.2	5.41	5.1	5	4.96	5.3	4.8	4.15	4.4
6	3.11	3.1	3.6	5.08	5.9	6.09	5.8	5.7	5.71	6.3	6.1	5.32	5.2
7	4.35	4.1	5.1	6.59	7	6.87	6.5	6.5	6.56	7.7	8	7.54	6.4
8	5.51	5.6	6.6	8.07	7.9	7.32	6.9	6.8	7.03	8.6	9.6	9.68	7.5
9	6.3	6 .7	7.5	8.98	8.6	7.51	6.9	6.8	7.21	9	10	10.9	8.1
10	6.81	7.2	8	9.54	9.2	7.74	7	6.8	7.44	9.3	11	11.3	8.6
11	7.09	7.3	8.4	10.1	10	8.21	7.4	7.1	7.88	9.8	11	11.4	9.0
12	7.02	7.2	8.6	10.6	11	8.79	7. 9	7.5	8.32	10	11	11.3	9.4
13	6.8	7.2	8.7	10.7	11	9.24	8.3	7. 9	8.57	10	12	11.3	9.6
14	6.72	7.2	8.5	10.5	11	9.37	8.4	8	8.58	10	12	11.4	9.7
15	6.68	7	8.5	10.1	11	9.22	8.3	7 .9	8.44	10	12	11.3	9.6
16	6.27	6.6	8.3	9.75	10	9	8.1	7.7	8.24	10	11	10.8	9.4
17	5.43	5.9	7.7	9.15	10	8.87	8	7.6	8.09	9.5	10	9.86	9.0
18	4.51	5.1	6.6	8.25	9.3	8.67	8	7.5	7.94	8.8	9.4	8.65	8.5
19	3.87	4.5	5.6	7.27	8.5	8.24	7.8	7.4	7 .6 7	8	8.3	7.59	8.0
20	3.55	4	4.8	6.49	7.6	7.66	7.4	7.1	7.21	7.3	7.4	6.82	7.5
21	3.45	3.7	4.3	6.01	7	7.19	7.1	6 .7	6.66	6.9	6.8	6.31	7.2
22	3.37	3.6	4.1	5.71	6.7	6.91	6.9	6.5	6.18	6.6	6.5	5.93	7.0
23	3.22	3.6	3.9	5.48	6.6	6.69	6 .7	6.3	5.86	6.4	6.3	5.59	6.9

	FOT (Baghdad - Karbala) (2011)												
Time	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Annual
0	2.5	2.9	3.2	4.1	5.0	5.1	5.1	4.9	4.4	4.7	4.7	4.1	3.9
1	2.6	3.0	3.2	4.1	4.9	4.9	4.9	4.7	4.4	4.7	4.6	4.1	3.9
2	2.5	2.9	3.1	4.1	4.6	4.8	4.8	4.7	4.1	4.5	4.4	4.1	3.9
3	2.4	2.8	3.1	3.8	4.3	4.5	4.4	4.3	3.8	4.2	4.1	3.8	3.7
4	2.0	2.4	2.7	3.4	3.9	4.2	4.1	4.0	3.5	3.9	3.6	3.3	3.5
5	2.0	2.1	2.4	3.3	4.0	4.3	4.2	4.1	3.6	4.0	3.7	3.2	3.5
6	2.7	2.6	3.1	4.2	4.9	5.0	4.5	4.4	4.3	5.2	5.0	4.4	4.3
7	3.7	3.6	4.3	5.4	5.7	5.6	5.1	5.1	4.9	6.3	6.6	6.2	5.3
8	4.7	4.8	5.7	6.6	6.5	6.0	5.3	5.3	5.3	7.0	7.9	7.9	6.2
9	5.4	5.7	6.5	7.4	7.0	6.2	5.4	5.3	5.4	7.4	8.6	8.9	6.8
10	5.6	5.9	6.6	7.9	7.7	6.0	5.6	5.4	5.9	7.7	9.1	9.4	7.1
11	5.8	6.0	6.9	8.4	8.3	6.4	5.9	5.7	6.2	8.1	9.3	9.4	7.5
12	5.8	5.9	7.1	8.8	8.8	6.9	6.3	6.0	6.6	8.5	9.5	9.4	7.8
13	5.6	5.9	7.1	8.9	9.1	7.2	6.6	6.3	6.8	8.6	9.6	9.4	8.0
14	5.7	6.1	7.2	8.2	8.5	7.6	6.8	6.5	6.6	8.1	9.1	8.9	7.9
15	5.7	6.0	7.2	7.9	8.3	7.5	6 .7	6.4	6.5	8.0	9.0	8.8	7.9
16	5.3	5.6	7.0	7.6	8.1	7.3	6.6	6.2	6.4	7.8	8.7	8.5	7.8
17	4.6	5.0	6.5	7.1	7.8	7.2	6.5	6.1	6.2	7.4	8.1	7.7	7.5
18	3.5	4.0	5.2	5.9	6 .7	6.4	6.4	6.0	5.9	6.4	6 .7	6.2	6.7
19	3.0	3.5	4.3	5.2	6.1	6.1	6.2	5.9	5.7	5.8	6.0	5.5	6.3
20	2.8	3.1	3.7	4.7	5.4	5.7	5.9	5.7	5.3	5.3	5.3	4.9	6.0
21	2.7	2.9	3.4	4.3	5.0	5.3	5.7	5.4	4.9	4.9	4.9	4.5	5.8
22	2.7	2.9	3.3	4.4	5.2	5.4	5.4	5.1	4.8	5.1	5.0	4.6	5.8
23	2.6	2.9	3.2	4.2	5.1	5.2	5.3	5.0	4.5	4.9	4.8	4.3	5.8

The construction of suggested mathematical model based on studying the correlated relationship between the geographical locations coordinates (longitude and Latitude) of receiver stations and the dataset of the MUF and FOT parameters that generated from the ICEPAC international communication model.

Depending on the statistical analysis results that have been made, the behavior of the ionospheric parameters basically depends on the the spherical geodesic parameter (Bearing) between the two stations; therefore the suggested empirical equation that describes the correlation relationship between the ionospheric parameters and geographical locations of the connection links has been proposed as *linear surface equation:-*

$$\boldsymbol{I}_P = \boldsymbol{a}_0 + \boldsymbol{a}_1 \boldsymbol{G}_{lat} + \boldsymbol{a}_2 \boldsymbol{G}_{lon}$$

Where

 I_p = is the Ionospheric Parameter (MUF or FOT).

 G_{lat} = is the latitude of receiving station.

 G_{lon} = is the longitude of receiving station.

 a_0 , a_1 , a_2 = are the Constant Coefficients.

In order to get the set of the a's coefficients (a_0, a_1, a_2) , the tested area had been classified according to it's bearing value into four tested sectors. Table (3) shows sample of the a's coefficients and the R-square values of the MUF and FOT parameters for the first tested sector for the year 2011.

	MUF (First Sector) (2011)					
Time	a_0	a_1	a ₂	\mathbf{R}^2		
0	5.989	-0.168	0.106	0.958		
1	5.703	-0.166	0.110	0.955		
2	5.612	-0.161	0.107	0.947		
3	4.964	-0.142	0.100	0.955		
4	3.611	-0.120	0.104	0.943		
5	1.879	-0.129	0.148	0.953		
6	1.515	-0.197	0.222	0.958		
7	2.740	-0.293	0.293	0.968		
8	4.766	-0.349	0.310	0.964		
9	6.199	-0.370	0.306	0.962		
10	7.049	-0.351	0.282	0.960		
11	7.894	-0.355	0.274	0.962		
12	9.081	-0.369	0.264	0.960		
13	10.635	-0.394	0.251	0.962		
14	11.119	-0.418	0.258	0.964		
15	11.707	-0.453	0.267	0.966		
16	11.675	-0.460	0.266	0.968		
17	11.282	-0.453	0.259	0.966		
18	10.708	-0.401	0.220	0.966		
19	9.419	-0.324	0.179	0.962		
20	8.601	-0.251	0.130	0.960		
21	7.531	-0.196	0.105	0.955		
22	6.779	-0.171	0.098	0.953		
23	6.461	-0.163	0.095	0.947		

Table 3	- Samples of the a's seasonal cons	stant
coefficie	nts of the MUF & FOT parameters.	

	FOT (First Sector) (2011)					
Time	a_0	a ₁	a_2	\mathbb{R}^2		
0	5.135	-0.128	0.073	0.958		
1	4.441	-0.128	0.085	0.957		
2	4.316	-0.123	0.082	0.953		
3	3.929	-0.109	0.074	0.955		
4	2.749	-0.091	0.079	0.945		
5	1.786	-0.098	0.106	0.953		
6	0.995	-0.159	0.185	0.962		
7	1.978	-0.235	0.240	0.968		
8	3.705	-0.282	0.255	0.964		
9	4.949	-0.300	0.252	0.964		
10	5.653	-0.286	0.232	0.964		
11	6.312	-0.288	0.225	0.962		
12	7.377	-0.301	0.216	0.960		
13	8.548	-0.320	0.207	0.964		
14	8.890	-0.335	0.207	0.964		
15	9.408	-0.363	0.213	0.968		
16	9.258	-0.369	0.216	0.966		
17	9.243	-0.366	0.205	0.966		
18	7.813	-0.298	0.168	0.966		
19	7.086	-0.244	0.134	0.962		
20	6.399	-0.188	0.098	0.957		

21	5.731	-0.148	0.077	0.955
22	5.461	-0.135	0.074	0.953
23	5.135	-0.128	0.073	0.947

In order to verify the accuracy of simplified suggested model, the predicted values of the ionospheric parameters that calculated by substituting the values of the geographical location coordinates (i.e., Longitude (G_{lon}) and Latitude (G_{lat})) for each considered receiving station in the suggested empirical formula have been compared with theoretical values that calculated from the ICEPAC, REC533, VOACAP international models. Figures (4) and (5) present samples of the calculated results of predicted and theoretical ionospheric parameters for annual time for the years (2009-2011).

Figure 4- Describes the annual variation of theoretical and predicted values of MUF parameter.

Figure 5- Describes the annual variation of theoretical and predicted values of FOT parameter.

Samples of the annual mean square error values (MSE) for MUF and FOT parameters are shown in table (4).

Table 4- Show samples of the annual MSE values of MUF and FOT parameters for the selected years.

An	Annual Time (MUF – 2011)						
Station	MSE	MSE					
Akika	0.027	0.025					
Ajlan	0.013	0.073					
Kani Sakht	0.049	0.087					
Tulaiha	0.003	0.007					
An	nual Time (MUF -	- 2010)					
Station	MSE	MSE (
Akika	0.006	0.026					
Ajlan	0.012	0.049					
Kani Sakht	0.046	0.039					
Tulaiha	0.005	0.006					
An	nual Time (MUF -	- 2009)					
Station	MSE	MSE (
Akika	0.024	0.004					
Ajlan	0.012	0.035					
Kani Sakht	0.044	0.031					
Tulaiha	0.004	0.007					
An	nual Time (FOT -	- 2011)					
Station	MSE	MSE					
Akika	0.022	0.008					
Ajlan	0.008	0.004					
Kani Sakht	0.031	0.007					
Tulaiha	0.008	0.033					
An	nual Time (FOT -	- 2010)					
Station	MSE	MSE					
Akika	0.025	0.005					
Ajlan	0.008	0.004					
Kani Sakht	0.03	0.006					
Tulaiha	0.005	0.025					
An	nual Time (FOT -	- 2009)					
Station	MSE	MSE					
Akika	0.024	0.004					
Ajlan	0.008	0.002					
Kani Sakht	0.028	0.005					
Tulaiha	0.004	0.027					

Discussion and Conclusion

In this work, an analytical investigation for MUF and FOT parameters behavior has been achieved for annual period of years (2009-2011) over Iraqi territory.

Due to the complications of the statistical analysis results, the studied communication region had been divided into four sectors depending on the spherical geodesic parameter (Bearing) between the transmitter and receiver stations. The correlation relationship between the ionospheric parameters and geographical location coordinates of receiving stations for each sector has been studied for each sector of tested area, so the results of this investigation show the relation between them is linear surface equation.

The annual predications of the MUF and FOT parameters for the Iraqi zone that illustrated (samples) in figures (4) & (5) show a good fitting between the predicted values that are calculated using suggested mathematical model and theoretical values that calculated by executing ICEPAC, REC533 and VOACAP models. The evaluated MSE between the predicted and theoretical values that is illustrated in table (4) gave good results that show a good correlation and fitting between the two sets.

According to the above discussion, the following conclusions can be summarized:-

1. According to the statistical analysis results, the suggested empirical equation that describes the correlation relationship between the ionospheric parameters and geographical location coordinates of receiver stations has been proposed as linear surface equation.

2. The annual predicted values of ionospheric parameters using the suggested empirical model show a good fitting with theoretical values that calculated using the international models.

3. The MSE values between the predicted and theoretical values gave very acceptable results which show a good approaching and fitting between the two sets.

References

- 1. D. Anderson and T. Fuller-Rowell, "*Space Envirmantal Topics*", Space Environment Center, 325 Broadway, Boulder, CO 80303-3326, **1999**.
- 2. "Ionospheric waves", IPS Radio and Space Services, West Chatswood NSW 2057, Australia, 2000.
- **3.** *Principles of Radio Wave Propagation* ", United States Army Signal Center and Fort Gordon, B ed., Fort Gordon, Georgia, Subcourse No. SS0130, pp. 1-8, **2005**.
- 4. G. Lane, "Improved Guidelines for Automatic Link Establishment Operations", Preprint paper to 3B-4, Ionospheric Effects Symposium, Alexandria VA USA, May 3-5, 2005.
- **5.** M. C. Walden, "Analysis of Chilton Ionosonde Critical Frequency Measurements during Solar Cycle 23 in the Context of Mid-

latitude HF NVIS Frequency Predictions", paper presented to 12th IET International Conference on Ionospheric Radio Systems and Techniques, York, UK, 15-17 May **2012**.

- 6. L. W. Barclay, "*Propagation of Radiowaves*", 2nd Ed., The Institution of Engineering and Technology, London, UK, pp. 318-319, 340, **2003**.
- S. E. Ritchie and F. Honary, "Storm sudden commencement and its effect on high latitude HF communication links", *Space Weather Journal*, Vol. 7, S06005, doi:10.1029/-2008SW000461, 2009.
- D. V. Blagoveshchensky, A. S. Kalishin, and M. A. Sergeyeva, "Space weather effects on radio propagation: study of the CEDAR, GEM and ISTP storm event", *Annales Geophysicae*, Vol. 26, No. 6, pp. 1479-1490, 2008.
- 9. D. N. Fotiadis, G. M. Baziakos and S. S. Kouris, "On the global behavior of the day-to-day MUF variation", *Advances in Space Research*, Vol. 33, No. 6, pp. 893-901, **2003**.
- B. G. Barabashov ,O. A. Maltseva , V. T. Rodionova and A. S. Shlyupkin, "MOF/MUF Behavior over One European Path", Geophysical Research Abstracts, Vol. 55, No. 3, *Acta Geophys*, pp. 424-440, 2006.
- 11. C. Liu, M. L. Zhang, W. Wan, L. Liu and B. Ning, "Modeling *M*(3000)F2 based on empirical orthogonal function analysis method", *Radio Science*, Vol. 43, RS1003, doi:10.1029/2007RS00-3694, 2008.
- 12. M. C. Walden, "A Comparison of Measurements and Propagation Simulations for 400 Mid-Latitude HF NVIS Links at 5 MHz During Sunspot Minima", paper presented to the Nordic Shortwave Conference HF 10, Fårö, Sweden, pp. 2, 2010.
- **13.** M. Pietrella , "A regional ionospheric model for forecasting the critical frequency of the F2 layer during disturbed geomagnetic and ionospheric conditions", paper presented to General Assembly and Scientific Symposium IEEE, Istanbul, Turkey, pp. 1-4, **2011**.

- 14. R. Hanbaba, "Performance prediction methods of HF radio systems", *Annali Di Geophisca*, Vol. 41, No. 5-6, pp. 715- 748, 1998.
- **15.** G. Lane, "*Review of the High Frequency Ionospheric Communications Enhanced Profile Analysis and Circuit (ICEPAC) Prediction Program*", Preprint paper to 2B-1, Ionospheric Effects Symposium, Alexandria VA USA, May 3-5, **2005**.
- 16. The Sunspot Cycle, Marshall Space Flight Center, NASA, USA, September 2012.http://solarscience.msfc.nasa.gov/Suns potCycle